Skip to main content

The Earth in Time

  • Chapter
  • First Online:
The Earth as a Distant Planet

Part of the book series: Astronomy and Astrophysics Library ((AAL))

Abstract

The history of our planet is 4,500 million years old. During this time, it has undergone multiple changes that have clearly affected its global properties as seen from space. In this chapter, after an introduction on the present structure of the planet, we make a journey from the early days of the Earth to the present day, in its current state of global warming. Dissipation of the internal energy has configured a variable aspect of the surface. Together with the changes in the solar output, the varying concentration of greenhouse gases in the atmosphere has produced several climate changes with different periods and amplitudes. The activities of life, both in the past and in the present, have played an active role in the global evolution of the planet. At the end of the chapter, we stress the importance of the current age, the Anthropocene, in which humans are starting to influence the global environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See also the 2008 report of the National Research Council on Origin and Evolution of Earth: Research Questions for a changing Planet.

  2. 2.

    Pressure (P) waves travel at the greatest velocities within solids and the particle motion is parallel to the direction of wave propagation. Shear (S) waves are transverse waves.

  3. 3.

    The strength of the field at the Earth’s surface ranges from less than 30 μT (0.3 gauss) in an area including most of South America and South Africa to over 60 μT (0.6 gauss) around the magnetic poles in northern Canada and southern Australia, and in parts of Siberia.

  4. 4.

    Mantle materials are poor conductors of heat.

  5. 5.

    The heat flow is larger in the oceans than in the continents.

  6. 6.

    The amount of generated energy is proportional to the planetary volume ( ∝ R 3), and the amount of dissipated energy depends on the planetary surface ( ∝ R 2). Therefore, it takes a certain time to cool.

  7. 7.

    In a letter written on September 1782 to the Abbe Soularie, Benjamin Franklin (1706–1790) recognized that the crust was a shell, which could be broken and parts moved about.

  8. 8.

    In 1620 he said, if the fit between South America and Africa is not genetic, surely it is a device of Satan for our confusion.

  9. 9.

    In stagnant lid convection, heat is transported by conduction in most of the top layer. The convectively unstable bottom is restricted to this region, which is significantly colder than the interior and not so cold that it is too stiff to participate in the convection.

  10. 10.

    Venus has a thick lithosphere and mantle plumes (stagnant lid convection) and although plate tectonics may have existed in the past in Mars, it now has become a ‘single-plate’ planet dominated by hot-spot volcanism (see also Sect. 2.3.2).

  11. 11.

    Heat absorbed during a change of state.

  12. 12.

    Diatomic molecules are molecules made only of two atoms. If a diatomic molecule consists of two atoms of the same element, then it is said to be homonuclear, otherwise it is said to be heteronuclear.

  13. 13.

    Calculated according to the current amount in carbonates, continental sediments and the biosphere.

  14. 14.

    This parameter has been measured only in three comets: Halley, Hale-Bopp and Hyakutake. The values are factor two larger than the Earth water.

  15. 15.

    Because Earth’s effective cross section is 20 times bigger than the Moon, our planet must have suffered many more impacts than those recorded on the lunar surface.

  16. 16.

    Zircon is a mineral belonging to the group of nesosilicates. Its chemical name is zirconium silicate and its corresponding chemical formula is ZrSiO4.

  17. 17.

    The Sun transforms 4 million tons per second into energy and has lost about 1% of its original mass during its 4.5 billion years of evolution.

  18. 18.

    The main organelles are Mitochondria, producing energy from oxygen and food, and Chloroplasts, converting sunlight into energy. Plastids provided eucaryotes with the ability to generate their own oxygen.

  19. 19.

    On the Early Earth, molecular hydrogen, H 2, reached concentrations of up to thousands of parts per million.

  20. 20.

    It refers to any chemical or physical process that acts to separate isotopes, where the amount of separation does not scale in proportion to the difference in the masses of the isotopes.

  21. 21.

    Here CH2O is shorthand for more complex forms of organic matter.

  22. 22.

    To preserve this signature three conditions are needed: very low atmospheric oxygen, sufficient sulphur gas in the atmosphere and substantial concentrations of reducing gases (methane).

  23. 23.

    One mole of an element is equal to 6. 02 ×1023 atoms of that substance.

  24. 24.

    The wavelength ranges of these three spectral bands are UV-C (100–280 nm), UV-B (280–315 nm) and UV-A (315–400 nm).

  25. 25.

    Pastids are a group of organelles that play central roles in plant metabolism via photosynthesis, lipid and aminoacid synthesis (Wise and Hoober 2006).

  26. 26.

    The first event probably took place around 2.5 Ga ago and it is based on glacial deposits in the Gowganda Formation in Canada and the Makganyene Formation in South Africa (Hilburn et al. 2005; Kopp et al. 2005).

  27. 27.

    Also called methane hydrate, this is a solid form of water that contains methane within its crystal structure. Its current locations are the continental margins and the permafrost of Siberia and Antarctica.

  28. 28.

    Allen and Etienne (2008) quoted Louis Agassiz (1807–1873) saying: the Earth may have avoided death enveloping all nature in a shroud.

  29. 29.

    The Hawaii and Canary Island archipelagos are probably a consequence of two such hotspots.

  30. 30.

    Four types of uniformities were the base of the theory: laws, processes (actualism), rates (gradualism) and state.

  31. 31.

    In this context, the theory of ‘punctuated equilibrium’ should be mentioned, which supported the effect of chaotic events as a major force driving bursts in diversity. Evolutionary change occurs relatively rapidly in comparatively brief periods of environmental stress, separated by longer periods of evolutionary stability. This theory has been popularized in various books by S.J. Gould (1940–2002).

  32. 32.

    Large carbon compounds consisting of 60 or more carbon atoms, arranged as regular hexagons in a hollow shell. They are often called buckyballs, after Richard Buckminster Fuller (1895–1983), inventor of the geodesic dome, which their natural structure resembles.

  33. 33.

    K stands for Cretaceous (from German) and T for the Tertiary Era – the Age of Mammals.

  34. 34.

    ppmv: parts per million in volume.

  35. 35.

    Written by 21 members of a commission organized by the London Geological Society to elucidate if we have entered a new geological period. This commission unanimously answered ‘yes’ to the question: ‘Are we now living in the Anthropocene?’.

  36. 36.

    They include humans, domesticated plants and animals and synanthropes (e.g. rats, rabbits etc.).

  37. 37.

    Since its founding, in 1988, the Intergovernmental Panel on Climate Change (IPCC) has published four reports: 1990, 1995, 2001 and 2007.

References

  • Abbott, D.H., Isley, A.E.: Extraterrestrial influences on mantle plume activity. Earth Planet. Sci. Lett. 205, 53–62 (2002)

    ADS  Google Scholar 

  • Allègre, C.J., Manhès, G., Göpel, C.: The age of the Earth. Geochimica et Cosmochimica Acta 59, 1445–1456 (1995)

    ADS  Google Scholar 

  • Allen, P.A., Etienne, J.L.: Sedimentary challenge to snowball Earth. Nat. Geosci. 1, 817–825 (2008)

    ADS  Google Scholar 

  • Alvarez, L.W., Alvarez, W., Asaro, F., Michel, H.V.: Extraterrestrial cause for the cretaceous tertiary extinction. Science 208, 1095–1108 (1980)

    ADS  Google Scholar 

  • Anguita, F.: Biografía de la Tierra: Historia de un planeta singular. Editorial Aguilar (2002)

    Google Scholar 

  • Araki, T., et al.: Experimental investigation of geologically produced antineutrinos with KamLAND. Nature 436, 499–468 (2005)

    ADS  Google Scholar 

  • Arbab, A.I.: Evolution of angular momenta and energy of the Earth-Moon system. ArXiv Astrophysics e-prints (2003)

    Google Scholar 

  • Bains, S., Norris, S.D., Corfield, R.M., Faul, K.L.: Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature 407, 171–174 (2000)

    ADS  Google Scholar 

  • Becker, L., Poreda, R.J., Basu, A.R., Pope, K.O., Harrison, T.M., Nicholson, C., Iasky, R.: Bedout: A possible end-permian impact crater offshore of Northwestern Australia. Science 304, 1469–1476 (2004)

    ADS  Google Scholar 

  • Becker, L., Poreda, R.J., Hunt, A.G., Bunch, T.E., Rampino, M.: Impact event at the permian-triassic boundary: Evidence from extraterrestrial noble gases in fullerenes. Science 291, 1530–1534 (2001)

    ADS  Google Scholar 

  • Benton, M.J.: Late triassic extinctions and the origin of dinosaurs. Science 260, 769–770 (1993)

    ADS  Google Scholar 

  • Benton, M.J.: Diversification and extinction in the history of life. Science 268, 52–58 (1995)

    ADS  Google Scholar 

  • Benton, M.J.: When life nearly died. Thames and Hudson, London (2003)

    Google Scholar 

  • Berger, A., Loutre, M.F.: CLIMATE: An exceptionally long interglacial ahead? Sci. 297, 1287–1288 (2002)

    Google Scholar 

  • Berner, R.: The phanerozoic carbon cycle: CO2 and O2. Oxford University Press, Oxford (2004)

    Google Scholar 

  • Berner, R.A.: Examination of hyphotheses for the permo-triassic boundary extinction by carbon cycle modeling. Proc. Natl. Acad. Sci. 99, 4172–4173 (2002)

    ADS  Google Scholar 

  • Berner, R.A., Kothavala, Z.: GEOCARBIII: A revised model of atmospheric CO2 over phanerozoic time. Am. J. Sci. 301, 182–204 (2001)

    Google Scholar 

  • Berner, R.A., Lasaga, A.C., Garrels, R.M.: The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983)

    Google Scholar 

  • Betts, R.A.: Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190 (2000)

    ADS  Google Scholar 

  • Bolfan-Casanova, N.: Water in the Earth’s mantle. Mineral. Mag. 69, 229–257 (2005)

    Google Scholar 

  • Bounama, C.: Thermische Evolution und Habitabilität erdähnlicher Exoplaneten. Thesis, Potsdam University (2007)

    Google Scholar 

  • Brocks, J.J., Buick, R., Logan, G.A., Summons, R.E.: Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia. Geochim. Cosmochim. Acta 67, 4289–4319 (2003)

    ADS  Google Scholar 

  • Brownlee, D., Ward, P.D.: Rare Earth: Why complex life is uncommon in the Universe. Springer, Heidelberg (2000)

    Google Scholar 

  • Brownlee, D., Ward, P.D.: The life and death of planet earth. Owl Books (2004)

    Google Scholar 

  • Budyko, M.I.: Te effect of solar radiation variations on the climate of the Earth. Tellus 21, 611–619 (1969)

    ADS  Google Scholar 

  • Burchfield, J.D.: Lord Kelvin and the age of the Earth. University of Chicago Press, Chicago (1990)

    Google Scholar 

  • Burroughs, W.J.: Climate change in prehistory. Cambridge University Press, London (2005)

    Google Scholar 

  • Caldeira, K., Kasting, J.F.: The life span of the biosphere revisited. Nature 360, 721–723 (1992)

    ADS  Google Scholar 

  • Came, R.E., Eiler, J.M., Veizer, J., Azmy, K., Brand, U., Weidman, C.R.: Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era. Nature 449, 198–201 (2007)

    ADS  Google Scholar 

  • Canfield, D.E.: The early history of atmospheric oxygen: Homage to Robert M. Garrels. An. Rev. Earth Planet. Sci. 33, 1–36 (2005)

    ADS  Google Scholar 

  • Canup, R.M.: Dynamics of lunar formation. An. Rev. Astron. Astrophys. 42, 441–475 (2004)

    ADS  Google Scholar 

  • Canup, R.M., Asphaug, E.: Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001).

    ADS  Google Scholar 

  • Canup, R.M., Righter, K., et al.: Origin of the earth and moon. University of Arizona Press, AZ (2000)

    Google Scholar 

  • Canuto, V.M., Levine, J.S., Augustsson, T.R., Imhoff, C.L.: UV radiation from the young sun and oxygen and ozone levels in the prebiological palaeoatmosphere. Nature 296, 816–820 (1982)

    ADS  Google Scholar 

  • Canuto, V.M., Levine, J.S., Augustsson, T.R., Imhoff, C.L., Giampapa, M.S.: The young sun and the atmosphere and photochemistry of the early earth. Nature 305, 281–286 (1983)

    ADS  Google Scholar 

  • Carver, J.H., Vardavas, I.M.: Precambrian glaciations and the evolution of the atmosphere. Ann. Geophys. 12, 674–682 (1994)

    ADS  Google Scholar 

  • Cess, R.D., Zhang, M.H., Ingram, W.J., Potter, G.L., Alekseev, V., Barker, H.W., Cohen-Solal, E., Colman, R.A., Dazlich, D.A., Del Genio, A.D., Dix, M.R., Esch, M., Fowler, L.D., Fraser, J.R., Galin, V., Gates, W.L., Hack, J.J., Kiehl, J.T., Le Treut, H., Lo, K.K.W., McAvaney, B.J., Meleshko, V.P., Morcrette, J.J., Randall, D.A., Roeckner, E., Royer, J.F., Schlesinger, M.E., Sporyshev, P.V., Timbal, B., Volodin, E.M., Taylor, K.E., Wang, W., Wetherald, R.T.: Cloud feedback in atmospheric general circulation models: An update. J. Geophys. Res. 101, 12,791–12,794 (1996)

    ADS  Google Scholar 

  • Chamberlain, J.W.: Theory of planetary atmospheres. Academic, NY (1987)

    Google Scholar 

  • Charlson, R.J., Schwartz, S.E., Hales, J.M., Cess, R.D., Coakley Jr., J.A., Hansen, J.E., Hofmann, D.J.: Climate forcing by anthropogenic aerosols. Science 255, 423–430 (1992)

    ADS  Google Scholar 

  • Claire, M.W., Catling, D.C., Zahnle, K.J.: Biochemical modelling of the rise in atmospheric oxygen. Geobiology 4, 239–269 (2006)

    Google Scholar 

  • Cleaves, H.J., Chalmers, J.H., Lazcano, A., Miller, S.L., Bada, J.L.: A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Origins of Life and Evolution of the Biosphere 38, 105–115 (2008)

    ADS  Google Scholar 

  • Cockell, C.S.: The ultraviolet history of the terrestrial planets – implications for biological evolution. Planet. Space Sci. 48, 203–214 (2000)

    ADS  Google Scholar 

  • Condie, K.C.: Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet. Sci. Lett. 163, 97–108 (1998)

    ADS  Google Scholar 

  • Condie, K.C.: Mantle plumes and their record in earth history. Cambridge University Press, London (2001)

    Google Scholar 

  • Condie, K.C.: Continental growth during a 1.9-Ga superplume event. J. Geodyn. 34, 249–264 (2002)

    Google Scholar 

  • Condie, K.C.: Earth as an evolving planetary system. Academic, NY (2004a)

    Google Scholar 

  • Condie, K.C.: Supercontinents and superplume events: distinguishing signals in the geologic record. Phys. Earth Planet. In. 146, 319–332 (2004b)

    ADS  Google Scholar 

  • Courtillot, V.: Evolutionary catastrophes. Cambridge University Press, London (1999)

    Google Scholar 

  • Courtillot, V., Olson, P.: Mantle plumes link magnetic superchrons to phanerozoic mass depletion events. Earth Planet. Sci. Lett. 260, 495–504 (2007)

    ADS  Google Scholar 

  • Crowley, T.J., Hyde, W.T.: Transient nature of late Pleistocene climate variability. Nature 456, 226–230 (2008)

    ADS  Google Scholar 

  • Crutzen, P.J.: The anthropocene. J. Phys. 12, 1–5 (2002a)

    Google Scholar 

  • Crutzen, P.J.: Geology of mankind. Nature 415, 23 (2002b)

    Google Scholar 

  • Crutzen, P.J., Stoermer, E.F.: The anthropocene. Global Change Newslett. 41, 12–13 (2000)

    Google Scholar 

  • Darling, D.: Life everywhere. Basic Books, London (2002)

    Google Scholar 

  • Dauphas, N., Cates, N.L., Mojzsis, S.J., Busigny, V.: Identification of chemical sedimentary protoliths using iron isotopes in the > 3750 Ma Nuvvuagittuq supracrustal belt, Canada. Earth Planet. Sci. Lett. 254, 358–376 (2007)

    ADS  Google Scholar 

  • de Jager, C.: Solar Energy Sources. In: ASSL Vol. 29: The sun. Part 1 of solar-terrestrial physics/1970, pp. 1–8. D. Reidel, Dordrecht (1972)

    Google Scholar 

  • De Laubenfels, M.W.: Dinosaur extinction: One more hypothesis. J. Paleontology 30, 207–218 (1956)

    Google Scholar 

  • de Pater, I., Lissauer, J.J.: Planetary sciences. Cambridge University Press, London (2001)

    Google Scholar 

  • De Wit, M.J., Hart, R.A.: Earth’s earliest continental litosphere, hydrothermal flux and crustal recycling. Lithos 30, 309–335 (1993)

    ADS  Google Scholar 

  • Delaye, L., Lazcano, A.: Prebiological evolution and the physics of the origin of life. Phys. Life Rev. 2, 47–64 (2005)

    ADS  Google Scholar 

  • Dickey, J.O., Bender, P.L., Faller, J.E., Newhall, X.X., Ricklefs, R.L., Ries, J.G., Shelus, P.J., Veillet, C., Whipple, A.L., Wiant, J.R., Williams, J.G., Yoder, C.F.: Lunar laser ranging – a continuing legacy of the apollo program. Science 265, 482–490 (1994)

    ADS  Google Scholar 

  • Diziewonski, A.M., Anderson, D.L.: Preliminary Earth reference model. Phys. Earth Plan. In. 25, 297–356 (1981)

    ADS  Google Scholar 

  • Ebelmen, J.J.: Sur les produits de la decomposition des especes minérales de la famile des silicates. Annu. Rev. Moines 12, 627–654 (1845)

    Google Scholar 

  • Ervin, D.H.: The permo-triassic extinction. Nature 367, 231–236 (1994)

    ADS  Google Scholar 

  • Erwin, D.H.: Extinction: How life on Earth nealy ended 251 million years ago. Princeton University Press, NJ (2006)

    Google Scholar 

  • Fletcher, B.J., Brentnall, S.J., Anderson, C.W., Berner, R.A., Beerling, D.J.: Atmopsheric carbon dioxide linked with Mesozoic and early Cenozoic climate change. Nat. Geosci. 1, 43–48 (2008)

    ADS  Google Scholar 

  • Fourier, J.: Remarques Générales Sur les Temperatures Du Globe Terrestre et des Espaces Planétaires. Annales de Chemie et de Physique 27, 136–167 (1824)

    Google Scholar 

  • Franck, S.: Evolution of the global mean heat flow over 4.6 Gyr. Tectonophysics 291, 9–18 (1998)

    ADS  Google Scholar 

  • Franck, S., Block, A., von Bloh, W., Bounama, C., Schellnhuber, H.J., Svirezhev, Y.: Habitable zone for Earth-like planets in the solar system. Planet. Space Sci. 48, 1099–1105 (2000)

    ADS  Google Scholar 

  • Franck, S., Bounama, C.: Continental growth and volatile exchange during Earth’s evolution. Phys. Earth Planet. In. 100, 189–196 (1997)

    ADS  Google Scholar 

  • Franck, S., Bounama, C., von Bloh, W.: Causes and timing of future biosphere extinction. Biogeosciences Discussions 2, 1665–1679 (2005)

    ADS  Google Scholar 

  • Franck, S., Kossacki, K.J., von Bloh, W., Bounama, C.: Long-term evolution of the global carbon cycle: historic minimum of global surface temperature at present. Tellus B Chem. Phys. Meteorol. 54, 325 (2002)

    ADS  Google Scholar 

  • Garcia-Pichel, F.: Solar ultraviolet and the evolutionary history of cyanobacteria. Origins of Life and Evolution of the Biosphere 28, 321–347 (1998)

    ADS  Google Scholar 

  • Gehrels, T., Matthews, M.S., Schumann, A.M. (eds.): Hazards due to comets and asteroids. University of Arizona Press, AZ (1994)

    Google Scholar 

  • Glatzmaier, G.A., Coe, R.S., Hongre, L., Roberts, P.H.: The role of the Earth’s mantle in controlling the frequency of geomagnetic reversals. Nature 401, 885–890 (1999)

    ADS  Google Scholar 

  • Glatzmaier, G.A., Roberts, P.H.: Rotation and magnetism of Earth’s inner core. Science 274, 1887–1891 (1996)

    ADS  Google Scholar 

  • Goldblatt, C., Lenton, T.M., Watson, A.J.: Bistability of atmospheric oxygen and the great oxydation. Nature 443, 683–686 (2006)

    ADS  Google Scholar 

  • Gough, D.O.: Solar interior structure and luminosity variations. Sol. Phys. 74, 21–34 (1981)

    ADS  Google Scholar 

  • Graham, J.B., Dudley, R., Aguilar, N.M., Gaub, C.: Implications of the late Paleozoic oxygen pulse for physiology and evolution. Nature 375, 117–120 (1995)

    ADS  Google Scholar 

  • Güdel, M.: The Sun in time: Activity and environment. Living Rev. Sol. Phys. 4, 3 (2007)

    ADS  Google Scholar 

  • Hallan, A., Wignall, P.B.: Mass extinctions and their aftermath. Oxford University Press, Oxford (1997)

    Google Scholar 

  • Hanslmeier, A.: Habitability and cosmic catastrophes. Springer, Heidelberg (2008)

    Google Scholar 

  • Harries, J.E.: The greenhouse Earth: A view from space. Q. J. Meteorol. Soc. 122, 799–818 (1996)

    ADS  Google Scholar 

  • Hartmann, W.K., Davis, D.R.: Satellite-sized planetesimals and lunar origin. Icarus 24, 504–514 (1975)

    ADS  Google Scholar 

  • Hedges, S.B., Blair, J.M., Venturi, M., Shoe, J.L.: A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol. Biol. 4 (2004)

    Google Scholar 

  • Herndon, J.M.: Sub-structure of the inner core of the Earth. Proc. Natl. Acad. Sci. 93, 646–648 (1996)

    ADS  Google Scholar 

  • Hess, H.: History of Ocean Basins. In: A.E. Engel, H.L. James, B.F. Leonard (eds.) Petrologic Studies, pp. 599–620. Geological Society of America, Co (1962)

    Google Scholar 

  • Hilburn, I.A., Kirschvink, J.L., Tajika, E., Tada, R., Hamano, Y., Yamamoto, S.: A negative fold test on the Lorrain formation of the huronian supergroup: Uncertainty on the paleolatitude of the Paleoproterozoic Gowganda glaciation and implications for the great oxygenation event. Earth Planet. Sci. Lett. 232, 315–332 (2005)

    ADS  Google Scholar 

  • Hillebrand, A.R., Pemfield, G., Kring, D.A., Pilkington, M., Camargo, A., Jacobsen, S.B., Boynton, W.V.: Chicxulub crater: a possible cretaceous/tertiary boundary impact crater on the Yucatan peninsula, Mexico. Geology 19, 867–871 (1991)

    ADS  Google Scholar 

  • Hoffman, P.F., Kaufman, A.J., Halverson, G.P., Schrag, D.P.: A Neoproterozoic Snowball Earth. Science 281, 1342–1346 (1998)

    ADS  Google Scholar 

  • Hoffman, P.F., Schrag, D.P.: The snowball Earth hypothesis: Testing the limits of global change. Terra Nova 14, 129–155 (2002)

    Google Scholar 

  • Holland, H.D.: Volcanic gases, black smokers, and the great oxidation event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002)

    ADS  Google Scholar 

  • Hopkins, M., Harrison, T.M., Manning, C.E.: Low heat flow inferred from > 4 Gyr zircons suggests Hadean plate boundary interactions. Nature 456, 493–496 (2008)

    ADS  Google Scholar 

  • Houghton, J.: The physics of atmospheres, 3rd edn. Cambridge University Press, London (2002)

    Google Scholar 

  • Houghton, J.: Global warming. Rep. Progr. Phys. 68, 1343–1403 (2005)

    ADS  Google Scholar 

  • Houghton, J.T.: Global warming: The complete briefing. Cambridge University Press, London (1997)

    Google Scholar 

  • Houghton, J.T., Meiro Filho, L.G., Callander, B.A., Harris, N., Kattenburg, A., Maskell, K.: Climate change 1995: The science of climate change. Cambridge University Press, Cambridge, UK (1996)

    Google Scholar 

  • Hoyle, F., Wickramasinghe, C.: Comets, ice ages, and ecological catastrophes. Astrophys. Space Sci. 53, 523–526 (1978)

    ADS  Google Scholar 

  • Hyde, W.T., Crowley, T.J., Baum, S.K., Peltier, W.R.: Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature 405, 425–429 (2000)

    ADS  Google Scholar 

  • IPCC: Climate change 2007 – The physical science basis. Cambridge University Press, London (2007)

    Google Scholar 

  • Isley, A.E., Abbott, D.H.: Plume-related mafic volcanism and the deposition of banded iron formation. J. Geophys. Res. 104, 15,461–15,477 (1999)

    ADS  Google Scholar 

  • Johnson, A.P., Cleaves, H.J., Dworkin, J.P., Glavin, D.P., Lazcano, A., Bada, J.L.: The miller volcanic spark discharge experiment. Science 322, 404 (2008)

    ADS  Google Scholar 

  • Kasting, J.: Comments on the BLAG model: The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 284, 1175–1182 (1984)

    Google Scholar 

  • Kasting, J.F.: Peter Ward and Donald Brownlee’s rare Earth. Perspect. Biol. Med. 44, 117–131 (2000)

    Google Scholar 

  • Kasting, J.F., Catling, D.: Evolution of a habitable planet. Ann. Rev. Astron. Astrophys. 41, 429–463 (2003)

    ADS  Google Scholar 

  • Kasting, J.F., Donahue, T.M.: The evolution of atmospheric ozone. J. Geophys. Res. 85, 3255–3263 (1980)

    ADS  Google Scholar 

  • Kasting, J.F., Ono, S.: Paleoclimates: The first two billion years. Phil. Trans. Roy. Soc. B 361, 917–929 (2006)

    Google Scholar 

  • Kasting, J.F., Siefert, J.L.: Life and the evolution of Earth’s atmosphere. Science 296, 1066–1068 (2002)

    ADS  Google Scholar 

  • Kasting, J.F., Toon, O.B.: Climate evolution on the terrestrial planets, pp. 423–449. University of Arizona Press, AZ (1989)

    Google Scholar 

  • Katz, M.E., Cramer, B.S., Mountain, G.S., Katz, S., Miller, K.G.: Uncorking the bottle: What trigered the Paleocene/Eocene thermal maximum methane release? Paleoceanography 16, 549–562 (2001)

    ADS  Google Scholar 

  • Kelvin, W.T.: On the secular cooling of the earth. Trans. Roy. Soc. Edinb. 23, 157–170 (1863)

    Google Scholar 

  • Kennedy, M., Mrofka, D., Von der Borch, C.: Snowball Earth termination by destabilization of equatorial permafrost methane clathrate. Nature 453, 642–645 (2008)

    ADS  Google Scholar 

  • Kirschvink, J.L.: Late Proterozoic low latitude glaciation: The snowball Earth. In: Schopf, J.W., Klein, C. (eds.) The Proterozoic Biosphere: A Multidisciplinary Study, pp. 51–52. Cambridge University Press, London (1992)

    Google Scholar 

  • Kirschvink, J.L., Ripperdan, R., Evans, D.: Evidence for a large-scale reorganization of early cambrian continental masses by inertial interchange true polar wander. Science 277, 541–545 (1997)

    Google Scholar 

  • Kleine, T., Münker, C., Mezger, K., Palme, H.: Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418, 952–955 (2002)

    ADS  Google Scholar 

  • Knauth, L.P., Lowe, D.R.: High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. GSA Bull. 115, 566–580 (2003)

    Google Scholar 

  • Knoll, A.: The early evolution of eukaryotes: A geological perspective. Science 256, 622–627 (1992)

    ADS  Google Scholar 

  • Knoll, A.H.: A geological consequences of evolution. Geobiology 1, 3–14 (2003)

    ADS  Google Scholar 

  • Kopp, R.E., Kirschvink, J.L., Hilburn, I.A., Nash, C.: The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl. Acad. Sci. 102, 11,131–11,136 (2005)

    Google Scholar 

  • Korenaga, J.: Urey ratio and the structure and evolution of Earth’s mantle. Rev. Geophys. 46, G2007 (2008)

    ADS  Google Scholar 

  • Kump, L.R.: The rise of atmospheric oxygen. Nature 451, 277–278 (2008)

    ADS  Google Scholar 

  • Kump, L.R., Barley, M.E.: Increased subaerial volcanisms and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007)

    ADS  Google Scholar 

  • Kump, L.R., Kasting, J.F., Crane, R.: The Earth system, 2nd edn. Pearson, Prentice-Hall (2004)

    Google Scholar 

  • Kusky, T.M., Li, J.H., Tucker, R.D.: The Archean Dongwanzi Ophiolite Complex, North China Craton: 2.505-billion-year-old oceanic crust and mantle. Science 292, 1142–1145 (2001)

    ADS  Google Scholar 

  • Kyte, F.T.: A meteorite from the cretaceous/tertiary boundary. Nature 361, 608–615 (1998)

    ADS  Google Scholar 

  • Lambeck, K.: The Earth’s variable rotation. Cambridge University Press, London (2005)

    Google Scholar 

  • Lane, N.: Oxygen, the molecule that made the world. Oxford University Press, London (2002)

    Google Scholar 

  • Lee, K.K.M., Jeanloz, R.: High-pressure alloying of potassium and iron: Radioactivity in the Earth’s core? Geophys. Res. Lett. 30(23), 230000–1 (2003)

    Google Scholar 

  • Lenton, T.M., von Bloh, W.: Biotic feedback extends the life span of the biosphere. Geophys. Res. Lett. 28, 1715–1718 (2001)

    ADS  Google Scholar 

  • Levrard, B., Laskar, J.: Climate friction and the Earth’s obliquity. Geophys. J. Int. 154, 970–990 (2003)

    ADS  Google Scholar 

  • Lindsay, J.F., Brasier, M.D.: Did global tectonics drive early biosphere evolution? Carbon isotope record from 2.6 to 1.9 Ga carbonates of Western Australian basins. Precambrian Res. 114, 1–34 (2002)

    Google Scholar 

  • Liou, K.N.: An introduction to atmospheric physics. In: International Geophysics Series, vol. 84, 2nd edn. Academic, NY (2002)

    Google Scholar 

  • Lisiecki, L., Raymo, M.E.: A Pliocene-Pleiostocene stack of 57 globally distributed benthic 180 records. Paleoceanography 20 (2005)

    Google Scholar 

  • Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., Barnola, J.M., Raynaud, D., Stocker, T.F., Chapellaz, J.: Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453, 383–386 (2008)

    ADS  Google Scholar 

  • Lovelock, J.: Gaia: A new look at life on Earth. Oxford University Press, London (1979)

    Google Scholar 

  • Lovelock, J.E., Margulis, L.M.: Atmospheric homeostasis by and for the biosphere: The Gaia hypothesis. Tellus 26, 2–10 (1974)

    ADS  Google Scholar 

  • Lovelock, J.E., Whitfield, M.: Life span of the biosphere. Nature 296, 561–563 (1982)

    ADS  Google Scholar 

  • Lunine, J.I.: Earth: Evolution of a habitable world. Cambridge University Press, London (1999)

    Google Scholar 

  • Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., Stocker, T.F.: High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature 453, 379–382 (2008)

    ADS  Google Scholar 

  • Marshall, C.R.: Explaining the Cambrian explosion of animals. Ann. Rev. Earth Planet. Sci. 34, 355–384 (2006)

    ADS  Google Scholar 

  • Martin, P., van Hunen, J., Parman, S., Davidson, J.: Why does plate tectonics occur only on Earth? Phys. Educ. 43, 144–150 (2008)

    ADS  Google Scholar 

  • Mc Ghee, G.R.: The late devonian mass extinction. Columbia University Press, NY (1996)

    Google Scholar 

  • Mc Neill, J.R.: Something new under the Sun. W.W. Norton Co., New York (2000)

    Google Scholar 

  • McDonough, W.F.: Compositional model for the Earth’s core. Treatise on Geochemistry 2, 547–568 (2003)

    ADS  Google Scholar 

  • McMenamin, M.: The Garden of Ediacara: Discovering the first complex life. Columbia University Press, New York (1998)

    Google Scholar 

  • Messina, S., Guinan, E.F.: Magnetic activity of six young solar analogues I. Starspot cycles from long-term photometry. Astron. Astrophys. 393, 225–237 (2002)

    ADS  Google Scholar 

  • Miller, S.: A production of aminoacids under possible primitive Earth conditions. Science 117, 528–529 (1953)

    ADS  Google Scholar 

  • Mojzsis, S.J., Arrhenius, G., McKeegan, K.D., Harrison, T.M., Nutman, A.P., Friend, C.R.L.: Evidence for life on Earth before 3,800 million years ago. Nature 384, 55–59 (1996)

    ADS  Google Scholar 

  • Morbidelli, A., Chambers, J., Lunine, J.I., Petit, J.M., Robert, F., Valsecchi, G.B., Cyr, K.E.: Source regions and time scales for the delivery of water to Earth. Meteoritics Planet. Sci. 35, 1309–1320 (2000)

    ADS  Google Scholar 

  • Morgan, W.J.: Convection plumes in the lower mantle. Nature 230, 42–43 (1971)

    ADS  Google Scholar 

  • Mullally, F., Winget, D.E., Degennaro, S., Jeffery, E., Thompson, S.E., Chandler, D., Kepler, S.O.: Limits on planets around pulsating white dwarf stars. Astrophys. J. 676, 573–583 (2008)

    ADS  Google Scholar 

  • Name, A.N.: Impact eject layer from the mid-Devonian: possible connection to global mass extinctions. Science 300, 1734–1737 (2003)

    Google Scholar 

  • Neukum, G., Ivanov, B.A., Hartmann, W.K.: Cratering records in the inner solar system in relation to the lunar reference system. Space Sci. Rev. 96, 55–86 (2001)

    ADS  Google Scholar 

  • Newman, M.J., Rood, R.T.: Implications of solar evolution for the earth’s early atmosphere. Science 198, 1035–1037 (1977)

    ADS  Google Scholar 

  • Nield, T.: Supercontinent: Ten billion years in the life of our planet. Harvard University Press, MA (2007)

    Google Scholar 

  • North, G.R., Cahalan, R.F., Coakley Jr., J.A.: Energy balance climate models. Rev. Geophys. Space Phys. 19, 91–121 (1981)

    ADS  Google Scholar 

  • Oldham, R.D.: The constitution of the interior of the Earth as revealed by Earth quakes. Q. J. Geol. Soc. Lond. 62, 456–472 (1906)

    Google Scholar 

  • Olsen, P.E., et al.: Ascent of dinosaurs linked to iridium anomaly in the Triassic-Jurassic boundary. Science 296, 1305–1307 (2002)

    ADS  Google Scholar 

  • Oró, J., Lazcano, A., Ehrenfreund, P.: Comets and the origin and evolution of life. In: McKay, C.P. (ed.) Comets and the Origin and Evolution of Life, pp. 1–28 2nd edn. Advances in Astrobiology and Biogeophysics. Springer, Heidelberg (2006)

    Google Scholar 

  • Orth, C.J., Gilmore, J.S., Knight, J.D., Pillmore, C., Tschudy, R., Fasset, J.E.: An iridium abundance anomaly at the palynological cretaceous-tertiary boundary in northern New Mexico. Science 214, 1341–1343 (1981)

    ADS  Google Scholar 

  • Palme, H., O’Neill, H.S.C.: Cosmochemical estimates of mantle composition. Treatise on Geochemistry 2, 1–38 (2003)

    ADS  Google Scholar 

  • Palmer, T.: Controversy: Catastrophism and evolution: The ongoing debate. Kluwer, Dordecht (1997)

    Google Scholar 

  • Patterson, C.: Age of meteorites and the earth. Geochim. Cosmochim. Acta 10, 230–237 (1956)

    ADS  Google Scholar 

  • Pavlov, A.A., Brown, L.L., Kasting, J.F.: UV shielding of NH3 and O 2 by organic hazes in the Archean atmosphere. J. Geophys. Res. 106, 23,267–23,288 (2001)

    ADS  Google Scholar 

  • Pavlov, A.A., Kasting, J., Brown, L., Rages, K.A., Freedmsan, R.: Greenhouse warming by CH4 in the atmosphere of early Earth. J. Geophys. Res. 105, 11,981–11,990 (2000)

    ADS  Google Scholar 

  • Pavlov, A.A., Kasting, J.F.: Mass-independent fractionation of sulfur isotopes in archean sediments: Strong evidence for an anoxic archean atmosphere. Astrobiology 2, 27–41 (2002)

    ADS  Google Scholar 

  • Peltier, W.R., Liu, Y., Crowley, J.W.: Snowball Earth prevention by dissolved organic carbon remineralization. Nature 450, 813–818 (2007)

    ADS  Google Scholar 

  • Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J., Basile, I., Bender, M., Chapellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V., Legrand, M., Lipenkov, V.Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., Stievenard, M.: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)

    Google Scholar 

  • Pinti, D.L.: The Origin and evolution of the oceans. In: Lectures in Astrobiology, vol. 1, pp. 83–112. Springer, Heidelberg (2005)

    Google Scholar 

  • Poirier, J.P.: Introduction to the physics of the Earth’s interior. Cambridge University Press, London (1991)

    Google Scholar 

  • Pollack, H.N., Hurter, S.J., Johnson, J.: Heat flow from the Earth’s interior: analysis of the global data set. Rev. Geophys. 31, 267–280 (1993)

    ADS  Google Scholar 

  • Rahmstorf, S., Cazenave, A., Church, J.A., Hansen, J.E., Keeling, R.F., Parker, D.E., Somerville, R.C.J.: Recent climate observations compared to projections. Science 316, 709 (2007)

    ADS  Google Scholar 

  • Ramanathan, V., Cess, R.D., Harrison, E.F., Minnis, P., Barkstrom, B.R., Ahmad, E., Hartmann, D.: Cloud-radiative forcing and climate: Results from the Earth radiation budget experiment. Science 243, 57–63 (1989)

    ADS  Google Scholar 

  • Rampino, M.R., Stothers, R.B.: Flood basalt volcanism during the past 250 million years. Science 241, 663–667 (1998)

    ADS  Google Scholar 

  • Randall, D.A., Cess, R.D., Blanchet, J.P., Chalita, S., Colman, R., Dazlich, D.A., Del Genio, A.D., Keup, E., Lacis, A., Le Treut, H., Liang, X.Z., McAvaney, B.J., Mahfouf, J.F., Meleshko, V.P., Morcrette, J.J., Norris, P.M., Potter, G.L., Rikus, L., Roeckner, E., Royer, J.F., Schlese, U., Sheinin, D.A., Sokolov, A.P., Taylor, K.E., Wetherald, R.T., Yagai, I., Zhang, M.H.: Analysis of snow feedbacks in 14 general circulation models. J. Geophys. Res. 99, 20,757–20,772 (1994)

    ADS  Google Scholar 

  • Rasio, F.A., Tout, C.A., Lubow, S.H., Livio, M.: Tidal decay of close planetary orbits. Astrophys. J. 470, 1187–1191 (1996)

    ADS  Google Scholar 

  • Raup, D.M.: Extinctions: Bad genes or bad luck. W.W. Norton, NY (1992)

    Google Scholar 

  • Raval, A., Ramanathan, V.: Observational determination of the greenhouse effect. Nature 342, 758–761 (1989)

    ADS  Google Scholar 

  • Raymond, S.N., Quinn, T., Lunine, J.I.: Making other earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus 168, 1–17 (2004)

    ADS  Google Scholar 

  • Retter, A., Marom, A.: A model of an expanding giant that swallowed planets for the eruption of V838 Monocerotis. Mon. Not. Roy. Astron. Soc. 345, L25–L28 (2003)

    ADS  Google Scholar 

  • Ribas, I., Guinan, E.F., Güdel, M., Audard, M.: Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1-1700 Å). Astrophys. J. 622, 680–694 (2005)

    ADS  Google Scholar 

  • Richter, F.M.: Kelvin and the age of the Earth. J. Geology 94, 395–401 (1986)

    ADS  Google Scholar 

  • Rogers, J.W., Santosh, M.: Continents and supercontinents. Oxford University Press, London (2004)

    Google Scholar 

  • Royer, D.L., Berner, R.A., Park, J.: Climate sensitivity constarined by CO2 concentrations over the past 420 million years. Nature 446, 530–532 (2007)

    ADS  Google Scholar 

  • Ruddiman, W.F.: Plows, plagues and petroleum. Princeton University Press, NJ (2005)

    Google Scholar 

  • Rudwick, M.: Georges cuvier, fossil bones, and geological catastrophes. The University of Chicago Press, Chicago (1997)

    Google Scholar 

  • Russell, M.J., Hall, A.J., Cairns-Smith, A.G., Braterman, P.: Submarine hot springs and the origin of life. Nature 336, 117 (1988)

    ADS  Google Scholar 

  • Rybicki, K.R., Denis, C.: On the final destiny of the Earth and the solar system. Icarus 151, 130–137 (2001)

    ADS  Google Scholar 

  • Ryder, G.: Mass flux in the ancient Earth-Moon system and benign implications for the origin of life on Earth. J. Geophys. Res. (Planets) 107, 5022 (2002)

    ADS  Google Scholar 

  • Ryder, G.: Bombardment of the hadean Earth: Wholesome or deleterious? Astrobiology 3, 3–6 (2003)

    ADS  Google Scholar 

  • Rye, R., Holland, H.D.: Life associated with a 2.76 Ga ephemeral pond? Evidence from Mount Roe 2 paleosol. Geology 28, 483–486 (2000)

    ADS  Google Scholar 

  • Rye, R., Kuo, P.H., Holland, H.D.: Atmospheric carbon dioxide concentrations before 2.2 billion years ago. Nature 378, 603–605 (1995)

    ADS  Google Scholar 

  • Sackmann, I.J., Boothroyd, A.I.: Our Sun. V. A bright young sun consistent with helioseismology and warm temperatures on ancient Earth and Mars. Astrophys. J. 583, 1024–1039 (2003)

    Google Scholar 

  • Sackmann, I.J., Boothroyd, A.I., Kraemer, K.E.: Our Sun. III. Present and Future. Astrophys. J. 418, 457–468 (1993)

    ADS  Google Scholar 

  • Sankaran, A.V.: When did plate tectonics begin? Curr. Sci. 90, 1596–1597 (2006)

    Google Scholar 

  • Schellnhuber, H.J.: Earth system analysis and the second Copernican revolution. Nature 402, C19–C23 (1999)

    Google Scholar 

  • Schopf, J.: Earth’s earliest biosphere, its origin and evolution. Princeton University Press, NJ (1983)

    Google Scholar 

  • Schröder, K.P., Connon Smith, R.: Distant future of the Sun and Earth revisited. Mon. Not. Roy. Astron. Soc. 386, 155–163 (2008)

    ADS  Google Scholar 

  • Schroder, P., Smith, R., Apps, K.: Solar evolution and the distant future of Earth. Astron. Geophys. 42, 26–29 (2001)

    Google Scholar 

  • Schubert, G., Turcotte, D.L., Olson, P.: Mantle convection in the Earth and planets. Cambridge University Press, London (2001)

    Google Scholar 

  • Schwartzman, D.: Temperature and the evolution of the Earth’s biosphere. In: Shostak, G.S. (ed.) ASP Conf. Ser. 74: Progress in the Search for Extraterrestrial Life, pp. 153–164 (1995)

    Google Scholar 

  • Schwartzman, D., Caldeira, K., Pavlov, A.: Cyanobacterial emergence at 2.8 Gya and greenhouse feedbacks. Astrobiology 8, 187–203 (2008)

    ADS  Google Scholar 

  • Schwartzman, D., Middendorf, G.: Biospheric cooling and the emergence of intelligence. In: Lemarchand, G., Meech, K. (eds.) ASP Conf. Ser. 213: Bioastronomy 99, pp. 425–430 (2000)

    Google Scholar 

  • Schwartzman, D.W., Volk, T.: Biotic enhancement of weathering and the habitability of Earth. Nature 340, 457–460 (1989)

    ADS  Google Scholar 

  • Scott, A., Glasspool, I.J.: The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc. Acad. Natl. Sci. USA 103, 10,861–10,865 (2006)

    Google Scholar 

  • Scott, C., Lyons, T.W., Bekker, A., Shen, Y., Poulton, S.W., Chu, X., Ambar, A.D.: Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452, 456–459 (2008)

    ADS  Google Scholar 

  • Sheehan, P.M.: The late ordovician mass extinction. Annu. Rev. Earth Planet. Sci. 29, 331–364 (2001)

    ADS  Google Scholar 

  • Shields, G.A., Veizer, J.: The Precambrian marine carbonate isotope database: Version 1.1. Geochem. Geophys. Geosyst. 3, 1031 (2002)

    Google Scholar 

  • Shoemaker, E.M.: Asteroid and comet bombardment of the earth. Annu. Rev. Earth Planet. Sci. 11, 461–494 (1983)

    ADS  Google Scholar 

  • Silver, P.G., Behn, M.D.: Intermittent plate tectonics? Science 319, 85–88 (2008)

    ADS  Google Scholar 

  • Silvotti, R., Schuh, S., Janulis, R., Solheim, J.E., Bernabei, S., Østensen, R., Oswalt, T.D., Bruni, I., Gualandi, R., Bonanno, A., Vauclair, G., Reed, M., Chen, C.W., Leibowitz, E., Paparo, M., Baran, A., Charpinet, S., Dolez, N., Kawaler, S., Kurtz, D., Moskalik, P., Riddle, R., Zola, S.: A giant planet orbiting the extreme horizontal branch star V391 Pegasi. Nature 449, 189–191 (2007)

    ADS  Google Scholar 

  • Skumanich, A.: Time scales for CA II emission decay, rotational braking, and lithium depletion. Astrophys. J. 171, 565–567 (1972)

    ADS  Google Scholar 

  • Sleep, N.H.: Evolution of the mode of convection within terrestrial planets. J. Geophys. Res. 105, 17,563–17,578 (2000)

    ADS  Google Scholar 

  • Sleep, N.H.: Evolution of the continental lithosphere. Ann. Rev. Earth Planet. Sci. 33, 369–393 (2005)

    ADS  Google Scholar 

  • Sonett, C.P., Kvale, E.P., Zakharian, A., Chan, M.A., Demko, T.M.: Late proterozoic and paleozoic tides, retreat of the moon, and rotation of the Earth. Science 273, 100–104 (1996)

    ADS  Google Scholar 

  • Stanley, S.M.: Exploring the Earth through time. W.H. Freeman, CA (1992)

    Google Scholar 

  • Stanley, S.M.: Earth system history. W.H. Freeman, CA (1999)

    Google Scholar 

  • Steffen, W., Sanderson, A., Tyson, P., Jäger, J., Matson, P., Moore, B., Oldfield, F., Richardson, K., Schellnhuber, H., Turner, B., Wasson, R.J.: Global change and the Earth system: A planet under pressure. Springer, Heidelberg (2005)

    Google Scholar 

  • Stern, N.: The economics of climate change: The stern review. Cambridge University Press. (2006)

    Google Scholar 

  • Stern, R.J.: Subduction zones. Rev. Geophys. 40, 1012 (2002)

    ADS  Google Scholar 

  • Stern, R.J.: Evidence from ophiolites, blueschists, and ultra-high pressure metamorphic terranes that the modern episode of subduction tectonics began in neoproterozoic time. Geology 33, 557–560 (2005)

    ADS  Google Scholar 

  • Stevenson, D.J.: Origin of the moon – The collision hypothesis. Ann. Rev. Earth Planet. Sci. 15, 271–315 (1987)

    ADS  Google Scholar 

  • Strom, R.G., Malhotra, R., Ito, T., Yoshida, F., Kring, D.A.: The origin of planetary impactors in the inner solar system. Science 309, 1847–1850 (2005)

    ADS  Google Scholar 

  • Taylor, F.W.: The Stratosphere. Phil. Trans. Roy. Soc. Lond. 361, 11–22 (2003)

    ADS  Google Scholar 

  • Tera, F., Papanastassiou, D.A., Wasserburg, G.J.: Isotopic evidence for a terminal lunar cataclysm. Earth Planet. Sci. Lett. 22, 1–21 (1974)

    ADS  Google Scholar 

  • Thomas, C.D.: Extinction risk from climate change. Nature 427, 145–148 (2004)

    ADS  Google Scholar 

  • Tice, M.M., Lowe, D.R.: Photosynthetic microbial mats in the 3,416-Myr-old oecan. Nature 431, 549–552 (2004)

    ADS  Google Scholar 

  • Torsvik, T.H., Rehnströhm, E.F.: Cambrian paleomagnetic data from Baltica:Implications for true polar wander and Cambrian paleogeography. J. Geol. Soc. Lond. 158, 321–329 (2001)

    Google Scholar 

  • Touboul, M., Kleine, T., Bourdon, B., Palme, H., Wieler, R.: Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature 450, 1206–1209 (2007)

    ADS  Google Scholar 

  • Touma, J., Wisdom, J.: Resonances in the early evolution of the Earth-Moon system. Astron. J. 115, 1653–1663 (1998)

    ADS  Google Scholar 

  • Trainer, M.G., Pavlov, A.A., Curtis, D.B., McKay, C.P., Worsnop, D.R., Delia, A.E., Toohey, D.W., Toon, O.B., Tolbert, M.A.: Haze aerosols in the atmosphere of Early Earth: Manna from heaven. Astrobiology 4, 409–419 (2004)

    ADS  Google Scholar 

  • Tyndall, J.: On the relation of radiant heat to aqueous vapor. Phil. Mag. 4 26, 30–54 (1863)

    Google Scholar 

  • Urey, H.C.: The planets: Their origin and development. Yale University Press, New Haven (1952)

    Google Scholar 

  • Urey, H.C.: Cometary collisions and geological periods. Nature 242, 32–33 (1973)

    ADS  Google Scholar 

  • Valley, J.W., Peck, W.H., King, E.M., Wilde, S.A.: A cool early Earth. Geology 30, 351–354 (2002)

    ADS  Google Scholar 

  • Veizer, J., Godderis, Y., François, L.M.: Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature 408, 698–701 (2000)

    ADS  Google Scholar 

  • Villaver, E., Livio, M.: Can planets survive stellar evolution? Astrophys. J. 661, 1192–1201 (2007)

    ADS  Google Scholar 

  • Vitousek, P.M., D’Antonio, C., Loope, L., Westbrooks, R.: Biological invasions as global environmental change. Am. Sci. 84, 468–478 (1996)

    ADS  Google Scholar 

  • Volk, T.: Feedbacks between weathering and atmospheric CO2 over the last 100 million years. Am. J. Sci. 287, 763–779 (1987)

    Google Scholar 

  • Volk, T.: Gaia’s body: Towards a physiology of Earth. MIT, MA (2003)

    Google Scholar 

  • Walker, J.C.G., Hays, P.B., Kasting, J.F.: A negative feedback mechanism for the long-term stabilization of the earth’s surface temperature. J. Geophys. Res. 86, 9776–9782 (1981)

    ADS  Google Scholar 

  • Wang, K., Orth, C.J., Attrep, M., Chatterton, B.D., Hou, H., Geldsetzer, H.H.: Geochemical evidence for a catastrophic biotic event at the Frasnian/Famennian boundary in South China. Geology 19, 776–779 (1991)

    ADS  Google Scholar 

  • Ward, P.D.: Life as we do not know it. Viking Penguin, NY (2005)

    Google Scholar 

  • Ward, P.D., et al.: Sudden productivity collapse associated with the Triassic-Jurassic boundary mass extinction. Science 292, 1148–1151 (2001)

    ADS  Google Scholar 

  • Watson, A.: Implications of an anthropic model of evolution for the emergence of complex life and intelligence. Astrobiology 8, 175–185 (2008)

    ADS  Google Scholar 

  • Wilde, S., Valley, J., Peck, W., Graham, C.: Evidence from detrital zircons for the existence of continental crust and oceans on the Earth at 4.4 Gyr ago. Nature 409, 175–178 (2001)

    ADS  Google Scholar 

  • Wilhelms, D.E., McCauley, J.F., Trask, N.J.: The geologic history of the moon. USGS Professional Paper 1348 : For sale by the Books and Open-file Reports Section, US Geological Survey (1987)

    Google Scholar 

  • Williams, D.M., Kasting, J.F., Frakes, L.A.: Low-latitude glaciation and rapid changes in the Earth’s obliquity explained by obliquity-oblateness feedback. Nature 396, 453–455 (1998)

    ADS  Google Scholar 

  • Williams, G.D.: Tidal rhyhmites: Key to the history of the Earth’s rotation and the lunar orbit. J. Phys. Earth 38, 475–491 (1990)

    Google Scholar 

  • Williams, G.E.: Precambrian length of day and the validity of tidal rhythmite paleotidal values. Geophys. Res. Lett. 24, 421–424 (1997)

    ADS  Google Scholar 

  • Williams, G.E.: Geological constraints on the Precambrian history of Earth’s rotation and the Moon’s orbit. Rev. Geophys. 38, 37–60 (2000)

    ADS  Google Scholar 

  • Wilson, J.T.: Did the Atlantic close and then re-open? Nature 211, 676–681 (1966)

    ADS  Google Scholar 

  • Wilson, T.J.: A possible origin of the Hawaiian islands. Can. J. Phys. 41, 863–868 (1963)

    ADS  Google Scholar 

  • Wise, R.R., Hoober, J.K. (eds.): The structure and function of plastids, advances in photosynthesis and respiration, vol. 23. Springer, Heidelberg (1994)

    Google Scholar 

  • Woese, C.R., Kandler, O., Wheeler, M.L.: Towards a natural system of organisms: Proposal for the domains archaea, bacteria and eucarya. Proc. Natl. Acad. Sci. 87, 4576 (1990)

    ADS  Google Scholar 

  • Wolszczan, A., Frail, D.A.: A planetary system around the millisecond pulsar PSR1257 + 12. Nature 355, 145–147 (1992)

    ADS  Google Scholar 

  • Wood, B.E., Müller, H.R., Zank, G.P., Linsky, J.L., Redfield, S.: New mass-loss measurements from astrospheric Lyα absorption. Astrophys. J. 628, L143–L146 (2005)

    ADS  Google Scholar 

  • Wood, B.J., Walter, M.J., Wade, J.: Accretion of the Earth and segregation of its core. Nature 441, 825–833 (2006)

    ADS  Google Scholar 

  • Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K.: Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001)

    ADS  Google Scholar 

  • Zahnle, K., Claire, M., Catling, D.: The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology 4, 271–283 (2006)

    Google Scholar 

  • Zahnle, K., Arndt, N., Cockell, C., Halliday, A., Nisbet, E., Selsis, F., Sleep, N.H.: Emergence of a Habitable Planet. Space Sci. Rev. 129, 35–78 (2007)

    ADS  Google Scholar 

  • Zalasiewicz, J., et al.: Are now living in the Anthropocene? GSA Today 18, 4–8 (2008)

    Google Scholar 

  • Zeebe, R.E., Caldeira, K.: Close mass balance of long-term carbon fluxes from ice-core CO2 and ocean chemistry records. Nat. Geosci. 1, 312–315 (2008)

    ADS  Google Scholar 

  • Zhang, Y.: The age and accretion of the Earth. Earth Sci. Rev. 59, 235–263 (2002)

    ADS  Google Scholar 

  • Zharkov, V.: Interior structure of the Earth & planets. Harwood Academic Publishers, Switzerland (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vázquez .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vázquez, M., Pallé, E., Rodríguez, P.M. (2010). The Earth in Time. In: The Earth as a Distant Planet. Astronomy and Astrophysics Library. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1684-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1684-6_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1683-9

  • Online ISBN: 978-1-4419-1684-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics