Skip to main content

Axons Predict Neuronal Connectivity Within and Between Cortical Columns and Serve as Primary Classifiers of Interneurons in a Cortical Column

  • Chapter
  • First Online:
Book cover New Aspects of Axonal Structure and Function

Abstract

The axonal projections of nerve cells have been used to infer synaptic connectivity ever since the drawings of Ramon y Cajal more than a hundred years ago. Here we review the assumptions behind these studies and report how axonal projections of thalamic and cortical neurons can be used to anatomically define cortical columns as innervation volumes in rat barrel cortex. We then apply this analysis to cortical interneurons and illustrate that it is the axonal projections of interneurons which best permit their functional classification with reference to cortical columns. We conclude that the axons of cortical nerve cells should serve as their primary classifiers, because they best indicate their function in the neocortical neuronal network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ascoli GA et al (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:557–568

    Article  PubMed  CAS  Google Scholar 

  • Bacci A, Huguenard JR, Prince DA (2004) Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids. Nature 431:312–316

    Article  PubMed  CAS  Google Scholar 

  • Bender KJ, Rangel J, Feldman DE (2003) Development of columnar topography in the excitatory layer 4 to layer 2/3 projection in rat barrel cortex. J Neurosci 23:8759–8770

    PubMed  CAS  Google Scholar 

  • Bloom FE, Ueda T, Battenberg E, Greengard P (1979) Immunocytochemical localization, in synapses, of protein I, an endogenous substrate for protein kinases in mammalian brain. Proc Natl Acad Sci USA 76:5982–5986

    Article  PubMed  CAS  Google Scholar 

  • Braitenberg V, Schüz A (1998) Cortex: Statistics and Geometry of Neuronal Connectivity. Springer, Berlin Heidelberg

    Google Scholar 

  • Chen BL, Hall DH, Chklovskii DB (2006) Wiring optimization can relate neuronal structure and function. Proc Natl Acad Sci USA 103:4723–4728

    Article  PubMed  CAS  Google Scholar 

  • Chmielowska J, Carvell GE, Simons DJ (1989) Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex. J Comp Neurol 285:325–338

    Article  PubMed  CAS  Google Scholar 

  • Colonnier M (1964) Experimental degeneration in the cerebral cortex. J Anat 98:47–53

    PubMed  CAS  Google Scholar 

  • Colonnier M (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res 9:268–287

    Article  PubMed  CAS  Google Scholar 

  • Cowan WM, Gottlieb DI, Hendrickson AE, Price JL, Woolsey TA (1972) The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res 37:21–51

    Article  PubMed  CAS  Google Scholar 

  • Dantzker JL, Callaway EM (2000) Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons. Nat Neurosci 3:701–707

    Article  PubMed  CAS  Google Scholar 

  • De Camilli P, Cameron R, Greengard P (1983) Synapsin I (protein I), a nerve terminal-specific phosphoprotein. I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic sections. J Cell Biol 96:1337–1354

    Article  PubMed  Google Scholar 

  • Denk W, Horstmann H (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2:e329

    Google Scholar 

  • Evans DH, Hamlyn LH (1956) A study of silver degeneration methods in the central nervous system. J Anat 90:193–203

    PubMed  CAS  Google Scholar 

  • Feldmeyer D, Egger V, Lübke J, Sakmann B (1999) Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex. J Physiol 521:169–190

    Article  PubMed  CAS  Google Scholar 

  • Feldmeyer D, Lübke J, Silver RA, Sakmann B (2002) Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J Physiol 538:803–822

    Article  PubMed  CAS  Google Scholar 

  • Gilbert CD, Wiesel TN (1979) Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. Nature 280:120–125

    Article  PubMed  CAS  Google Scholar 

  • Glees P (1946) Terminal degeneration within the central nervous system as studied by a new silver method. J Neuropath Exp Neurol 5:54–59

    Article  PubMed  CAS  Google Scholar 

  • Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 93:420–433

    PubMed  CAS  Google Scholar 

  • Gray EG, Hamlyn LH (1962) Electron microscopy of experimental degeneration in the avian optic tectum. J Anat 96: 305, 309–316

    PubMed  CAS  Google Scholar 

  • Grutzendler J, Kasthuri N, Gan WB (2002) Long-term dendritic spine stability in the adult cortex. Nature 420:812–816

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287:273–278

    Article  PubMed  CAS  Google Scholar 

  • Helmstaedter M, Briggman KL, Denk W (2008a) 3D structural imaging of the brain with photons and electrons. Curr Opin Neurobiol 18:633–641

    Article  PubMed  CAS  Google Scholar 

  • Helmstaedter M, Staiger JF, Sakmann B, Feldmeyer D (2008b) Efficient recruitment of layer 2/3 interneurons by layer 4 input in single columns of rat somatosensory cortex. J Neurosci 28:8273–8284

    Article  PubMed  CAS  Google Scholar 

  • Helmstaedter M, Sakmann B, Feldmeyer D (2009a) L2/3 interneuron groups defined by multiparameter analysis of axonal projection, dendritic geometry, and electrical excitability. Cereb Cortex 19:951–962

    Article  PubMed  Google Scholar 

  • Helmstaedter M, Sakmann B, Feldmeyer D (2009b) Neuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns. Cereb Cortex 19:926–937

    Article  PubMed  Google Scholar 

  • Helmstaedter M, Sakmann B, Feldmeyer D (2009c) The relation between dendritic geometry, electrical excitability, and axonal projections of L2/3 interneurons in rat barrel cortex. Cereb Cortex 19:938–950

    Article  PubMed  Google Scholar 

  • Herkenham M (1980) Laminar organization of thalamic projections to the rat neocortex. Science 207:532–535

    Article  PubMed  CAS  Google Scholar 

  • Hoff EC (1932) Central nerve T’erminals in the mammalian spinal cord and their examination by experimental degeneration. Proc R Soc Lond B Biol Sci 111:175–188

    Article  Google Scholar 

  • Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195:215–243

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1969) Anatomical demonstration of columns in the monkey striate cortex. Nature 221:747–750

    Article  PubMed  CAS  Google Scholar 

  • Jones EG (2007) Neuroanatomy: Cajal and after Cajal. Brain Res Rev 55:248–255

    Article  PubMed  Google Scholar 

  • Jones EG, Powell TP (1970) An electron microscopic study of the laminar pattern and mode of termination of afferent fibre pathways in the somatic sensory cortex of the cat. Philos Trans R Soc Lond B Biol Sci 257:45–62

    Article  PubMed  CAS  Google Scholar 

  • Killackey HP (1973) Anatomical evidence for cortical subdivisions based on vertically discrete thalamic projections from the ventral posterior nucleus to cortical barrels in the rat. Brain Res 51:326–331

    Article  PubMed  CAS  Google Scholar 

  • Lasek R, Joseph BS, Whitlock DG (1968) Evaluation of a radioautographic neuroanatomical tracing method. Brain Res 8:319–336

    Article  PubMed  CAS  Google Scholar 

  • LeVay S, Gilbert CD (1976) Laminar patterns of geniculocortical projection in the cat. Brain Res 113:1–19

    Article  PubMed  CAS  Google Scholar 

  • Lichtman JW, Smith SJ (2008) Seeing circuits assemble. Neuron 60:441–448

    Article  PubMed  CAS  Google Scholar 

  • Lorente de No R (1922) La corteza cerebral de ratón Trabajos del Laboratorio de Investigaciones Biológicas de la Universidad de Madrid 20:41–78

    Google Scholar 

  • Lorente de No R (1938) Cerebral cortex: architecture, intracortical connections, motor projections (ch. 15). In: Fulton JF (ed) Physiology of the nervous system. Oxford University Press, Oxford, pp 288–313

    Google Scholar 

  • Lorente de No R (1992) The cerebral cortex of the mouse (A first contribution – the “acoustic” cortex). (Trans: Fairén A, Regidor J, Kruger L). Somat Mot Res 9:3–36

    Article  Google Scholar 

  • Lu SM, Lin RC (1993) Thalamic afferents of the rat barrel cortex: a light- and electron-microscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer. Somatosens Mot Res 10:1–16

    Article  PubMed  CAS  Google Scholar 

  • Lübke J, Egger V, Sakmann B, Feldmeyer D (2000) Columnar organization of dendrites and axons of single and synaptically coupled excitatory spiny neurons in layer 4 of the rat barrel cortex. J Neurosci 20:5300–5311

    PubMed  Google Scholar 

  • Lübke J, Roth A, Feldmeyer D, Sakmann B (2003) Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. Cereb Cortex 13:1051–1063

    Article  PubMed  Google Scholar 

  • Magrassi L, Purves D, Lichtman JW (1987) Fluorescent probes that stain living nerve terminals. J Neurosci 7:1207–1214

    PubMed  CAS  Google Scholar 

  • Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366

    Article  PubMed  CAS  Google Scholar 

  • Markram H, Lübke J, Frotscher M, Roth A, Sakmann B (1997) Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J Physiol 500:409–440

    PubMed  CAS  Google Scholar 

  • Micheva KD, Smith SJ (2007) Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55:25–36

    Article  PubMed  CAS  Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434

    PubMed  CAS  Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120 (Pt 4):701–722

    Article  PubMed  Google Scholar 

  • Peters A (1979) Thalamic input to the cerebral cortex. Trends Neurosci 2:183–185

    Article  Google Scholar 

  • Peters A (2007) Golgi, Cajal, and the fine structure of the nervous system. Brain Res Rev 55:256–263

    Article  PubMed  Google Scholar 

  • Ramón y Cajal S (1904) Textura del sistema nervioso del hombre y de los vertebrados. Imprenta N. Moya, Madrid

    Google Scholar 

  • Ramón y Cajal S (1995) Histology of the nervous system. Oxford University Press, New York, Oxford

    Google Scholar 

  • Schaefer AT, Larkum ME, Sakmann B, Roth A (2003) Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. J Neurophysiol 89:3143–3154

    Article  PubMed  Google Scholar 

  • Shepherd GM, Stepanyants A, Bureau I, Chklovskii D, Svoboda K (2005) Geometric and functional organization of cortical circuits. Nat Neurosci 8:782–790

    Article  PubMed  CAS  Google Scholar 

  • Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87:387–406

    PubMed  CAS  Google Scholar 

  • Sholl DA (1955) The organization of the visual cortex in the cat. J Anat 89:33–46

    PubMed  CAS  Google Scholar 

  • Silver RA, Lübke J, Sakmann B, Feldmeyer D (2003) High-probability uniquantal transmission at excitatory synapses in barrel cortex. Science 302:1981–1984

    Article  PubMed  CAS  Google Scholar 

  • Stepanyants A, Chklovskii DB (2005) Neurogeometry and potential synaptic connectivity. Trends Neurosci 28:387–394

    Article  PubMed  CAS  Google Scholar 

  • Stepanyants A, Hirsch JA, Martinez LM, Kisvarday ZF, Ferecsko AS, Chklovskii DB (2008) Local potential connectivity in cat primary visual cortex. Cereb Cortex 18:13–28

    Article  PubMed  Google Scholar 

  • Taylor AC, Weiss P (1965) Demonstration of axonal flow by the movement of tritium-labeled protein in mature optic nerve fibers. Proc Natl Acad Sci USA 54:1521–1527

    Article  PubMed  CAS  Google Scholar 

  • Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420:788–794

    Article  PubMed  CAS  Google Scholar 

  • Uchizono K (1965) Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature 207:642–643

    Article  PubMed  CAS  Google Scholar 

  • Walker AE (1936) An experimental study of the thalamocortical projection of the macaque monkey. J Comp Neurol 64:1–39

    Article  Google Scholar 

  • White EL (1979) Thalamocortical synaptic relations: a review with emphasis on the projections of specific thalamic nuclei to the primary sensory areas of the neocortex. Brain Res 180:275–311

    PubMed  CAS  Google Scholar 

  • White EL (2007) Reflections on the specificity of synaptic connections. Brain Res Rev 55:422–429

    Article  PubMed  Google Scholar 

  • White EL, Keller A (1989) Cortical circuits: synaptic organization of the cerebral cortex: structure, function, and theory. Birkhäuser, Boston

    Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314:1–340

    Article  PubMed  CAS  Google Scholar 

  • Wise SP, Jones EG (1978) Developmental studies of thalamocortical and commissural connections in the rat somatic sensory cortex. J Comp Neurol 178:187–208

    Article  PubMed  CAS  Google Scholar 

  • Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17:205–242.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Bert Sakmann for inspiration, guidance, and continued support of many of the studies summarized in this chapter, and to the Max Planck Society and the Helmholtz Alliance for Systems Biology for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Helmstaedter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Helmstaedter, M., Feldmeyer, D. (2010). Axons Predict Neuronal Connectivity Within and Between Cortical Columns and Serve as Primary Classifiers of Interneurons in a Cortical Column. In: Feldmeyer, D., Lübke, J. (eds) New Aspects of Axonal Structure and Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1676-1_8

Download citation

Publish with us

Policies and ethics