Skip to main content

New Insights in Information Processing in the Axon

  • Chapter
  • First Online:

Abstract

Axons are generally considered as reliable transmission cables in which stable propagation occurs once an action potential is generated. However, recent findings suggest that the functional capabilities of the axon are much wider than traditionally thought. Beyond axonal propagation, intrinsic voltage-gated conductances together with the geometrical properties of the axon determine complex operations such as branch point failures, reflected propagation, signal amplification, and axonal integration. This review will consider the recent evidence for the role of these forms of axonal computation in the short-term dynamics of neural communication.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alle H, Geiger JRP (2006) Combined analog and action potential coding in hippocampal mossy fibers. Science 311:1290–1293

    Article  PubMed  CAS  Google Scholar 

  • Antic S, Wuskell JP, Loew L, Zecevic D (2000) Functional profile of the giant metacerebral neuron of Helix aspersa: temporal and spatical dynamics of electrical activity in situ. J Physiol (Lond) 527:55–69

    Article  CAS  Google Scholar 

  • Antonini A, Gillespie DC, Crair MC, Stryker MP (1998) Morphology of single geniculocortical afferents and functional recovery of the visual cortex after reverse monocular deprivation in the kitten. J Neurosci 18:9896–9909

    PubMed  CAS  Google Scholar 

  • Arvanitaki A (1942) Effects evoked in an axon by the activity of a contiguous one. J Neurophysiology 5:89–108

    Google Scholar 

  • Awatramani G, Price GD, Trussell LO (2005) Modulation of transmitter release by presynaptic resting potential and background calcium levels. Neuron 48:109–121

    Article  PubMed  CAS  Google Scholar 

  • Baccus SA (1998) Synaptic facilitation by reflected action potentials: enhancement of transmission when nerve impulses reverse direction at axon branch points. Proc Natl Acad Sci USA 95:8345–8350

    Article  PubMed  CAS  Google Scholar 

  • Baccus SA, Burrell BD, Sahley CL, Muller KJ (2000) Action potential reflection and failure at axon branch points cause stepwise changes in EPSPs in a neuron essential for learning. J Neurophysiol 83:1683–1700

    Google Scholar 

  • Barron DH, Matthews BHC (1939) Intermittent conduction in the spinal cord. J Physiol (Lond) 85:73–103

    Google Scholar 

  • Beaumont V, Zhong N, Froemke RC, Ball RW, Zucker RS (2002) Temporal synaptic tagging by Ih activation and actin: involvement in long-term facilitation and cAMP-induced synaptic enhancement. Neuron 33:601–613

    Article  PubMed  CAS  Google Scholar 

  • Berbel P, Innocenti GM (1988) The development of the corpus callosum: a light and electromicroscopic study. J Comp Neurol 276:132–156

    Article  PubMed  CAS  Google Scholar 

  • Bielefeldt K, Jackson MB (1993) A calcium-activated potassium channel causes frequency-dependent action-potential failures in a mammalian nerve terminal. J Neurophysiol 70:284–298

    PubMed  CAS  Google Scholar 

  • Binczak S, Eilbeck JC, Scott AC (2001) Ephaptic coupling between myelinated nerve fibers. Physicia D 148:159–174

    Article  Google Scholar 

  • Bischofberger J, Jonas P (1997) Action potential propagation into the presynaptic dendrites of rat mitral cells. J Physiol (Lond) 504:350–365

    Article  Google Scholar 

  • Blackstad TW, Kjaerheim Å (1961) Special axo-dendritic synapses in the hippocampal cortex: electron and light microscopic studies in the hippocampal cortex: electron and light microscopic studies on the layer of mossy fibers. J Comp Neurol 117:133–146

    Article  PubMed  CAS  Google Scholar 

  • Bourque CW (1990) Intraterminal recordings from the rat neurohypophysis in vitro. J Physiol (Lond) 421:247–262

    CAS  Google Scholar 

  • Brigant JL, Mallart A (1982) Presynaptic currents in mouse motor endings. J Physiol 333:619–636

    PubMed  CAS  Google Scholar 

  • Brody DL, Yue DT (2000) Release-independent short-term synaptic depression in cultured hippocampal neurons. J Neurosci 20:2480–2494

    PubMed  CAS  Google Scholar 

  • Bush P, Sejnowski T (1996) Inhibition synchronizes connected cortical neurons within and between columns in realistic networks models. J Comput Neurosci 3:91–110

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Konishi M (1988) Axonal delay lines for time measurement in the owl’s brainstem. Proc Natl Acad Sci USA 85:8311–8315

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brain stem of the barn owl. J Neurosci 10:3227–3246

    PubMed  CAS  Google Scholar 

  • Casassus G, Blanchet C, Mulle C (2005) Short-term regulation of information processing at the corticoaccumbens synapse. J Neurosci 25:11504–11512

    Article  PubMed  CAS  Google Scholar 

  • Chen WR, Midtgaard J, Shepherd GM (1997) Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. Science 278:463–467

    Article  PubMed  CAS  Google Scholar 

  • Chen WR, Shen GY, Shepherd GM, Hines ML, Midtgaard J (2002) Multiple modes of action potential initiation and propagation in mitral cell primary dendrite. J Neurophysiol 88:2755–2764

    Article  PubMed  Google Scholar 

  • Chung SH, Raymond SA, Lettvin JY (1970) Multiple meaning in single visual units. Brain Behav Evol 3:72–101

    Article  PubMed  CAS  Google Scholar 

  • Clark B, Häusser M (2006) Neural coding: hybrid analog and digital signalling in axons. Current Biol. 15:R585–R588

    Google Scholar 

  • Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P (1995) Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378:75–78

    Google Scholar 

  • Cooper EC, Milroy A, Jan YN, Jan LY, Lowenstein DH (1998) Presynaptic localization of Kv1.4-containing A-type potassium channels near excitatory synapses in the hippocampus. J Neurosci 18:965–974

    PubMed  CAS  Google Scholar 

  • Cox CL, Denk W, Tank DW, Svoboda K (2000) Action potentials reliably invade axonal arbors of rat neocortical neurons. Proc Natl Acad Sci USA 97:9724–9728

    Article  PubMed  CAS  Google Scholar 

  • Daoudal G, Debanne D (2003) Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learn Mem 10:456–465

    Article  PubMed  Google Scholar 

  • Debanne D (2004) Information processing in the axon. Nat Rev Neurosci 5:304–316

    Article  PubMed  CAS  Google Scholar 

  • Debanne D, Guérineau NC, Gähwiler BH, Thompson SM (1997) Action potential propagation gated by an IA-like K+ conductance in hippocampus. Nature 389:286–289

    Article  PubMed  CAS  Google Scholar 

  • Debanne D, Kopysova IL, Bras H, Ferrand N (1999) Gating of action potential propagation by an axonal A-like potassium conductance in the hippocampus: a new type of non-synaptic plasticity. J Physiol (Paris) 93:285–296

    Article  CAS  Google Scholar 

  • Deschênes M, Landry P (1980) Axonal branch diameter and spacing of nodes in the terminal arborization of identified thalamic and cortical neurons. Brain Res 191:538–544

    Article  PubMed  Google Scholar 

  • Draguhn A, Traub RD, Schmitz D, Jefferys JGR (1998) Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature 394:189–192

    Article  PubMed  CAS  Google Scholar 

  • Dreyer F, Penner R (1987) The actions of presynaptic snake toxins on membrane currents of mouse motor nerve terminals. J Physiol 386:455–463

    PubMed  CAS  Google Scholar 

  • Ducreux C, Reynaud JC, Puizillout JJ (1993) Spike conduction properties of T-shaped C neurons in the rabbit nodose ganglion. Eur J Physiol 424:238–244

    Article  CAS  Google Scholar 

  • Dyball RE, Grossmann R, Leng G, Shibuki K (1988) Spike propagation and conduction failure in rat neural lobe. J Physiol (Lond) 401:241–256

    CAS  Google Scholar 

  • Eng DL, Kocsis JD (1987) Activity-dependent changes in extracellular potassium and excitability in turtle olfactory nerve. J Neurophysiol 57:185–202

    Google Scholar 

  • Engel D, Jonas P (2005) Presynaptic action potential amplification by voltage-gated Na+ channels in hippocampal mossy fiber boutons. Neuron 45: 405–417

    Article  PubMed  CAS  Google Scholar 

  • Evans CG, Jing J, Rosen SC, Cropper EC (2003) Regulation of spike initiation and propagation in an Aplysia sensory neuron: gating-in via central depolarization. J Neurosci 23:2920–2931

    PubMed  CAS  Google Scholar 

  • Forti L, Pouzat C, Llano I (2000) Action potential-evoked Ca2+ signals and calcium channels in axons of developing rat cerebellar interneurones. J Physiol (Lond) 527:33–48

    Article  CAS  Google Scholar 

  • Ganguly K, Kiss L, Poo MM (2000) Enhancement of presynaptic neuronal excitability by correlated presynaptic and post-synaptic spiking. Nat Neurosci 3:1018–1026

    Article  PubMed  CAS  Google Scholar 

  • Geiger JRP, Jonas P (2000) Dynamic control of presynaptic Ca2+ inflow by fast-inactivating K+ channels in hippocampal mossy fiber boutons. Neuron 28:927–939

    Article  PubMed  CAS  Google Scholar 

  • Goldstein S, Rall W (1974) Changes of action potential shape and velocity for changing core conductor geometry. Biophys J 14:731–757

    Article  PubMed  CAS  Google Scholar 

  • Goldfinger MD (2000) Computation of high safety factor impulse propagation at axonal branch points. NeuroReport 11:449–456

    Article  PubMed  CAS  Google Scholar 

  • Graham B, Redman S (1994) A simulation of action potentials in synaptic boutons during presynaptic inhibition. J Neurophysiol 71:538–549

    PubMed  CAS  Google Scholar 

  • Grossman Y, Parnas I, Spira ME (1979a) Differential conduction block in branches of a bifurcating axon. J Physiol (Lond) 295:283–305

    CAS  Google Scholar 

  • Grossman Y, Parnas I, Spira ME (1979b) Ionic mechanisms involved in differential conduction of action potentials at high frequency in a branching axon. J Physiol (Lond) 295:307–322

    CAS  Google Scholar 

  • Gu X (1991) Effect of conduction block at axon bifurcations on synaptic transmission to different postsynaptic neurons in the leech. J Physiol (Lond) 441:755–778

    CAS  Google Scholar 

  • Gulyas AI, Miles R, Hajos N, Freund T (1993) Precision and variability in postsynaptic target selection of inhibitory cells in the hippocampus CA3 region. Eur J Neurosci 5:1729–1751

    Article  PubMed  CAS  Google Scholar 

  • Hatt H, Smith DO (1976) Synaptic depression related to presynaptic axon conduction block. J Physiol (Lond) 259:367–393

    CAS  Google Scholar 

  • He Y, Zorumski CF, Mennerick S (2002) Contribution of presynaptic Na+ channel inactivation to paired-pulse synaptic depression in cultured hippocampal neurons. J Neurophysiol 87:925–936

    PubMed  CAS  Google Scholar 

  • Heitler WJ, Goodman CS (1978) Multiple sites of spike initiation in a bifurcating locust neurone. J Exp Biol 76:63–84

    Google Scholar 

  • Hestrin S, Galaretta M (2005) Electrical synapses define networks of neocortical GABAergic neurons. Trends Neurosci 28:304–309

    Article  PubMed  CAS  Google Scholar 

  • Holt GA, Koch C (1999) Electrical interactions via the extracellular potential near cell bodies. J Comput Neurosci 6:169–184

    Article  PubMed  CAS  Google Scholar 

  • Inda MC, DeFelipe J, Muñoz A (2006) Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells. Proc Natl Acad Sci 103:2920–2925

    Article  PubMed  CAS  Google Scholar 

  • Ishizuka N, Weber J, Amaral DG (1990) Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J Comp Neurol 295:580–623

    Article  PubMed  CAS  Google Scholar 

  • Isope P, Franconville R, Barbour B, Ascher P (2004) Repetitive firing of rat cerebellar parallel fibres after a single stimulation. J Physiol (Lond) 554:829–839

    Article  CAS  Google Scholar 

  • Izhikevich EM (2006) Polychronization: computation with spikes. Neural Comput 18:245–282

    Article  PubMed  Google Scholar 

  • Jackson MB, Zhang SJ (1995) Action potential propagation block by GABA in rat posterior pituitary nerve terminals. J Physiol (Lond) 483:597–611

    CAS  Google Scholar 

  • Katz B, Miledi R (1965) Propagation of electrical activity in motor nerve terminal. Proc R Soc Lond B Biol Sci 161:453–482

    Google Scholar 

  • Katz B, Schmitt O (1940) Electric interaction between two adjacent nerve fibres. J Physiol (Lond) 97:471–488

    CAS  Google Scholar 

  • Katz B, Schmitt O (1942) A note on interaction between nerve fibers. J Physiol (Lond) 100:369–371

    CAS  Google Scholar 

  • Kawai H, Lazar R, Metherate R (2007) Nicotinic control of axon excitability regulates thalamocortical transmission. Nat Neurosci 10:1168–1175

    Article  PubMed  CAS  Google Scholar 

  • Khaliq ZM, Raman IM (2005) Axonal propagation of simple and complex spikes in cerebellar Purkinje neurons. J Neurosci 25:454–463

    Article  PubMed  CAS  Google Scholar 

  • Klausberger T, Magill PJ, Marton LF, Roberts JDB, Cobden PM, Buzsaki G, Somogyi P (2003) Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421:844–848

    Article  PubMed  CAS  Google Scholar 

  • Kocsis JD, Ruiz JA, Cummins KL (1982) Modulation of axonal excitability mediated by surround electrical activity: an intra-axonal study. Exp Brain Res 47:151–153

    Article  PubMed  CAS  Google Scholar 

  • Koester HJ, Sakmann B (2000) Calcium dynamic associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex. J Physiol (Lond) 529:625–646

    Article  CAS  Google Scholar 

  • Kole MHP, Letzkus JJ, Stuart GJ (2007) Axon initiak segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron 55:633–647

    Article  PubMed  CAS  Google Scholar 

  • Kopysova IL, Debanne D (1998) Critical role of axonal A-type K+-channels and axonal geometry in the gating of action potential propagation along CA3 pyramidal cell axons: a simulation study. J Neurosci 18:7436–7451

    PubMed  CAS  Google Scholar 

  • Krnjevic K, Miledi R (1959) Presynaptic failure of neuromuscular propagation in rats. J Physiol (Lond) 149:1–22

    CAS  Google Scholar 

  • Leao RM, Kushmerick, Pinaud R, Renden R, Li, GL, Taschenberger H, Spirou G, Levinson SR, von Gersdorff H (2005) Presynaptic Na+ channels: locus, development, and recovery from inactivation at a high fidelity synapse. J Neurosci 25:3724–3738

    Article  PubMed  CAS  Google Scholar 

  • Li X, Somogyi P, Ylinen A, Buzsaki G (1994) The hippocampal CA3 network: an in vivo intracellular labeling study. J Comp Neurol 339:181–208

    Article  PubMed  CAS  Google Scholar 

  • Li C, Lu J, Wu C, Duan S, Poo M (2004) Bidirectional modification of presynaptic neuronal excitability accompanying spike timing-dependent synaptic plasticity. Neuron 41:257–268

    Article  PubMed  CAS  Google Scholar 

  • Lindgren CA, Moore JW (1989) Identification of ionic currents at presynaptic nerve endings of the lizard. J Physiol 414:201–202

    PubMed  CAS  Google Scholar 

  • Lüscher HR, Shiner JS (1990a) Computation of action potential propagation and presynaptic bouton activation in terminal arborizations of different geometries. Biophys J 58:1377–1388

    Article  PubMed  Google Scholar 

  • Lüscher HR, Shiner JS (1990b) Simulation of action potential propagation in complex terminal arborizations. Biophys J 58:1389–1399

    Article  PubMed  Google Scholar 

  • Lüscher C, Streit J, Quadroni R, Lüscher HR (1994a) Action potential propagation through embryonic dorsal root ganglion cells in culture. I. Influence of the cell morphology on propagation properties. J Neurophysiol 72:622–633

    PubMed  Google Scholar 

  • Lüscher C, Streit J, Lipp P, Lüscher HR (1994b) Action potential propagation through embryonic dorsal root ganglion cells in culture. II. Decrease of conduction reliability during repetitive stimulation. J Neurophysiol 72:634–644 (1994)

    PubMed  Google Scholar 

  • Macagno ER, Muller KJ, Pitman RM (1987) Conduction block silences parts of a chemical synapse in the leech central nervous system. J Physiol (Lond) 387:649–664

    CAS  Google Scholar 

  • Mackenzie PJ, Umemiya M, Murphy TH (1996) Ca2+ imaging of CNS axons in culture indicate reliable coupling between single action potentials and distal functional release sites. Neuron 16:783–795

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie PJ, Murphy TH (1998) High safety factor for action potential conduction along axons but not dendrites of cultured hippocampal and cortical neurons. J Neurophysiol 80:2089–2101

    PubMed  CAS  Google Scholar 

  • Madeja M (2000) Do neurons have a reserve of sodium channels for the generation of action potentials? A study on acutely isolated CA1 neurons from the guinea-pig hippocampus. Eur J Neurosci 12:1–7

    Article  PubMed  CAS  Google Scholar 

  • Maex R, De Schutter E (2003) Resonant synchronization in heterogeneous networks of inhibitory neurons. J Neurosci 23:10503–10514

    PubMed  CAS  Google Scholar 

  • Major G, Larkman AU, Jonas P, Sakmann B, Jack JJB (1994) Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. J Neurosci 14:4613–4638

    PubMed  CAS  Google Scholar 

  • Manor Y, Koch C, Segev I (1991) Effect of geometrical irregularities on propagation delay in axonal trees. Biophys J 60:1424–1437

    Article  PubMed  CAS  Google Scholar 

  • Mar A, Drapeau P (1996) Modulation of conduction block in leech mechanosensory neurons. J Neurosci 16:4335–4334

    Google Scholar 

  • Marder E (2006) Extending influence. Nature 441:702–703

    Article  PubMed  CAS  Google Scholar 

  • Martina M, Jonas P (1997) Functional differences in Na+ channel gating between fast-spiking interneurones and principal neurons of rat hippocampus. J Physiol (Lond) 505:593–603

    Article  CAS  Google Scholar 

  • Martina M, Vida I, Jonas P (2000) Distal initiation and active propagation of action potentials in interneurons dendrites. Science 287:295–300

    Article  PubMed  CAS  Google Scholar 

  • McAlpine D, Grothe B (2003) Sound localization and delay lines – do mammals fit the model? Trends Neurosci. 26, 347–350

    Article  PubMed  CAS  Google Scholar 

  • McNaughton BL, Shen J, Rao G, Foster TC, Barnes CA (1994) Persistent increase of hippocampal axon excitability after repetitive stimulation: dependence on N-methyl-D-aspartate receptor activity, nitric-oxyde synthase, and temperature. Proc Natl Acad Sci 91:4830–4834

    Article  PubMed  CAS  Google Scholar 

  • Mejia-Gervacio, S, Collin T, Pouzat C, Tan YP, Llano I, Marty A (2007) Axonal speeding: shaping synaptic potentials in small neurons by the axonal membrane compartment. Neuron 53:843–855

    Article  PubMed  CAS  Google Scholar 

  • Meeks JP, Mennerick S (2004) The selective effects of potassium elevation on glutamate signaling and action potential conduction in hippocampus. J Neurosci 24:197–206

    Article  PubMed  CAS  Google Scholar 

  • Meeks JP, JIang X, Mennerick S (2005) Action potential fidelity during normal and epileptiform activity in paired soma-axon recordings from rat hippocampus. J Physiol (Lond) 566:425–441

    Article  CAS  Google Scholar 

  • Monsivais P, Clark BA, Roth A, Häusser M (2005) Determinants of action potential propagation in cerebellar Purkinje cell axons. J Neurosci 25:464–472

    Google Scholar 

  • Muschol M, Kosterin P, Ichikawa M, Salzberg BM (2003) Activity-dependent depression of excitability and calcium transients in the neurohypophysis suggests a model of “stuttering conduction”. J Neurosci 23:11352–11362

    PubMed  CAS  Google Scholar 

  • Nakamura M, Sekino Y, Manabe T (2007) GABAergic interneurons facilitate mossy fiber excitability in the developing hippocampus. J Neurosci 27:1365–1373

    Article  PubMed  CAS  Google Scholar 

  • Nicholls J, Wallace BG (1978) Modulation of transmission at an inhibitory synapse in the central nervous system of the leech. J Physiol 281:157–170

    PubMed  CAS  Google Scholar 

  • Obaid AL, Salzberg BM (1996) Micromolar 4-aminopyridine enhances invasion of a vertebrate neurosecretary terminal arborization. J Gen Physiol 107:353–368

    Article  PubMed  CAS  Google Scholar 

  • Parnas I (1972) Differential block at high frequency of branches of a single axon innervating two muscles. J Neurophysiol 35:903–914

    PubMed  CAS  Google Scholar 

  • Parnas I, Hochstein S, Parnas H (1976) Theoretical analysis of parameters leading to frequency modulation along an inhomogeneous axon. J Neurophysiol 39:909–923

    PubMed  CAS  Google Scholar 

  • Parnas I (1979) The Neurosciences. Schmitt FO, Worden FG (eds). MIT Press, Cambridge MA, pp 499–512

    Google Scholar 

  • Pinault D, Deschênes M (1998) Projection and innervation patterns of individual thalamic reticular axons in the thalamus of the adult rat: a three–dimensional, graphic, and morphometric analysis. J Comp Neurol 391:180–203

    Article  PubMed  CAS  Google Scholar 

  • Poolos NP, Mauk MD, Kocsis JD (1987) Activity-evoked increases in intracellular potassium modulate presynaptic excitability in the CA1 region of the hippocampus. J Neurophysiol 58:404–416

    PubMed  CAS  Google Scholar 

  • Prakriya M, Mennerick S (2000) Selective depression of low-release probability excitatory synapses by sodium channel blockers. Neuron 26:671–682

    Article  PubMed  CAS  Google Scholar 

  • Raastad M, Shepherd G (2003) Single-axon action potentials in the rat hippocampal cortex. J Physiol (Lond) 548:745–752

    Article  CAS  Google Scholar 

  • Rall W (1959) Branching dendritic trees and motoneuron membrane resistivity. Expl Neurol 1:491–527

    Article  CAS  Google Scholar 

  • Rall W (1964) Theoretical significance of dendritic tree for neural input-output relations. In: Reiss FP (ed) Neural theory of modeling. Standford University Press, Palo Alto, pp 73–97

    Google Scholar 

  • Ramon F, Joyner RW, Moore, JW (1975) Propagation of action potentials in inhomogeneous axon regions. Fed Proc 34:1357–1363

    PubMed  CAS  Google Scholar 

  • Reutskiy S, Rossoni E, Tirozzi B (2003) Conduction in bundles of demyelinated nerve fibers: computer simulation. Biol Cybern 89:439–448

    Article  PubMed  CAS  Google Scholar 

  • Ritchie JM, Straub RW (1956) The after-effects of repetitive stimulation on mammalian non-medulated fibres. J Physiol (Lond) 134:698–711

    CAS  Google Scholar 

  • Ritchie JM, Straub RW (1957) The hyperpolarization which follows activity in mammalian non-medulated fibres. J Physiol (Lond) 136:80–97

    CAS  Google Scholar 

  • Rhodes KJ, Strassle BW, Monaghan MM, Bekele-Arcuri Z, Matos MF, Trimmer JS (1997) Association and colocalization of the Kvβ1 and Kvβ2 β-subunits with Kv1 α-subunits in mammalian brain K+ channel complexes. J Neurosci 17:8246–8258

    PubMed  CAS  Google Scholar 

  • Roopun AK, Middleton SJ, Cunningham MO, LeBeau FEN, Bibbig A, Whittington MA, Traub RD (2006) A beta2-frequency (20–30 Hz) oscillation in nonsynaptic networks of somatosensory cortex. Proc Natl Acad Sci USA 103:15646–15650

    Article  PubMed  CAS  Google Scholar 

  • Saviane C, Mohajerani MH, Cherubini E (2003) An ID like current that is downregulated by Ca2+ modulates information coding at CA3-CA3 synapses in the rat hippocampus. J Physiol (Lond) 552:513–524

    Article  CAS  Google Scholar 

  • Schmitz D, Schuchmann S, Fisahn A, Draguhn A, Buhl EH, Petrasch-Parwez E, Dermietzel R, Heinemann U, Traub RD (2001) Axo-axonal coupling: a novel mechanism for ultrafast neuronal communication. Neuron 31:831–840

    Article  PubMed  CAS  Google Scholar 

  • Scott LL, Hage TA, Golding NL (2007) Weak action potential backpropagation is associated wth high-frequency axonal firing capability in principal neurons of the gerbil medial superior olive. J Physiol 583:647–661

    Article  PubMed  CAS  Google Scholar 

  • Segev I, Schneidman E (1999) Axons as computing devices: basic insights gained from models. J Physiol (Paris) 93: 263–270

    Article  CAS  Google Scholar 

  • Shapiro E, Castellucci VF, Kandel ER (1980) Presynaptic membrane potential affects transmitter release in an identified neuron in Aplysia by modulating the Ca2+ and K+ currents. Proc Natl Acad Sci USA 77:629–633

    Article  PubMed  CAS  Google Scholar 

  • Sheng M, Tsaur ML, Jan YN, Jan, LY (1992) Subcellular segregation of two A-type K+ channel protein in rat central neurons. Neuron 9:243–259

    Article  Google Scholar 

  • Sheng M, Liao YJ, Jan YN, Jan LY (1993) Presynaptic A-current based on heteromultimeric K+ channels detected in vivo. Nature 365:72–75

    Article  PubMed  CAS  Google Scholar 

  • Shepherd GMG, Raastad M (2003) Axonal varicosity distributions along parallel fibers: a new angle on a cerebellar circuit. The Cerebellum 2:110–113

    Article  PubMed  Google Scholar 

  • Shepherd GMG, Raastad M, Andersen P (2002) General and variable features of varicosity spacing along unmyelinated axons in the hippocampus and cerebellum. Proc Natl Acad Sci USA 99:6340–6345

    Article  PubMed  CAS  Google Scholar 

  • Shimahara T, Tauc L (1975) Multiple interneuronal afferents to the giant cells in Aplysia. J Physiol 247:299–319

    PubMed  CAS  Google Scholar 

  • Shu Y, Hasenstaub A, Duque A, Yu Y, McCormick DA (2006) Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature 441:761–765

    Article  PubMed  CAS  Google Scholar 

  • Shu Y, Yu Y, Yang J, McCormick DA (2007) Selective control of cortical axonal spikes by a slowly inactivating K+ current. Proc Natl Acad Sci USA 104:11453–11458

    Article  PubMed  CAS  Google Scholar 

  • Smith DO (1980a) Mechanisms of action potential propagation failure at sites of axon branching in the crayfish. J Physiol (Lond) 301:243–259

    CAS  Google Scholar 

  • Smith DO (1980b) Morphological aspects of the safety factor for action potential propagation at axon branch points. J Physiol (Lond) 301:261–269

    CAS  Google Scholar 

  • Soleng AF, Chiu K, Raastad M (2003) Unmyelinated axons in the rat hippocampus hyperpolarize and activate an H current when spike frequency exceeds 1 Hz. J Physiol (Lond) 552:459–470

    Article  CAS  Google Scholar 

  • Streit J, Lüscher C, Lüscher HR (1992) Depression of postsynaptic potentials by high frequency stimulation in embryonic motoneurons grown in spinal cord slice cultures. J Neurophysiol 68:1793–1803

    PubMed  CAS  Google Scholar 

  • Stuart G, Sakmann B (1995) Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons. Neuron 15:1065–1076

    Article  PubMed  CAS  Google Scholar 

  • Tan YP, Llano I (2000) Modulation by K+ channels of action potential-evoked intracellular Ca2+ concentration rises in rat cerebellar basket cell axons. J Physiol (Lond) 520:65–78

    Article  Google Scholar 

  • Traub RD, Draguhn A, Whttington MA, Baldewed T, Bibbig A, Buhl EH, Schmitz D (2002) Axonal gap junctions between neurons: a novel source of network oscillations and perhaps epileptogenesis. Rev Neurosci 13:1–30

    Article  PubMed  Google Scholar 

  • Van Essen DC (1973) The contribution of membrane hyperpolarization to adaptation and conduction block in sensory neurones of the leech. J Physiol (Lond) 230:509–534

    Google Scholar 

  • Veh RW, Lichtinghagen R, Sewing S, Wunder F, Grumbach IM, Pongs O (1995) Immunohistochemical localization of five members of the Kv1 channel subunits: contrasting subcellular locations and neuron-specific co-localizations in rat brain. Eur J Neurosci 7:2189–2205

    Article  PubMed  CAS  Google Scholar 

  • Velte TJ, Masland RH (1999) Action potentials in the dendrites of retinal ganglion cells. J Neurophysiol 81:1412–1417

    PubMed  CAS  Google Scholar 

  • Westrum LE, Blackstad TW (1962) An electron microscopic study of the stratum radiatum of the rat hippocampus (regio superior, CA1) with particular emphasis on synaptology. J Comp Neurol 119:281–309

    Article  PubMed  CAS  Google Scholar 

  • Yau KW (1976) Receptive fields, geometry and conduction block of sensory neurons in the CNS of the leech. J Physiol (Lond) 263:513–538

    CAS  Google Scholar 

  • Young JZ (1936) The giant nerve fibres and epistellar body of cephalopods. Q J Microsc Sci 78:367–386

    Google Scholar 

  • Zhang SJ, Jackson MB (1993) GABA-activated chloride channels in secretory nerve endings. Science 259:531–534

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Chiu SY (2001) Computer model for action potential propagation through branch point in myelinated nerves. J Neurophysiol 85:197–210

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Supported by Institut National de la Santé et de la Recherche Médicale (Programme “Avenir”), Centre National de la Recherche Scientifique, Ministry of Research (“Actions Incitatives Jeunes Chercheurs” 5169) and Fondation pour la Recherche Médicale. We thank M. Seagar for his constant support and constructive criticisms on the manuscript. SB was supported by Ministry of Research (Doctoral grant) and European Community (LSHM-CT-2004-511995, Synaptic Scaffolding Proteins Orchestrating Cortical Synapse Organisation during Development).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Debanne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Debanne, D., Boudkkazi, S. (2010). New Insights in Information Processing in the Axon. In: Feldmeyer, D., Lübke, J. (eds) New Aspects of Axonal Structure and Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1676-1_4

Download citation

Publish with us

Policies and ethics