Skip to main content

Sodium Signals and Their Significance for Axonal Function

  • Chapter
  • First Online:
New Aspects of Axonal Structure and Function

Abstract

Regulation of intracellular sodium ion concentration ([Na+]i) is critical for nervous system function, not only because Na+ ions are the major current carriers during action potentials and excitatory postsynaptic currents in neurones, but also because many other cellular functions are directly dependent on the inwardly directed Na+ gradient.

In the CNS, bulk changes in cytoplasmic [Na+] are known to occur in cell bodies during pathophysiological conditions, such as ischaemia, and also likely contribute to the associated cellular dysfunction and ensuing neuronal cell death. However, dynamic measurements of [Na+]i in discrete cellular regions have only recently become possible. Microspectrofluorescent recordings in neuronal dendrites or fine glial processes have revealed that significant changes in [Na+]i occur during modest physiological stimuli in compartments with high surface-to-volume-ratios. In contrast to measurements form dendrites and somata, there is a paucity of dynamic [Na+]i measurements from axons; this, despite ample literature suggesting an important role of [Na+]i changes in various aspects of axonal function and pathology. The first part of this chapter, therefore, briefly reviews current knowledge of [Na+]i transients in discrete cellular compartments, with the aim of creating a better understanding of the possible mechanisms and roles of Na+ signals in the axonal compartment. The second part discusses Na+ signals in axons, the routes of Na+ entry along the axon, and possible pathological and physiological implications of changes in axonal [Na+]i. Thus, it is the aim of this review to both enable and encourage further investigation of sodium in axonal function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal SK, Fehlings MG (1996) Mechanisms of secondary injury to spinal cord axons in vitro: role of Na+, Na+-K+-ATPase, the Na+-H+ exchanger, and the Na+-Ca2+ exchanger. J Neurosci 16:545–552

    PubMed  CAS  Google Scholar 

  • Agrawal SK, Fehlings MG (1997) The effect of the sodium channel blocker QX-314 on recovery after acute spinal cord injury. J Neurotrauma 14:81–88

    PubMed  CAS  Google Scholar 

  • Allen NJ, Káradóttir R, Attwell D (2004) Reversal or reduction of glutamate and GABA transport in CNS pathology and therapy. Pflügers Arch 449:132–142

    PubMed  CAS  Google Scholar 

  • Araya R, Nikolenko V, Eisenthal KB, Yuste R (2007) Sodium channels amplify spine potentials. PNAS 104:12347–12352

    PubMed  CAS  Google Scholar 

  • Beart PM, O’Shea RD (2006) Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150:5–17

    PubMed  Google Scholar 

  • Bender KJ, Trussell LO (2009) Axon initial segment Ca2+ channels influence action potentials generation and timing. Neuron 61:259–271

    PubMed  CAS  Google Scholar 

  • Bennay M, Langer J, Meier SD, Kafitz KW, Rose CR (2008) Sodium signals in cerebellar Purkinje neurons and Bergmann glial cells evoked by glutamatergic synaptic transmission. Glia 56:1138–1149

    PubMed  Google Scholar 

  • Bergman C (1970) Increase of sodium concentration near the inner surface of the nodal membrane. Pflügers Arch 317:287–302

    PubMed  CAS  Google Scholar 

  • Bernardinelli Y, Azyrias G, Chatton JY (2006) In situ fluorescence imaging of glutamate-evoked mitochondrial Na+ responses in astrocytes. Glia 54:460–470

    PubMed  Google Scholar 

  • Bhattacharjee A, Kaczmarek LK (2005) For K+ channels, Na+ is the new Ca2+. Trends Neurosci 28:422–428

    PubMed  CAS  Google Scholar 

  • Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854

    PubMed  CAS  Google Scholar 

  • Blumenstein Y, Maximyuk OP, Lozovaya N, Yatsenko NM, Kanevsky N, Krishtal O, Dascal N (2004) Intracellular Na+ inhibits voltage-dependent N-type Ca channels by a G protein βγ subunit-dependent mechanism. J Physiol 556:121–134

    PubMed  CAS  Google Scholar 

  • Bouron A, Reuter H (1996) A role of intracellular Na+ in the regulation of synaptic transmission and turnover of the vesicular pool in cultured hippocampal cells. Neuron 17:969–978

    PubMed  CAS  Google Scholar 

  • Brasnjo G, Otis TS (2001) Neuronal glutamate transporters control activation of postsynaptic metabotropic glutamate receptors and influence cerebellar long-term depression. Neuron 31:607–616

    PubMed  CAS  Google Scholar 

  • Breuer AC, Bond M, Atkinson MB (1992) Fast axonal transport is modulated by altering trans-axolemmal calcium flux. Cell Calcium 13:249–262

    PubMed  CAS  Google Scholar 

  • Callaway JC, Ross WN (1997) Spatial distribution of synaptically activated sodium concentration changes in cerebellar Purkinje neurons. J Neurophysiol 77:145–152

    PubMed  CAS  Google Scholar 

  • Callewaert G, Eilers J, Konnerth A (1996) Axonal calcium entry during fast ‘sodium’ action potentials in rat cerebellar Purkinje neurones. J Physiol 495:641–647

    PubMed  CAS  Google Scholar 

  • Chen NH, Reith M, Quick M (2004) Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflügers Arch 447:519–531

    PubMed  CAS  Google Scholar 

  • Chesler M (2003) Regulation and modulation of pH in the brain. Physiol Rev 83:1183–1221

    PubMed  CAS  Google Scholar 

  • Chinopoulos C, Tretter L, Rozsa A, Adam-Vizi V (2000) Exacerbated responses to oxidative stress by an Na+ load in isolated nerve terminals: the role of ATP depletion and rise of [Ca2+]i. J Neurosci 20:2094–2103

    PubMed  CAS  Google Scholar 

  • Chiu SY, Kriegler S (1994) Neurotransmitter-mediated signalling between axons and glial cells. Glia 11:191–200

    PubMed  CAS  Google Scholar 

  • Coutinho V, Knöpfel T (2002) Metabotropic glutamate receptors: electrical and chemical signaling properties. Neuroscientist 8:551–561

    PubMed  CAS  Google Scholar 

  • Craner MJ, Hains BC, Lo AC, Black JA, Waxman SG (2004a) Co-localization of sodium channel Nav1.6 and the sodium-calcium exchanger at sites of axonal injury in the spinal cord in EAE. Brain 127:294–303

    PubMed  Google Scholar 

  • Craner MJ, Newcombe J, Black JA, Hartle C, Cuzner ML, Waxman SG (2004b) Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. PNAS 101:8168–8173

    PubMed  CAS  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    PubMed  CAS  Google Scholar 

  • David G, Barrett JN, Barrett EF (1997) Spatiotemporal gradients of intra-axonal [Na+] after transection and resealing in lizard peripheral myelinated axons. J Physiol 498:295–307

    PubMed  CAS  Google Scholar 

  • Drew GM, Mitchell VA, Vaughan CW (2008) Glutamate spillover modulates GABAergic synaptic transmission in the rat midbrain periaqueductal grey via metabotropic glutamate receptors and endocannabinoid signalling. J Neurosci 28:808–815

    PubMed  CAS  Google Scholar 

  • Duguid I, Sjöström PJ (2006) Novel presynaptic mechanisms for coincidence detection in synaptic plasticity. Curr Opin Neurobiol 16:312–322

    PubMed  CAS  Google Scholar 

  • Erecinska M, Dagani F, Nelson D, Deas J, Silver IA (1991) Relations between intracellular ions and energy metabolism: a study with monensin in synaptosomes, neurons, and C6 glioma cells. J Neurosci 11:2410–2421

    PubMed  CAS  Google Scholar 

  • Fleidervish IA, Lasser-Ross N, Gutnick MJ, Ross WN (2010) Na+ imaging reveals little difference in action potential-evoked Na+ influx between axon and soma. Nat Neurosci doi:10.1038/nn.2574

    Google Scholar 

  • Fowler JC, Li Y (1998) Contributions of Na+ flux and the anoxic depolarization to adenosine 5’-triphosphate levels in hypoxic/hypoglycemic rat hippocampal slices. Neuroscience 83:717–722

    PubMed  CAS  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  • Hains BC, Saab CY, Lo AC, Waxman SG (2004) Sodium channel blockade with phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional motor recovery after contusion SCI. Exp Neurol 188:365–377

    PubMed  CAS  Google Scholar 

  • Haloui M, Taurin S, Akimova OA, Guo DF, Tremblay J, Dulin NO, Hamet P, Orlov SN (2007) [Na+]i-induced c-Fos expression is not mediated by activation of the 5’-promoter containing known transcriptional elements. FEBS J 274:3557–3567

    PubMed  CAS  Google Scholar 

  • Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Ann Rev Neurosci 17:341–371

    PubMed  CAS  Google Scholar 

  • Hille B (2001) Ionic channels of excitable membranes, 3rd ed. Sinauer Associates, Sunderland

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    PubMed  CAS  Google Scholar 

  • Imaizumi T, Kocsis JD, Waxman SG (1997) Anoxic injury in the rat spinal cord: pharmacological evidence for multiple steps in Ca2+-dependent injury of the dorsal columns. J Neurotrauma 14:299–311

    PubMed  CAS  Google Scholar 

  • Jaffe DB, Johnston D, Lasser-Ross N, Lisman JE, Miyakawa H, Ross WN (1992) The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons. Nature 357:244–246

    PubMed  CAS  Google Scholar 

  • Kanai Y, Hediger M (2004) The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflügers Arch 447:469–479

    PubMed  CAS  Google Scholar 

  • Káradóttir R, Attwell D (2007) Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience 145:1426–1438

    PubMed  Google Scholar 

  • Kelly T, Kafitz KW, Roderigo C, Rose CR (2009) Ammonium-evoked alterations in intracellular sodium and pH reduce glial glutamate transport activity. Glia 57:921–934

    Google Scholar 

  • Kim JH, Sizov I, Dobretsov M, von Gersdorff H (2007) Presynaptic Ca2+ buffers control the strength of a fast post-tetanic hyperpolarization mediated by the α3 Na+/K+-ATPase. Nat Neurosci 10:196–205

    PubMed  CAS  Google Scholar 

  • Kim MH, Korogod N, Schneggenburger R, Ho WK, Lee SH (2005) Interplay between Na+/Ca2+ exchangers and mitochondria in Ca2+ clearance at the calyx of Held. J Neurosci 25:6057–6065

    PubMed  CAS  Google Scholar 

  • Knöpfel T, Anchisi D, Alojado ME, Tempia F, Strata P (2000) Elevation of intradendritic sodium concentration mediated by synaptic activation of metabotropic glutamate receptors in cerebellar Purkinje cells. Eur J Neurosci 12:2199–2204

    PubMed  Google Scholar 

  • Koh DS, Jonas P, Vogel W (1994) Na+-activated K+ channels localized in the nodal region of myelinated axons of Xenopus. J Physiol 479:183–197

    PubMed  CAS  Google Scholar 

  • Kole MH, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ (2008) Action potential generation requires high sodium channel density in the axon initial segment. Nat Neurosci 11:178–186

    PubMed  CAS  Google Scholar 

  • Kriegler S, Chiu SY (1993) Calcium signaling of glial cells along mammalian axons. J Neurosci 13:4229–4245

    PubMed  CAS  Google Scholar 

  • Langer J, Rose CR (2009) Synaptically induced sodium signals in hippocampal astrocytes in situ. J Physiol 587:5859–5877

    Google Scholar 

  • Lasser-Ross N, Ross WN (1992) Imaging voltage and synaptically activated sodium transients in cerebellar Purkinje cells. Proc R Soc B Biol Sci 247:35–39

    CAS  Google Scholar 

  • Leppanen L, Stys PK (1997) Ion transport and membrane potential in CNS myelinated axons II. Effects of metabolic inhibition. J Neurophysiol 78:2095–2107

    PubMed  CAS  Google Scholar 

  • Lev-Ram V, Grinvald A (1987) Activity-dependent calcium transients in central nervous system myelinated axons revealed by the calcium indicator Fura-2. Biophys J 52:571–576

    PubMed  CAS  Google Scholar 

  • Li S, Stys PK (2001) Na+-K+-ATPase inhibition and depolarization induce glutamate release via reverse Na+-dependent transport in spinal cord white matter. Neuroscience 107:675–683

    PubMed  CAS  Google Scholar 

  • Li S, Jiang Q, Stys PK (2000) Important role of reverse Na+-Ca2+ exchange in spinal cord white matter injury at physiological temperature. J Neurophysiol 84:1116–1119

    PubMed  CAS  Google Scholar 

  • Li S, Mealing GAR, Morley P, Stys PK (1999) Novel injury mechanism in anoxia and trauma of spinal cord white matter: glutamate release via reverse Na+-dependent glutamate transport. J Neurosci 19:16RC

    Google Scholar 

  • Linden DJ, Smeyne M, Connor JA (1993) Induction of cerebellar long-term depression in culture requires postsynaptic action of Sodium Ions. Neuron 11:1093–1100

    PubMed  CAS  Google Scholar 

  • Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    PubMed  CAS  Google Scholar 

  • Lopachin RM, Stys PK (1995) Elemental composition and water content of rat optic nerve myelinated axons and glial cells: effects of in vitro anoxia and reoxygenation. J Neurosci 15:6735–6746

    PubMed  CAS  Google Scholar 

  • Lucas JH, Emery DG, Rosenberg LJ (1997) Physical injury of neurons: important roles for sodium and chloride ions. Neuroscientist 3:89–101

    CAS  Google Scholar 

  • Magee JC, Johnston D (1997) A synaptically controlled, associative signal for hebbian plasticity in hippocampal neurons. Science 275:209–213

    PubMed  CAS  Google Scholar 

  • Meier SD, Kovalchuk Y, Rose CR (2006) Properties of the new fluorescent Na+ indicator CoroNa Green: comparison with SBFI and confocal Na+ imaging. J Neurosci Methods 155:251–259

    PubMed  CAS  Google Scholar 

  • Minta A, Tsien RY (1989) Fluorescent indicators for cytosolic sodium. J Biol Chem 264:19449–19457

    PubMed  CAS  Google Scholar 

  • Morita K, David G, Barrett JN, Barrett EF (1993) Posttetanic hyperpolarization produced by electrogenic Na+-K+ pump in lizard axons impaled near their motor terminals. J Neurophysiol 70:1874–1884

    PubMed  CAS  Google Scholar 

  • Mulkey RM, Zucker RS (1992) Posttetanic potentiation at the crayfish neuromuscular junction is dependent on both intracellular calcium and sodium ion accumulation. J Neurosci 12:4327–4336

    PubMed  CAS  Google Scholar 

  • Nikolaeva MA, Mukherjee B, Stys PK (2005) Na+-Dependent sources of intra-axonal Ca2+ release in rat optic nerve during in vitro chemical ischemia. J Neurosci 25:9960–9967

    PubMed  CAS  Google Scholar 

  • Nuriya M, Jiang J, Nemet B, Eisenthal KB, Yuste R (2006) Imaging membrane potential in dendritic spines. PNAS 103:786–790.

    PubMed  CAS  Google Scholar 

  • O’Shea RD (2002) Roles and regulation of glutamate transporters in the central nervous system. Clin Exp Pharmacol Physiol 29:1018–1023

    PubMed  Google Scholar 

  • Orlov SN, Hamet P (2006) Intracellular monovalent ions as second messengers. J Membr Biol 210:161–172

    PubMed  CAS  Google Scholar 

  • Otis TS, Brasnjo G, Dzubay JA, Pratap M (2004) Interactions between glutamate transporters and metabotropic glutamate receptors at excitatory synapses in the cerebellar cortex. Neurochem Int 45:537–544

    PubMed  CAS  Google Scholar 

  • Ransom BR, Walz W, Davis PK, Carlini WG (1992) Anoxia-induced changes in extracellular K+ and pH in mammalian central white matter. J Cereb Blood Flow Metab 12:593–602

    PubMed  CAS  Google Scholar 

  • Regehr WG (1997) Interplay between sodium and calcium dynamics in granule cell presynaptic terminals. Biophys J 73:2476–2488

    PubMed  CAS  Google Scholar 

  • Ren Y, Ridsdale A, Coderre E, Stys PK (2000) Calcium imaging in live rat optic nerve myelinated axons in vitro using confocal laser microscopy. J Neurosci Methods 102:165–176

    PubMed  CAS  Google Scholar 

  • Reuter H, Porzig H (1995) Localization and functional significance of the Na+/Ca2+exchanger in presynaptic boutons of hippocampal cells in culture. Neuron 15:1077–1084

    PubMed  CAS  Google Scholar 

  • Rishal I, Keren-Raifman T, Yakubovich D, Ivanina T, Dessauer CW, Slepak VZ, Dascal N (2003) Na+ promotes the dissociation between Gα GDP and Gβγ, activating G protein-gated K+ channels. J Biol Chem 278:3840–3845

    PubMed  CAS  Google Scholar 

  • Rojas H, Colina C, Ramos M, Benaim G, Jaffe EH, Caputo C, DiPolo R (2007) Na+ entry via glutamate transport activates the reverse Na+/Ca2+ exchange and triggers Ca2+ i-induced Ca2+ release in rat cerebellar Type-1 astrocytes J Neurochem 100:1188–1202

    Google Scholar 

  • Rose CR (2002) Na+ signals at central synapses. Neuroscientist 8:532–539

    PubMed  CAS  Google Scholar 

  • Rose CR (2003) High-resolution Na+ imaging in dendrites and spines. Pflügers Arch 446:317–321

    PubMed  CAS  Google Scholar 

  • Rose CR, Konnerth A (2001) NMDA receptor-mediated Na+ signals in spines and dendrites. J Neurosci 21:4207–4214

    PubMed  CAS  Google Scholar 

  • Rose CR, Kovalchuk Y, Eilers J, Konnerth A (1999) Two-photon Na+ imaging in spines and fine dendrites of central neurons. Pflügers Arch 439:201–207

    PubMed  CAS  Google Scholar 

  • Rose CR, Ransom BR (1996) Mechanisms of H+ and Na+ changes induced by glutamate, kainate, and D-aspartate in rat hippocampal astrocytes. J Neurosci 16:5393–5404

    PubMed  CAS  Google Scholar 

  • Salter MG, Fern R (2008) The mechanisms of acute ischemic injury in the cell processes of developing white matter astrocytes. J Cereb Blood Flow Metab 28:588–601

    PubMed  CAS  Google Scholar 

  • Schenk U, Matteoli M (2004) Presynaptic AMPA receptors: more than just ion channels? Biol Cell 96:257–260

    PubMed  CAS  Google Scholar 

  • Schiller J, Helmchen F, Sakmann B (1995) Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurones. J Physiol 487:583–600

    PubMed  CAS  Google Scholar 

  • Scotti AL, Chatton Y, Reuter H (1999) Roles of Na+-Ca2+ exchange and of mitochondria in the regulation of presynaptic Ca2+ and spontaneous glutamate release. Philos Trans R Soc B Biol Sci 354:357–364

    CAS  Google Scholar 

  • Sheldon C, Diarra A, Cheng YM, Church J (2004) Sodium influx pathways during and after anoxia in rat hippocampal neurons. J Neurosci 24:11057–11069

    PubMed  CAS  Google Scholar 

  • Somjen GG (2002) Ion regulation in the brain: implications for pathophysiology. Neuroscientist 8:254–267

    PubMed  CAS  Google Scholar 

  • Steffensen I, Waxman SG, Mills L, Stys PK (1997) Immunolocalization of the Na+-Ca2+ exchanger in mammalian myelinated axons. Brain Res 776:1–9

    PubMed  CAS  Google Scholar 

  • Stys PK (1998) Anoxic and ischemic injury of myelinated axons in CNS white matter: from mechanistic concepts to therapeutics. J Cereb Blood Flow Metab 18:2–25

    PubMed  CAS  Google Scholar 

  • Stys PK (2004) White matter injury mechanisms. Curr Mol Med 4:113–130

    PubMed  CAS  Google Scholar 

  • Stys PK (2005) General mechanisms of axonal damage and its prevention. J Neurol Sci 233:3–13

    PubMed  CAS  Google Scholar 

  • Stys PK, Hubatsch DA, Leppanen LL (1998) Effects of K+ channel blockers on the anoxic response of CNS myelinated axons. Neuroreport 9:447–454

    PubMed  CAS  Google Scholar 

  • Stys PK, Lopachin RM (1996) Elemental composition and water content of rat optic nerve myelinated axons during in vitro post-anoxia reoxygenation. Neuroscience 73:1081–1090

    PubMed  CAS  Google Scholar 

  • Stys PK, Ransom BR, Waxman SG, Davis PK (1990) Role of extracellular calcium in anoxic injury of mammalian central white matter. PNAS 87:4212–4216

    PubMed  CAS  Google Scholar 

  • Stys PK, Waxman SG, Ransom BR (1992) Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na+-Ca2+ exchanger. J Neurosci 12:430–439

    PubMed  CAS  Google Scholar 

  • Sun BB, Chiu SY (1999) N-type calcium channels and their regulation by GABAB receptors in axons of neonatal rat optic nerve. J Neurosci 19:5185–5194

    PubMed  CAS  Google Scholar 

  • Szapiro G, Barbour B (2007) Multiple climbing fibers signal to molecular layer interneurones exclusively via glutamate spillover. Nat Neurosci 10:735–742

    PubMed  CAS  Google Scholar 

  • Tretter L, Adam-Vizi V (2002) Glutamate release by an Na+ load and oxidative stress in nerve terminals: relevance to ischemia/reperfusion. J Neurochem 83:855–862

    PubMed  CAS  Google Scholar 

  • Verbny Y, Zhang CL, Chiu SY (2002) Coupling of calcium homeostasis to axonal sodium in axons of mouse optic nerve. J Neurophysiol 88:802–816

    PubMed  CAS  Google Scholar 

  • Wächtler J, Mayer C, Grafe P (1998) Activity-dependent intracellular Ca2+ transients in unmyelinated nerve fibres of the isolated adult rat vagus nerve. Pflügers Arch 435:678–686

    PubMed  Google Scholar 

  • Wadiche JI, Jahr CE (2005) Patterned expression of Purkinje cell glutamate transporters controls synaptic plasticity. Nat Neurosci 8:1329–1334

    PubMed  CAS  Google Scholar 

  • Waxman SG (2006) Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nat Rev Neurosci 7:932–941

    PubMed  CAS  Google Scholar 

  • Waxman SG, Black JA, Ransom BR, Stys PK (1993) Protection of the axonal cytoskeleton in anoxic optic nerve by decreased extracellular calcium. Brain Res 614:137–145

    PubMed  CAS  Google Scholar 

  • Waxman SG, Ritchie MJ (1993) Molecular dissection of the myelinated axon. Ann Neurol 33:121–136

    PubMed  CAS  Google Scholar 

  • Yu XM (2006) The role of intracellular sodium in the regulation of NMDA-receptor-mediated channel activity and toxicity. Mol Neurobiol 33:63–80

    PubMed  CAS  Google Scholar 

  • Yu XM, Salter MW (1998) Gain control of NMDA-receptor currents by intracellular sodium. Nature 396:469–474

    PubMed  CAS  Google Scholar 

  • Yu XM, Salter MW (1999) Src, a molecular switch governing gain control of synaptic transmission mediated by N-methyl-D-aspartate receptors. PNAS 96:7697–7704

    PubMed  CAS  Google Scholar 

  • Yuan Q, Knöpfel T (2006) Olfactory nerve stimulation-evoked mGluR1 slow potentials, oscillations, and calcium signaling in mouse olfactory mulb mitral cells. J Neurophysiol 95:3097–3104

    PubMed  CAS  Google Scholar 

  • Zhang CL, Wilson JA, Williams J, Chiu SY (2006) Action potentials induce uniform calcium influx in mammalian myelinated optic nerves. J Neurophysiol 96:695–709

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Our thanks to Claudia Roderigo, whose expertise was essential in the preparation of figures, and Kate Butkus for valuable comments on previous versions of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Kelly, T., Rose, C.R. (2010). Sodium Signals and Their Significance for Axonal Function. In: Feldmeyer, D., Lübke, J. (eds) New Aspects of Axonal Structure and Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1676-1_3

Download citation

Publish with us

Policies and ethics