Skip to main content

Neuroanatomy of Pain and Pain Pathways

  • Chapter
  • First Online:
Handbook of Pain and Palliative Care

Abstract

It may not be quite clear when the study of pain pathways began, but it is almost certain that it gained focus with the reflex theory advanced by Descartes (1664) and was rejuvenated time and again by a number of subsequent theories, such as the specificity theory (Schiff 1858), the sensory interaction theory (Noordenbos 1959) and the gate control theory (Melzack and Wall 1965). More recently, pattern and neuromatrix theories have discounted the specific function assigned to anatomic components of the nervous system (e.g., Berkley and Hubscher 1995a; Melzack 1999; Nafe 1934), particularly when it comes to pain processing; but they have been faced with challenges of their own, not the least of which is translating their theoretical framework into clinical applications. One thing we know for sure is that the perception of pain arises when neural signals originating from the terminals of nociceptors are propagated to second-order neurons in the spinal cord or brainstem, whereupon they are transmitted to specific higher-order brain areas (Price 2000). This chapter highlights recent advances in our knowledge of the pain system including our understanding of nociceptors, of the processing of nociceptive information in the spinal cord, brainstem, thalamus, and cerebral cortex and of descending pathways that modulate nociceptive activity. Some of this information might potentially lead to improvements in patient care.

Revised and updated from “The neuroanatomy of pain pathways.” In R. J. Moore PhD (Ed.), Biobehavioral approaches to pain. New York: Springer, 2009.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aidar, O., Geohegan, W. A., & Ungewitter, L. H. (1952). Splanchnic afferent pathways in the central nervous system. Journal of Neurophysiology, 15, 131–138.

    PubMed  CAS  Google Scholar 

  • Albe-Fessard, D., Berkley, K. J., Kruger, L., Ralston, H. J., & Willis, W. D. (1985). Diencephalic mechanisms of pain sensation. Brain Research Reviews, 9, 217–296.

    Google Scholar 

  • Albe-Fessard, D., Levante, A., & Lamour, Y. (1974a). Origin of spinothalamic and spinoreticular pathways in cats and monkeys. Advances in Neurology, 4, 157–166.

    Google Scholar 

  • Albe-Fessard, D., Levante, A., & Lamour, Y. (1974b). Origin of spino-thalamic tract in monkeys. Brain Research, 65, 503–509.

    PubMed  CAS  Google Scholar 

  • Al-Chaer, E. D., Feng, Y., & Willis, W. D. (1998a). A role for the dorsal column in nociceptive visceral input into the thalamus of primates. Journal of Neurophysiology, 79, 3143–3150.

    PubMed  CAS  Google Scholar 

  • Al-Chaer, E. D., Feng, Y., & Willis, W. D. (1998b). Visceral pain: A disturbance in the sensorimotor continuum? Pain Forum, 7(3), 117–125.

    Google Scholar 

  • Al-Chaer, E. D., Feng, Y., & Willis, W. D. (1999). A comparative study of viscerosomatic input onto postsynaptic dorsal column and spinothalamic tract neurons in the primate. Journal of Neurophysiology, 82(4), 1876–1882.

    PubMed  CAS  Google Scholar 

  • Al-Chaer, E. D., Kawasaki, M., & Pasricha, P. J. (2000). A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology, 119(5), 1276–1285.

    PubMed  CAS  Google Scholar 

  • Al-Chaer, E. D., Lawand, N. B., Westlund, K. N., & Willis, W. D. (1996a). Visceral nociceptive input into the ventral posterolateral nucleus of the thalamus: A new function for the dorsal column pathway. Journal of Neurophysiology, 76, 2661–2674.

    PubMed  CAS  Google Scholar 

  • Al-Chaer, E. D., Lawand, N. B., Westlund, K. N., & Willis, W. D. (1996b). Pelvic visceral input into the nucleus gracilis is largely mediated by the postsynaptic dorsal column pathway. Journal of Neurophysiology, 76, 2675–2690.

    PubMed  CAS  Google Scholar 

  • Al-Chaer, E. D., & Traub, R. J. (2002). Biological basis of visceral pain: Recent developments. Pain, 96(3), 221–225.

    PubMed  Google Scholar 

  • Al-Chaer, E. D., & Willis, W. D. (2007). Neuroanatomy of visceral pain: Pathways and processes. In P. J. Pasricha, W. D. Willis, & G. F. Gebhart (Eds.), Chronic abdominal and visceral pain: Theory and practice. New York: Informa Health Care Inc.

    Google Scholar 

  • Amassian, V. E. (1951). Fiber groups and spinal pathways of cortically represented visceral afferents. Journal of Neurophysiology, 14, 445–460.

    PubMed  CAS  Google Scholar 

  • Ammons, W. S. (1989a). Primate spinothalamic cell responses to ureteral occlusion. Brain Research, 496, 124–130.

    PubMed  CAS  Google Scholar 

  • Ammons, W. S. (1989b). Electrophysiological characteristics of primate spinothalamic neurons with renal and somatic inputs. Journal of Neurophysiology, 60, 1121–1130.

    Google Scholar 

  • Ammons, W. S., Girardot, M. N., & Foreman, R. D. (1985). T2-T5 spinothalamic neurons projecting to medial thalamus with viscerosomatic input. Journal of Neurophysiology, 54, 73–89.

    PubMed  CAS  Google Scholar 

  • Angaut-Petit, D. (1975a). The dorsal column system: I. Existence of long ascending postsynaptic fibres in the cat’s fasciculus gracilis. Experimental Brain Research, 22, 457–470.

    CAS  Google Scholar 

  • Angaut-Petit, D. (1975b). The dorsal column system: II. Functional properties and bulbar relay of the postsynaptic fibres of the cat’s fasciculus gracilis. Experimental Brain Research, 22, 471–493.

    CAS  Google Scholar 

  • Apkarian, A. V., Bushnell, M. C., Treede, R. D., et al. (2005). Human brain mechanisms of pain perception and regulation in health and disease. European Journal of Pain, 9(4), 463–484.

    PubMed  Google Scholar 

  • Apkarian, A. V., & Hodge, C. J. J. (1989a). The primate spinothalamic pathways: I. A quantitative study of the cells of origin of the spinothalamic pathway. The Journal of Comparative Neurology, 288, 447–473.

    PubMed  CAS  Google Scholar 

  • Apkarian, A. V., & Hodge, C. J. J. (1989b). The primate spinothalamic pathways: II. The cells of origin of the dorsolateral and ventral spinothalamic pathways. The Journal of Comparative Neurology, 288, 474–492.

    PubMed  CAS  Google Scholar 

  • Apkarian, A. V., & Hodge, C. J. J. (1989c). Primate spinothalamic pathways: III. Thalamic terminations of the dorsolateral and ventral spinothalamic pathways. The Journal of Comparative Neurology, 288, 493–511.

    PubMed  CAS  Google Scholar 

  • Apkarian, A. V., & Shi, T. (1994). Squirrel monkey lateral thalamus. I. Somatic nociresponsive neurons and their relation to spinothalamic terminals. The Journal of Neuroscience, 14, 6779–6795.

    PubMed  CAS  Google Scholar 

  • Applebaum, A. E., Beall, J. E., Foreman, R. D., & Willis, W. D. (1975). Organization and receptive fields of primate spinothalamic tract neurons. Journal of Neurophysiology, 38, 572–586.

    PubMed  CAS  Google Scholar 

  • Armour, D. (1927). On the surgery of the spinal cord and its membranes. The Lancet, 2, 691–697.

    Google Scholar 

  • Aziz, Q., Andersson, J. L., Valind, S., Sundin, A., Hamdy, S., Jones, A. K., et al. (1997). Identification of human brain loci processing esophageal sensation using positron emission tomography. Gastroenterology, 113, 50–59.

    PubMed  CAS  Google Scholar 

  • Baliki, M. N., Chialvo, D. R., Geha, P. Y., Levy, R. M., Harden, R. M., Parrish, T. B., & Apkarian, A. V. (2006). Chronic pain and the emotional brain: Specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. The Journal of Neuroscience, 26(47), 12165–12173.

    PubMed  CAS  Google Scholar 

  • Bennett, G. J., Nishikawa, N., Lu, G. W., Hoffert, M. J., & Dubner, R. (1984). The morphology of dorsal column postsynaptic (DCPS) spino-medullary neurons in the cat. The Journal of Comparative Neurology, 224, 568–578.

    PubMed  CAS  Google Scholar 

  • Bennett, G. J., Seltzer, Z., Lu, G. W., Nishikawa, N., & Dubner, R. (1983). The cells of origin of the dorsal column postsynaptic projection in the lumbosacral enlargements of cats and monkeys. Somatosensory Research, 1, 131–149.

    PubMed  CAS  Google Scholar 

  • Berkley, K. J. (1980). Spatial relationships between the terminations of somatic sensory and motor pathways in the rostral brainstem of cats and monkeys. I. Ascending somatic sensory inputs to lateral diencephalon. The Journal of Comparative Neurology, 193, 283–317.

    PubMed  CAS  Google Scholar 

  • Berkley, K. J., Guilbaud, G., Benoist, J., & Gautron, M. (1993). Responses of neurons in and near the thalamic ­ventrobasal complex of the rat to stimulation of uterus, cervix, vagina, colon, and skin. Journal of Neurophysiology, 69, 557–568.

    PubMed  CAS  Google Scholar 

  • Berkley, K. J., & Hubscher, C. H. (1995a). Are there separate central nervous system pathways for touch and pain? Nature Medicine, 1(8), 766–773.

    PubMed  CAS  Google Scholar 

  • Berkley, K. J., & Hubscher, C. H. (1995b). Visceral and somatic sensory tracks through the neuraxis and their relation to pain: Lessons from the rat female reproductive system. In G. F. Gebhart (Ed.), Visceral pain. Seattle: IASP Press.

    Google Scholar 

  • Besson, J. M., & Chaouch, A. (1987). Peripheral and spinal mechanisms of nociception. Physiological Reviews, 67, 67–186.

    PubMed  CAS  Google Scholar 

  • Bielefeldt, K., Lamb, K., & Gebhart, G. F. (2006). Convergence of sensory pathways in the development of somatic and visceral hypersensitivity. American Journal of Physiology. Gastrointestinal and Liver Physiology, 291(4), G658–G665.

    PubMed  CAS  Google Scholar 

  • Bingham, B., Ajit, S. K., Blake, D. R., & Samad, T. A. (2009). The molecular basis of pain and its clinical implications in rheumatology. Nature Clinical Practice Rheumatology, 5(1), 28–37.

    PubMed  CAS  Google Scholar 

  • Birrell, G. J., McQueen, D. S., Iggo, A., & Grubb, B. D. (1993). Prostanoid-induced potentiation of the excitatory and sensitizing effects of bradykinin on articular mechanonociceptors in the rat ankle joint. Neurosciences, 54, 537–544.

    CAS  Google Scholar 

  • Blair, R. W., Ammons, W. S., & Foreman, R. D. (1984). Responses of thoracic spinothalamic and spinoreticular cells to coronary artery occlusion. Journal of Neurophysiology, 51, 636–648.

    PubMed  CAS  Google Scholar 

  • Blair, R. W., Wenster, R. N., & Foreman, R. D. (1982). Responses of thoracic spinothalamic neurons to intracardiac injection of bradykinin in the monkey. Circulation Research, 51, 83–94.

    PubMed  CAS  Google Scholar 

  • Boivie, J. (1979). An anatomical reinvestigation of the termination of the spinothalamic tract in the monkey. The Journal of Comparative Neurology, 186, 343–370.

    PubMed  CAS  Google Scholar 

  • Boivie, J., Leijon, G., & Johansson, I. (1989). Central post-stroke pain – A study of the mechanisms through analyses of the sensory abnormalities. Pain, 37, 173–185.

    PubMed  CAS  Google Scholar 

  • Bonica, J. J. (2001). Bonica’s management of pain (3rd ed). J. D. Loeser (Ed.). Philadelphia: Lippincott Williams and Wilkins.

    Google Scholar 

  • Bossut, D. F., & Perl, E. R. (1995). Effects of nerve injury on sympathetic excitation of A[delta] mechanical nociceptors. Journal of Neurophysiology, 73, 1721–1723.

    PubMed  CAS  Google Scholar 

  • Brown, A. G., & Franz, D. N. (1969). Responses of spinocervical tract neurons to natural stimulation of identified cutaneous receptors. Experimental Brain Research, 7, 231–249.

    CAS  Google Scholar 

  • Brown, A. G., Fyffe, R. E. W., Noble, R., Rose, P. K., & Snow, P. J. (1980). The density, distribution and topographical organization of spinocervical tract neurons in the cat. The Journal of Physiology, 300, 409–428.

    PubMed  CAS  Google Scholar 

  • Brown-Sequard, E. (1868). Lectures on the physiology and pathology of the central nervous system and on the treatment of organic nervous affections. The Lancet, 2, 593–823.

    Google Scholar 

  • Brüggemann, J., Shi, T., & Apkarian, A. V. (1994). Squirrel monkey lateral thalamus. II. Viscerosomatic convergent representation of urinary bladder, colon, and esophagus. The Journal of Neuroscience, 14, 6796–6814.

    PubMed  Google Scholar 

  • Bryan, R. N., Coulter, J. D., & Willis, W. D. (1974). Cells of origin of the spinocervical tract in the monkey. Experimental Neurology, 42, 574–586.

    PubMed  CAS  Google Scholar 

  • Burton, H., & Craig, A. D. (1983). Spinothalamic projections in cat, raccoon and monkey: A study based on anterograde transport of horseradish peroxidase. In G. Macchi, A. Rustioni, & R. Spreafico (Eds.), Somatosensory integration in the thalamus. New York: Elsevier.

    Google Scholar 

  • Burton, H., & Jones, E. G. (1976). The posterior thalamic region and its cortical projection in New World and Old World monkeys. The Journal of Comparative Neurology, 168, 249–302.

    PubMed  CAS  Google Scholar 

  • Bushnell, M. C., & Duncan, G. H. (1987). Mechanical response properties of ventroposterior medial thalamic neurons in the alert monkey. Experimental Brain Research, 67, 603–614.

    CAS  Google Scholar 

  • Bushnell, M. C., Duncan, G. H., Hofbauer, R. K., Ha, B., Chen, J. I., & Carrier, B. (1999). Pain perception: Is there a role for primary somatosensory cortex? Proceedings of the National Academy of Sciences of the United States of America, 96(14), 7705–7709.

    PubMed  CAS  Google Scholar 

  • Bushnell, M. C., Duncan, G. H., & Tremblay, N. (1993). Thalamic VPM nucleus in the behaving monkey. I. Multimodal and discriminative properties of thermosensitive neurons. Journal of Neurophysiology, 69, 739–752.

    PubMed  CAS  Google Scholar 

  • Campbell, J. N., Meyer, R. A., & Raja, S. N. (1992). Is nociceptor activation by alpha-1 adrenoreceptors the culprit in sympathetically maintained pain? American Society for Pain Journal, 1, 3–11.

    Google Scholar 

  • Carstens, E., & Trevino, D. L. (1978). Laminar origins of spinothalamic projections in the cat as determined by the retrograde transport of horseradish peroxidase. The Journal of Comparative Neurology, 182, 151–166.

    Google Scholar 

  • Casey, K. L., & Morrow, T. J. (1983). Ventral posterior thalamic neurons differentially responsive to noxious stimulation of the awake monkey. Science, 221, 675–677.

    PubMed  CAS  Google Scholar 

  • Casey, K. L., & Morrow, T. J. (1987). Nociceptive neurons in the ventral posterior thalamus of the awake squirrel monkey: Observations on identification, modulation, and drug effects. In J. M. Besson, G. Guilbaud, & M. Peschanski (Eds.), Thalamus and pain. Amsterdam: Excerpta Medica.

    Google Scholar 

  • Cervero, F., Iggo, A., & Molony, V. (1977). Responses of spinocervical tract neurons to noxious stimulation of the skin. The Journal of Physiology, 267, 537–558.

    PubMed  CAS  Google Scholar 

  • Chandler, M. J., Hobbs, S. F., Fu, Q.-G., Kenshalo, D. R. Jr., Blair R. W., & Foreman, R. D. (1992). Responses of neurons in ventroposterolateral nucleus of primate thalamus to urinary bladder distension. Brain Research, 571, 26–34.

    PubMed  CAS  Google Scholar 

  • Chaturvedi, S. K. (1987). Prevalence of chronic pain in psychiatric patients. Pain, 29, 231–237.

    PubMed  CAS  Google Scholar 

  • Christianson, J. A., Bielefeldt, K., Malin, S. A., & Davis, B. M. (2010). Neonatal colon insult alters growth factor expression and TRPA1 responses in adult mice. Pain, 151(2), 540–549.

    PubMed  CAS  Google Scholar 

  • Chung, J. M., Kenshalo, D. R., Gerhart, K. D., & Willis, W. D. (1979). Excitation of primate spinothalamic neurons by cutaneous C-fiber volleys. Journal of Neurophysiology, 42, 1354–1369.

    PubMed  CAS  Google Scholar 

  • Chung, J. M., Surmeier, D. J., Lee, K. H., Sorkin, L. S., Honda, C. N., Tsong, Y., et al. (1986). Classification of primate spinothalamic and somatosensory thalamic neurons based on cluster analysis. Journal of Neurophysiology, 56, 308–327.

    PubMed  CAS  Google Scholar 

  • Cliffer, K. D., & Giesler, G. J., Jr. (1989). Postsynaptic dorsal column pathway of the rat. III. Distribution of ascending afferent fibers. The Journal of Neuroscience, 9, 3146–3168.

    PubMed  CAS  Google Scholar 

  • Cliffer, K. D., Hasegawa, T., & Willis, W. D. (1992). Responses of neurons in the gracile nucleus of cats to innocuous and noxious stimuli: Basic characterization and antidromic activation from the thalamus. Journal of Neurophysiology, 68, 818–832.

    PubMed  CAS  Google Scholar 

  • Conti, F., De Biasi, S., Giuffrida, R., & Rustioni, A. (1990). Substance P-containing projections in the dorsal columns of rats and cats. Neurosciences, 34, 607–621.

    CAS  Google Scholar 

  • Cortright, D. N., & Szallasi, A. (2004). Biochemical pharmacology of the vanilloid receptor TRPV1. An update. European Journal of Biochemistry, 271(10), 1814–1819.

    PubMed  CAS  Google Scholar 

  • Costigan, M., & Woolf, C. J. (2000). Pain: Molecular mechanisms. The Journal of Pain, 1(3 Suppl), 35–44.

    PubMed  CAS  Google Scholar 

  • Craig, A. D. (1978). Spinal and medullary input to the lateral cervical nucleus. The Journal of Comparative Neurology, 181, 729–744.

    PubMed  Google Scholar 

  • Craig, A. D., Bushnell, M. C., Zhang, E. T., & Blomqvist, A. (1994). A thalamic nucleus specific for pain and temperature sensation. Nature, 372, 770–773.

    PubMed  CAS  Google Scholar 

  • Craig, A. D., & Dostrovsky, J. (2001). Differential projections of thermoreceptive and nociceptive lamina I trigeminothalamic and spinothalamic neurons in the cat. Journal of Neurophysiology, 86, 856–870.

    PubMed  CAS  Google Scholar 

  • Craig, A. D., Linington, A. J., & Kniffki, K. D. (1989). Cells of origin of spinothalamic projections to medial and/or lateral thalamus in the cat. The Journal of Comparative Neurology, 289, 568–585.

    PubMed  Google Scholar 

  • Craig, A. D., & Zhang, E. T. (2006). Retrograde analyses of spinothalamic projections in the macaque monkey: Input to posterolateral thalamus. The Journal of Comparative Neurology, 499(6), 953–964.

    PubMed  Google Scholar 

  • Cummins, T. R., Sheets, P. L., & Waxman, S. G. (2007). The roles of sodium channels in nociception: Implications for mechanisms of pain. Pain, 131(3), 243–257.

    PubMed  CAS  Google Scholar 

  • Dahlström, A., & Fuxe, K. (1964). Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiologica Scandinavica, 62(Suppl 232), 1–55.

    Google Scholar 

  • Dahlström, A., & Fuxe, K. (1965). Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neurons systems. Acta Physiologica Scandinavica, 64(Suppl 247), 1–36.

    Google Scholar 

  • Davidoff, R. A. (1989). The dorsal columns. Neurology, 39, 1377–1385.

    PubMed  CAS  Google Scholar 

  • Davis, K. D., & Dostrovsky, J. O. (1988). Properties of feline thalamic neurons activated by stimulation of the middle meningeal artery and sagittal sinus. Brain Research, 454, 89–100.

    PubMed  CAS  Google Scholar 

  • Davis, K. D., Meyer, R. A., & Campbell, J. N. (1993). Chemosensitivity and sensitization of nociceptive afferents that innervate the hairy skin of monkey. Journal of Neurophysiology, 69, 1071–1081.

    PubMed  CAS  Google Scholar 

  • Davis, K. D., Tasker, R. R., Kiss, Z. H. T., Hutchison, W. D., & Dostrovsky, J. O. (1995). Visceral pain evoked by thalamic microstimulation in humans. NeuroReport, 6, 369–374.

    PubMed  CAS  Google Scholar 

  • Dell, P., & Olson, R. (1951). Projections thalamiques, corticales et cerebelleuses des afferences viscerales vagales. Comptes Rendus Seances Society of Biology Forum, 145, 1084–1088.

    CAS  Google Scholar 

  • Derbyshire, S. W. (2003). A systematic review of neuroimaging data during visceral stimulation. The American Journal of Gastroenterology, 98, 12–20.

    PubMed  Google Scholar 

  • Descartes, R. (1664). L’Homme. e. Paris: Angot.

    Google Scholar 

  • Di Marzo, V., Blumberg, P. M., & Szallasi, A. (2002). Endovanilloid signaling in pain. Current Opinion in Neurobiology, 12(4), 372–379.

    PubMed  Google Scholar 

  • Dougherty, P. M., Sluka, K. A., Sorkin, L. S., Westlund, K. N., & Willis, W. D. (1992). Neural changes in acute arthritis in monkeys. I. Parallel enhancement of responses of spinothalamic tract neurons to mechanical stimulation and excitatory amino acids. Brain Research Reviews, 17, 1–13.

    PubMed  CAS  Google Scholar 

  • Downie, J. W., Ferrington, D. G., Sorkin, L. S., & Willis, W. D. (1988). The primate spinocervicothalamic pathway: Responses of cells of the lateral cervical nucleus and spinocervical tract to innocuous and noxious stimuli. Journal of Neurophysiology, 59, 861–885.

    PubMed  CAS  Google Scholar 

  • Dray, A., Bettaney, J., Forster, P., & Perkins, N. M. (1988). Bradykinin-induced stimulation of afferent fibres is mediated through protein kinase C. Neuroscience Letters, 91, 301–307.

    PubMed  CAS  Google Scholar 

  • Dray, A., Urban, L., & Dickenson, A. (1994). Pharmacology of chronic pain. Trends in Pharmacological Sciences, 15(6), 190–197.

    PubMed  CAS  Google Scholar 

  • Duggan, A. W., Hall, J. G., & Headley, P. M. (1977). Enkephalins and dorsal horn neurons of the cat: Effects on responses to noxious and innocuous skin stimuli. British Journal of Pharmacology, 61, 399–408.

    PubMed  CAS  Google Scholar 

  • Duggan, A. W., & North, R. A. (1984). Electrophysiology of opioids. Pharmacological Reviews, 35, 219–281.

    Google Scholar 

  • Duncan, G. H., Bushnell, M. C., Oliveras, J. L., Bastrash, N., & Tremblay, N. (1993). Thalamic VPM nucleus in the behaving monkey. III. Effects of reversible inactivation by lidocaine on thermal and mechanical discrimination. Journal of Neurophysiology, 70, 2086–2096.

    PubMed  CAS  Google Scholar 

  • Emmers, R. (1966). Separate relays of tactile, pressure, thermal, and gustatory modalities in the cat thalamus. Proceedings of the Society for Experimental Biology and Medicine, 121, 527–531.

    PubMed  CAS  Google Scholar 

  • Feng, Y., Cui, M., Al-Chaer, E. D., & Willis, W. D. (1998). Epigastric antinociception by cervical dorsal column lesions in rats. Anesthesiology, 89(2), 411–420.

    PubMed  CAS  Google Scholar 

  • Ferrington, D. G., Downie, J. W., & Willis, W. D. (1988). Primate nucleus gracilis neurons: Responses to innocuous and noxious stimuli. Journal of Neurophysiology, 59, 886–907.

    PubMed  CAS  Google Scholar 

  • Ferrington, D. G., Sorkin, L. S., & Willis, W. D. (1987). Responses of spinothalamic tract cells in the superficial dorsal horn of the primate lumbar spinal cord. The Journal of Physiology, 388, 681–703.

    PubMed  CAS  Google Scholar 

  • Fillingim, R. B. (Ed.). (2000). Sex, gender, and pain. Progress in pain research and management (Vol. 17). Seattle: IASP Press.

    Google Scholar 

  • Foerster, O., & Gagel, O. (1932). Die Vorderseitenstrangdurchschneidung beim Menschen. Eine klinisch-patho-­physiologisch-anatomische Studie. Zeitschrift für die Gesamte Neurology und Psychiatry, 138, 1–92.

    Google Scholar 

  • Foreman, R. D., Schmidt, R. F., & Willis, W. D. (1979). Effects of mechanical and chemical stimulation of fine muscle afferents upon primate spinothalamic tract cells. The Journal of Physiology, 286, 215–231.

    PubMed  CAS  Google Scholar 

  • Friedman, D. R., Murray, E. A., O’Neill, J. B., & Mishkin, M. (1986). Cortical connections of the somatosensory fields of the lateral sulcus of macaques: Evidence for a corticolimbic pathway for touch. The Journal of Comparative Neurology, 252, 323–347.

    PubMed  CAS  Google Scholar 

  • Gaze, R. M., & Gordon, G. (1954). The representation of cutaneous sense in the thalamus of the cat and monkey. Journal of Experiment Physiology, 39, 279–304.

    CAS  Google Scholar 

  • Giesler, G. J., Jr., & Cliffer, K. D. (1985). Postsynaptic dorsal column pathway of the rat. II. Evidence against an important role in nociception. Brain Research, 326(2), 347–356.

    PubMed  Google Scholar 

  • Giesler, G. J., Jr., Menétrey, D., & Basbaum, A. I. (1979). Differential origins of spinothalamic tract projections to medial and lateral thalamus in the rat. The Journal of Comparative Neurology, 184, 107–126.

    PubMed  Google Scholar 

  • Giesler, G. J., Jr., Menétrey, D., Guilbaud, G., & Besson, J. M. (1976). Lumbar cord neurons at the origin of the spinothalamic tract in the rat. Brain Research, 118, 320–324.

    PubMed  CAS  Google Scholar 

  • Giesler, G. J., Nahin, R. L., & Madsen, A. M. (1984). Postsynaptic dorsal column pathway of the rat. I. Anatomical studies. Journal of Neurophysiology, 51, 260–275.

    PubMed  Google Scholar 

  • Giesler, G. J., Yezierski, R. P., Gerhart, K. D., & Willis, W. D. (1981). Spinothalamic tract neurons that project to medial and/or lateral thalamic nuclei: Evidence for a physiologically novel population of spinal cord neurons. Journal of Neurophysiology, 46, 1285–1308.

    PubMed  Google Scholar 

  • Gildenberg, P. L., & Hirshberg, R. M. (1984). Limited myelotomy for the treatment of intractable cancer pain. Journal of Neurology, Neurosurgery, and Psychiatry, 47, 94–96.

    PubMed  CAS  Google Scholar 

  • Gingold, S. I., Greenspan, J. D., & Apkarian, A. V. (1991). Anatomic evidence of nociceptive inputs to primary somatosensory cortex: Relationship between spinothalamic terminals and thalamocortical cells in squirrel monkeys. The Journal of Comparative Neurology, 308, 467–490.

    PubMed  CAS  Google Scholar 

  • Gold, M. S., & Gebhart, G. F. (2010). Nociceptor sensitization in pain pathogenesis. Nature Medicine, 16(11), 1248–1257.

    PubMed  CAS  Google Scholar 

  • Gowers, W. R. (1878). A case of unilateral gunshot injury to the spinal cord. Transactions of the Clinical Society of London, 11, 24–32.

    Google Scholar 

  • Grundy, D., Al-Chaer, E. D., Aziz, Q., Collins, S. M., Ke, M., Taché, Y., et al. (2006). Fundamentals of neurogastroenterology: Basic science. Gastroenterology, 130(5), 1391–1411.

    PubMed  CAS  Google Scholar 

  • Gybels, J. M., & Sweet, W. H. (Eds.). (1989). Neurosurgical treatment of persistent pain. Basel: Karger.

    Google Scholar 

  • Ha, H. (1971). Cervicothalamic tract in the Rhesus monkey. Experimental Neurology, 33, 205–212.

    PubMed  CAS  Google Scholar 

  • Häbler, H. J., Jänig, W., & Koltzenburg, M. (1990). Activation of unmyelinated afferent fibres by mechanical stimuli and inflammation of the urinary bladder in the cat. The Journal of Physiology, 425, 545–562.

    PubMed  Google Scholar 

  • Head, H., & Thompson, T. (1906). The grouping of afferent impulses within the spinal cord. Brain, 29, 537–741.

    Google Scholar 

  • Hirai, T., & Jones, E. G. (1989). A new parcellation of the human thalamus on the basis of histochemical staining. Brain Research Reviews, 14, 1–34.

    PubMed  CAS  Google Scholar 

  • Hirshberg, R. M., Al-Chaer, E. D., Lawand, N. B., Westlund, K. N., & Willis, W. D. (1996). Is there a pathway in the posterior funiculus that signals visceral pain? Pain, 67, 291–305.

    PubMed  CAS  Google Scholar 

  • Hitchcock, E. R. (1970). Stereotactic cervical myelotomy. Journal of Neurology, Neurosurgery, and Psychiatry, 33, 224–230.

    PubMed  CAS  Google Scholar 

  • Hitchcock, E. R. (1974). Stereotactic myelotomy. Proceedings of the Royal Society of Medicine, 67, 771–772.

    PubMed  CAS  Google Scholar 

  • Hobday, D. I., Aziz, Q., Thacker, N., Hollander, I., Jackson, A., & Thompson, D. G. (2001). A study of the cortical processing of ano-rectal sensation using functional MRI. Brain, 124, 361–368.

    PubMed  CAS  Google Scholar 

  • Hodge, C. J., Apkarian, A. V., & Stevens, R. T. (1986). Inhibition of dorsal-horn cell responses by stimulation of the Kölliker-Fuse nucleus. Journal of Neurosurgery, 65, 825–833.

    PubMed  Google Scholar 

  • Hylden, J. L., Anton, F., & Nahin, R. L. (1989). Spinal lamina I projection neurons in the rat: Collateral innervation of parabrachial area and thalamus. Neurosciences, 28, 27–37.

    CAS  Google Scholar 

  • Hyndman, O. R., & Van Epps, C. (1939). Possibility of differential section of the spinothalamic tract. Archives of Surgery, 38, 1036–1053.

    Google Scholar 

  • Jones, E. G. (1985). The thalamus. New York: Plenum.

    Google Scholar 

  • Joshi, S. K., Su, X., Porreca, F., & Gebhart, G. F. (2000). Kappa-Opioid receptor agonists modulate visceral nociception at a novel, peripheral site of action. The Journal of Neuroscience, 20, 5874–5879.

    PubMed  CAS  Google Scholar 

  • Kajander, K. C., & Bennett, G. J. (1992). Onset of a painful peripheral neuropathy in rat: A partial and differential deafferentation and spontaneous discharge in A beta and A delta primary afferent neurons. Journal of Neurophysiology, 68(3), 734–744.

    PubMed  CAS  Google Scholar 

  • Kawakita, K., Sumiya, E., Murase, K., & Okada, K. (1997). Response characteristics of nucleus submedius neurons to colo-rectal distension in the rat. Neuroscience Research, 28(1), 59–66.

    PubMed  CAS  Google Scholar 

  • Kellenberger, S., & Schild, L. (2002). Epithelial sodium channel/degenerin family of ion channels: A variety of functions for a shared structure. Physiological Reviews, 82(3), 735–767.

    PubMed  CAS  Google Scholar 

  • Kenshalo, D. R., Chudler, E. H., Anton, F., & Dubner, R. (1988). SI nociceptive neurons participate in the encoding process by which monkeys perceive the intensity of noxious thermal stimulation. Brain Research, 454, 378–382.

    PubMed  Google Scholar 

  • Kenshalo, D. R., Giesler, G. J., Leonard, R. B., & Willis, W. D. (1980). Responses of neurons in primate ventral posterior lateral nucleus to noxious stimuli. Journal of Neurophysiology, 43, 1594–1614.

    PubMed  Google Scholar 

  • Kenshalo, D. R., Leonard, R. B., Chung, J. M., & Willis, W. D. (1979). Responses of primate spinothalamic neurons to graded and to repeated noxious heat stimuli. Journal of Neurophysiology, 42, 1370–1389.

    PubMed  Google Scholar 

  • Keogh, E. (2009). Sex differences in pain. In R. J. Moore (Ed.), Biobehavioural approaches to pain. New York: Springer.

    Google Scholar 

  • Keogh, E. (2011). Sex differences in pain across the life course. In R. J. Moore (Ed.), Handbook of pain and palliative care: Biobehavioral approaches for the life course. New York: Springer.

    Google Scholar 

  • Kern, M. K., Jaradeh, S., Arndorfer, R. C., Jesmanowicz, A., Hyde, J., & Shaker, R. (2001). Gender differences in cortical representation of rectal distension in healthy humans. American Journal of Physiology. Gastrointestinal and Liver Physiology, 281, G1512–G1523.

    PubMed  CAS  Google Scholar 

  • Kerr, F. W. L. (1975). The ventral spinothalamic tract and other ascending systems of the ventral funiculus of the spinal cord. The Journal of Comparative Neurology, 159, 335–356.

    PubMed  CAS  Google Scholar 

  • Kevetter, G. A., & Willis, W. D. (1982). Spinothalamic cells in the rat lumbar cord with collaterals to the medullary reticular formation. Brain Research, 238, 181–185.

    PubMed  CAS  Google Scholar 

  • Khakh, B. S., & North, R. A. (2006). P2X receptors as cell-surface ATP sensors in health and disease. Nature, 442(7102), 527–532.

    PubMed  CAS  Google Scholar 

  • Kim, Y. S., & Kwon, S. J. (2000). High thoracic midline dorsal column myelotomy for severe visceral pain due to advanced stomach cancer. Neurosurgery, 46(1), 85–92.

    PubMed  CAS  Google Scholar 

  • Kirkup, A. J., Brunsden, A. M., & Grundy, D. (2001). Receptors and transmission in the brain-gut axis: Potential for novel therapies. I. Receptors on visceral afferents. American Journal of Physiology. Gastrointestinal and Liver Physiology, 280, G787–G794.

    PubMed  CAS  Google Scholar 

  • Klop, E. M., Mouton, L. J., Kuipers, R., & Holstege, G. (2005). Neurons in the lateral sacral cord of the cat project to periaqueductal grey, but not to thalamus. The European Journal of Neuroscience, 21, 2159–2166.

    PubMed  Google Scholar 

  • Konietzny, F., Perl, E. R., Trevino, D., Light, A. & Hensel, H. (1981). Sensory experiences in man evoked by intraneural electrical stimulation of intact cutaneous afferent fibers. Experimental Brain Research, 42, 219–222.

    CAS  Google Scholar 

  • Ladabaum, U., Minoshima, S., Hasler, W. L., Cross, D., Chey, W. D., & Owyang, C. (2001). Gastric distention correlates with activation of multiple cortical and subcortical regions. Gastroenterology, 120, 369–376.

    PubMed  CAS  Google Scholar 

  • LaMotte, R. H., Thalhammer, J. G., & Robinson, C. J. (1983). Peripheral neural correlates of magnitude of cutaneous pain and hyperalgesia: A comparison of neural events in monkey with sensory judgments in human. Journal of Neurophysiology, 50, 1–26.

    PubMed  CAS  Google Scholar 

  • LaMotte, R. H., Thalhammer, J. G., Torebjörk, H. E., & Robinson, C. J. (1982). Peripheral neural mechanisms of cutaneous hyperalgesia following mild injury by heat. The Journal of Neuroscience, 2, 765–781.

    PubMed  CAS  Google Scholar 

  • Le Gros Clark, W. E. (1936). The termination of ascending tracts in the thalamus of the macaque monkey. Journal of Anatomy, 71, 7–40.

    PubMed  Google Scholar 

  • Lenz, F. A., Gracely, R. H., Hope, E. J., Baker, F. H., Rowland, L. H., Dougherty,P. M., et al. (1994). The sensation of angina can be evoked by stimulation of the human thalamus. Pain, 59, 119–125.

    PubMed  CAS  Google Scholar 

  • Light, A. R. (1992). The initial processing of pain and its descending control: Spinal and trigeminal systems. Basel: Karger.

    Google Scholar 

  • Light, A. R., Sedivec, M., Casale, E., & Jones S. L. (1993). Physiological and morphological characteristics of spinal neurons projecting to the parabrachial region of the cat. Somatosensory & Motor Research, 10, 309–325.

    CAS  Google Scholar 

  • Lynn, B., & Carpenter, S. E. (1982). Primary afferent units from the hairy skin of the rat hind limb. Brain Research, 238(1), 29–43.

    PubMed  CAS  Google Scholar 

  • Maggi, C. A., & Meli, A. (1988). The sensory-efferent function of capsaicin-sensitive sensory neurons. General Pharmacology, 19, 1–43.

    PubMed  CAS  Google Scholar 

  • Mantyh, P. W. (1983). The spinothalamic tract in the primate: A re-examination using wheatgerm agglutinin conjugated to horseradish peroxidase. Neurosciences, 9, 847–862.

    CAS  Google Scholar 

  • Marshall, G. E., Shehab, S. A., Spike, R. C., & Todd, A. J. (1996). Neurokinin-1 receptors on lumbar spinothalamic neurons in the rat. Neurosciences, 72, 255–263.

    CAS  Google Scholar 

  • Matre, D., & Tran, T. D. (2009). Imaging modalities for pain. In R. J. Moore (Ed.), Biobehavioural approaches to pain. New York: Springer.

    Google Scholar 

  • McLeod, J. G. (1958). The representation of the splanchnic afferent pathways in the thalamus of the cat. The Journal of Physiology, 94, 439–452.

    Google Scholar 

  • McMahon, S. B. (2004). Sensitisation of gastrointestinal tract afferents. Gut, 53, ii13–ii15.

    PubMed  CAS  Google Scholar 

  • McRoberts, J. A., Coutinho, S. V., Marvizon, J. C., Grady, E. F., Tognetto, M., Sengupta, J. N., et al. (2001). Role of peripheral N-methyl-D-aspartate (NMDA) receptors in visceral nociception in rats. Gastroenterology, 120, 1737–1748.

    PubMed  CAS  Google Scholar 

  • Mehler, W. R. (1962). The anatomy of the so-called “pain tract” in man: An analysis of the course and distribution of the ascending fibers of the fasciculus anterolateralis. In J. D. French & R. W. Porter (Eds.), Basic research in paraplegia. Springfield: Charles C. Thomas.

    Google Scholar 

  • Mehler, W. R., Feferman, M. E., & Nauta, W. J. H. (1960). Ascending axon degeneration following anterolateral cordotomy. An experimental study in the monkey. Brain, 83, 718–750.

    PubMed  CAS  Google Scholar 

  • Melzack, R. (1999). From the gate to the neuromatrix. Pain, 6, S121–S126.

    PubMed  Google Scholar 

  • Melzack, R., & Wall, P. D. (1965). Pain mechanisms: A new theory. Science, 150(699), 971–979.

    PubMed  CAS  Google Scholar 

  • Merskey, H. (1989). Pain and psychological medicine. In P. D. Wall & R. Melzack (Eds.), Textbook of pain (2nd ed.). Edinburgh: Churchill-Livingstone.

    Google Scholar 

  • Mertz, H., Morgan, V., Tanner, G., Pickens, D., Price, R., Shyr, Y., et al. (2000). Regional cerebral activation in irritable bowel syndrome and control subjects with painful and nonpainful rectal distention. Gastroenterology, 18, 842–848.

    Google Scholar 

  • Meyer, R. A., & Campbell, J. N. (1981). Myelinated nociceptive afferents account for the hyperalgesia that follows a burn to the hand. Science, 213, 1527–1529.

    PubMed  CAS  Google Scholar 

  • Milne, R. J., Foreman, R. D., Giesler, G. J., & Willis, W. D. (1981). Convergence of cutaneous and pelvic visceral nociceptive inputs onto primate spinothalamic neurons. Pain, 11, 163–183.

    PubMed  CAS  Google Scholar 

  • Mizuno, N., Nakano, K., Imaizumi, M., & Okamoto, M. (1967). The lateral cervical nucleus of the Japanese monkey (Macaca fuscata). The Journal of Comparative Neurology, 129, 375–384.

    PubMed  CAS  Google Scholar 

  • Mogil, J. S., Breese, N. M., Witty, M. F., Ritchie, J., Rainville, M. L., Ase, A., et al. (2005). Transgenic expression of a dominant-negative ASIC3 subunit leads to increased sensitivity to mechanical and inflammatory stimuli. The Journal of Neuroscience, 25(43), 9893–9901.

    PubMed  CAS  Google Scholar 

  • Nafe, J. P. (1934). The pressure, pain and temperature senses. In C. A. Murchison (Ed.), Handbook of general experimental psychology. Worcester: Clark University Press.

    Google Scholar 

  • Nauta, H. J., Hewitt, E., Westlund, K. N., & Willis, W. D. (1997). Surgical interruption of a midline dorsal column visceral pain pathway. Case report and review of the literature. Journal of Neurosurgery, 86(3), 538–542.

    PubMed  CAS  Google Scholar 

  • Nauta, H. J., Soukup, V. M., Fabian, R. H., Lin, J. T., Grady, J. J., Williams, C. G., et al. (2000). Punctate midline myelotomy for the relief of visceral cancer pain. Journal of Neurosurgery, 92(2 Suppl), 125–130.

    PubMed  CAS  Google Scholar 

  • Ness, T. J. (2000). Evidence for ascending visceral nociceptive information in the dorsal midline and lateral spinal cord. Pain, 87(1), 83–88.

    PubMed  CAS  Google Scholar 

  • Nijensohn, D. E., & Kerr, F. W. L. (1975). The ascending projections of the dorsolateral funiculus of the spinal cord in the primate. The Journal of Comparative Neurology, 161, 459–470.

    PubMed  CAS  Google Scholar 

  • Noble, R., & Riddell, J. S. (1988). Cutaneous excitatory and inhibitory input to neurons of the postsynaptic dorsal column system in the cat. The Journal of Physiology, 396, 497–513.

    PubMed  CAS  Google Scholar 

  • Noordenbos, W. (1959). Pain. Amsterdam: Elsevier.

    Google Scholar 

  • Noordenbos, W., & Wall, P. D. (1976). Diverse sensory functions with an almost totally divided spinal cord. A case of spinal cord transection with preservation of part of one anterolateral quadrant. Pain, 2, 185–195.

    Google Scholar 

  • Ochoa, J., & Torebjörk, E. (1989). Sensations evoked by intraneural microstimulation of C nociceptor fibres in human skin nerves. The Journal of Physiology, 415, 583–599.

    PubMed  CAS  Google Scholar 

  • Olszewski, J. (1952). The thalamus of Macaca mulatta. New York: Karger.

    Google Scholar 

  • Patterson, J. T., Coggeshall, R. E., Lee, W. T., & Chung, K. (1990). Long ascending unmyelinated primary afferent axons in the rat dorsal column: Immunohistochemical localizations. Neuroscience Letters, 10, 6–10.

    Google Scholar 

  • Patterson, J. T., Head, P. A., McNeill, D. L., Chung, K., & Coggeshall, R. E. (1989). Ascending unmyelinated primary afferent fibers in the dorsal funiculus. The Journal of Comparative Neurology, 290, 384–390.

    PubMed  CAS  Google Scholar 

  • Patton, H. D., & Amassian, V. E. (1951). Thalamic relay of splanchnic afferent fibers. The American Journal of Physiology, 167, 815–816.

    Google Scholar 

  • Peng, Y. B., Lin, Q., & Willis, W. D. (1995). The role of 5HT3 receptors in periaqueductal gray-induced inhibition of nociceptive dorsal horn neurons in rats. The Journal of Pharmacology and Experimental Therapeutics, 276, 116–124.

    Google Scholar 

  • Peng, Y. B., Lin, Q., & Willis, W. D. (1996a). Involvement of [alpha]2-adrenoreceptors in the periaqueductal gray-induced inhibition of dorsal horn cell activity in rats. The Journal of Pharmacology and Experimental Therapeutics, 278(1), 125–135.

    PubMed  CAS  Google Scholar 

  • Peng, Y. B., Lin, Q., & Willis, W. D. (1996b). Effects of GABA and glycine receptor antagonists on the activity and PAG-induced inhibition of rat dorsal horn neurons. Brain Research, 736(1–2), 189–201.

    PubMed  CAS  Google Scholar 

  • Petit, D. (1972). Postsynaptic fibres in the dorsal columns and their relay in the nucleus gracilis. Brain Research, 48, 380–384.

    PubMed  CAS  Google Scholar 

  • Peyron, R., Garcia-Larrea, L., Gregoire, M. C., Convers, P., Richard, A., Lavenne, F., et al. (2000). Parietal and ­cingulate processes in central pain. A combined positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) study of an unusual case. Pain, 84(1), 77–87.

    PubMed  CAS  Google Scholar 

  • Pollin, B., & Albe-Fessard, D. (1979). Organization of somatic thalamus in monkeys with and without section of dorsal spinal tracts. Brain Research, 173, 431–449.

    PubMed  CAS  Google Scholar 

  • Price, D. D. (2000). Psychological and neural mechanisms of the affective dimension of pain. Science, 288(5472), 1769–1772.

    PubMed  CAS  Google Scholar 

  • Price, D. D., Hayes, R. L., Ruda, M. A., & Dubner, R. (1978). Spatial and temporal transformations of input to spinothalamic tract neurons and their relation to somatic sensation. Journal of Neurophysiology, 41, 933–947.

    PubMed  CAS  Google Scholar 

  • Price, D. D., & Mayer, D. J. (1975). Neurophysiological characterization of the anterolateral quadrant neurons subserving pain in M. mulatta. Pain, 1, 59–72.

    PubMed  CAS  Google Scholar 

  • Price, M. P., McIlwrath, S. L., Xie, J., Cheng, C., Qiao, J., Tarr, D. E., et al. (2001). The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron, 32(6), 1071–1083. Erratum in: Neuron, 35(2), 407, 2002.

    Google Scholar 

  • Proudfit, H. K. (1992). The behavioral pharmacology of the noradrenergic descending system. In J.-M. Besson & G. Guilbaud (Eds.), Towards the use of noradrenergic agonists for the treatment of pain. New York: Elsevier.

    Google Scholar 

  • Rogers, R. C., Novin, D., & Butcher, L. L. (1979). Hepatic sodium and osmoreceptors activate neurons in the ventrobasal thalamus. Brain Research, 168, 398–403.

    PubMed  CAS  Google Scholar 

  • Ross, M. H., Romrell, L. J., & Kaye, G. I. (1995). Histology: A text and atlas (3rd ed.). Baltimore: Williams & Wilkins.

    Google Scholar 

  • Rustioni, A. (1973). Non-primary afferents to the nucleus gracilis from the lumbar cord of the cat. Brain Research, 51, 81–95.

    PubMed  CAS  Google Scholar 

  • Rustioni, A. (1974). Non-primary afferents to the cuneate nucleus in the brachial dorsal funiculus of the cat. Brain Research, 75, 247–259.

    PubMed  CAS  Google Scholar 

  • Rustioni, A., Hayes, N. L., & O’Neill, S. (1979). Dorsal column nuclei and ascending spinal afferents in macaques. Brain, 102, 95–125.

    PubMed  CAS  Google Scholar 

  • Saab, C. Y., Park, Y. C., & Al-Chaer, E. D. (2004). Thalamic modulation of visceral nociceptive processing in adult rats with neonatal colon irritation. Brain Research, 1008(2), 186–192.

    PubMed  CAS  Google Scholar 

  • Saab, C. Y., Wang, J., Gu, C., Garner, K. N., Al-Chaer, E. D. (2007). Microglia: a newly discovered role in visceral hypersensitivity? Neuron Glia Biology, 2, 271–277.

    PubMed  CAS  Google Scholar 

  • Sarnoff, S. J., Arrowood, J. G., & Chapman, W. P. (1948). Differential spinal block. IV. The investigation of intestinal dyskinesia, colonic atony, and visceral afferent fibers. Surgery, Gynecology & Obstetrics, 86, 571–581.

    CAS  Google Scholar 

  • Sato, J., & Perl, E. R. (1991). Adrenergic excitation of cutaneous pain receptors induced by peripheral nerve injury. Science, 251, 1608–1610.

    PubMed  CAS  Google Scholar 

  • Schaible, H. G. (2004). Spinal mechanisms contributing to joint pain. Novartis Foundation Symposium, 260, 4–22; discussion 22–27, 100–104, 277–279, review.

    Google Scholar 

  • Schaible, H. G., & Schmidt, R. F. (1983). Activation of groups III and IV sensory units in medial articular nerve by local mechanical stimulation of knee joint. Journal of Neurophysiology, 49, 35–44.

    PubMed  CAS  Google Scholar 

  • Schaible, H. G., & Schmidt, R. F. (1985). Effects of an experimental arthritis on the sensory properties of fine articular afferent units. Journal of Neurophysiology, 54, 1109–1122.

    PubMed  CAS  Google Scholar 

  • Schaible, H. G., & Schmidt, R. F. (1988). Time course of mechanosensitivity changes in articular afferents during a developing experimental arthritis. Journal of Neurophysiology, 60, 2180–2195.

    PubMed  CAS  Google Scholar 

  • Schepelmann, K., Messlinger, K., Schaible, H. G., & Schmidt, R. F. (1992). Inflammatory mediators and nociception in the joint: Excitation and sensitization of slowly conducting afferent fibers of cat’s knee by prostaglandin I2. Neurosciences, 50, 237–247.

    CAS  Google Scholar 

  • Schiff, J. M. (1858). Lehrbuch der physiologie des menschen I: Muskel and nervenphysiologie. Lahr: Nabu Press.

    Google Scholar 

  • Schwarcz, J. R. (1976). Stereotactic extralemniscal myelotomy. Journal of Neurology, Neurosurgery, and Psychiatry, 39, 53–57.

    Google Scholar 

  • Schwarcz, J. R. (1978). Spinal cord stereotactic techniques, trigeminal nucleotomy and extralemniscal myelotomy. Applied Neurophysiology, 41, 99–112.

    Google Scholar 

  • Sherrington, C. S. (1906). The integrative action of the nervous system (2nd ed.). Newhaven: Yale University Press.

    Google Scholar 

  • Silverman, D. H., Munakata, J. A., Ennes, H., Mandelkern, M. A., Hoh, C. K., & Mayer, E. A. (1997). Regional cerebral activity in normal and pathological perception of visceral pain. Gastroenterology, 112, 64–72.

    PubMed  CAS  Google Scholar 

  • Smith, M. V., & Apkarian, A. V. (1991). Thalamically projecting cells of the lateral cervical nucleus in monkey. Brain Research, 555, 10–18.

    PubMed  CAS  Google Scholar 

  • Sorkin, L., & Carlton, S. (1997). Spinal anatomy and pharmacology of afferent processing. In T. Yaksh, C. Lynch, W. Zapol, et al. (Eds.), Anesthesia. Biologic foundations. Philadelphia: Lippincott-Raven.

    Google Scholar 

  • Spiller, W. G. (1905). The occasional clinical resemblance between caries of the vertebrae and lumbothoracic syringomyelia, and the location within the spinal cord of the fibres for the sensations of pain and temperature. University of Pennsylvania Medical Bulletin, 18, 147–154.

    Google Scholar 

  • Spiller, W. G., & Martin, E. (1912). The treatment of persistent pain of organic origin in the lower part of the body by division of the anterolateral column of the spinal cord. Journal of the American Medical Association, 58, 1489–1490.

    Google Scholar 

  • Stanley, E. (1840). A case of disease of the posterior columns of the spinal cord. Medico-Chirurgical Transactions, 23, 80–84.

    PubMed  CAS  Google Scholar 

  • Stein, C. (1994). Peripheral opioid analgesia: Mechanisms and therapeutic applications. In J. M. Besson, G. Guilbaud, & H. Ollat (Eds.), Peripheral neurons in nociception: Physio-pharmacological aspects. Paris: John Libbey Eurotext.

    Google Scholar 

  • Stepniewska, I., Sakai, S. T., Qi, H. X., & Kaas, J. H. (2003). Somatosensory input to the ventrolateral thalamic region in the macaque monkey: Potential substrate for Parkinsonian tremor. The Journal of Comparative Neurology, 455, 378–395.

    PubMed  Google Scholar 

  • Strigo, I. A., Duncan, G. H., Boivin, M., & Bushnell, M. C. (2003). Differentiation of visceral and cutaneous pain in the human brain. Journal of Neurophysiology, 89, 3294–3303.

    PubMed  Google Scholar 

  • Su, X., Sengupta, J. N., & Gebhart, G. F. (1997). Effects of kappa opioid receptor-selective agonists on responses of pelvic nerve afferents to noxious colorectal distension. Journal of Neurophysiology, 78, 1003–1012.

    PubMed  CAS  Google Scholar 

  • Surmeier, D. J., Honda, C. N., & Willis, W. D. (1986a). Responses of primate spinothalamic neurons to noxious thermal stimulation of glabrous and hairy skin. Journal of Neurophysiology, 56, 328–350.

    PubMed  CAS  Google Scholar 

  • Surmeier, D. J., Honda, C. N., & Willis, W. D. (1986b). Temporal features of the responses of primate spinothalamic neurons to noxious thermal stimulation of hairy and glabrous skin. Journal of Neurophysiology, 56, 351–368.

    PubMed  CAS  Google Scholar 

  • Todd, A. (2002). Anatomy of primary afferents and projection neurons in the rat spinal dorsal horn with particular emphasis on substance P and the neurokinin 1 receptor. Experimental Physiology, 87, 245–249.

    PubMed  CAS  Google Scholar 

  • Trevino, D. L., Coulter, J. D., & Willis, W. D. (1973). Locations of cells of origin of spinothalamic tract in lumbar enlargement of the monkey. Journal of Neurophysiology, 36, 750–761.

    PubMed  CAS  Google Scholar 

  • Trevino, D. L., Maunz, R. A., Bryan, R. N., & Willis, W. D. (1972). Location of cells of origin of the spinothalamic tract in the lumbar enlargement of cat. Experimental Neurology, 34, 64–77.

    PubMed  CAS  Google Scholar 

  • Truex, R. C., Taylor, M. J., Smythe, M. Q., & Gildenberg, P. L. (1965). The lateral cervical nucleus of cat, dog and man. The Journal of Comparative Neurology, 139, 93–104.

    Google Scholar 

  • Truitt, W. A., Shipley, M. T., Veening, J. G., & Coolen, L. M. (2003). Activation of a subset of lumbar spinothalamic neurons after copulatory behavior in male but not female rats. The Journal of Neuroscience, 23, 325–331.

    PubMed  CAS  Google Scholar 

  • Uddenburg, N. (1966). Studies on modality segregation and second-order neurons in the dorsal funiculus. Experientia, 15, 441–442.

    Google Scholar 

  • Uddenburg, N. (1968). Functional organization of long, second-order afferents in the dorsal funiculus. Experimental Brain Research, 4, 377–382.

    Google Scholar 

  • Veldhuijzen, D. S., Greenspan, J. D., Kim, J. H., Coghill, R. C., Treede, R. D., Ohara, S., et al. (2007). Imaging central pain syndromes. Current Pain and Headache Reports, 11(3), 183–189.

    PubMed  Google Scholar 

  • Vierck, C. J., Greenspan, J. D., & Ritz, L. A. (1990). Long-term changes in purposive and reflexive responses to nociceptive stimulation following anterolateral cordotomy. The Journal of Neuroscience, 10, 2077–2095.

    PubMed  Google Scholar 

  • Vierck, C. J., & Luck, M. M. (1979). Loss and recovery of reactivity to noxious stimuli in monkeys with primary spinothalamic cordotomies, followed by secondary and tertiary lesions of other cord sectors. Brain, 102, 233–248.

    PubMed  Google Scholar 

  • Walker, A. E. (1940). The spinothalamic tract in man. Archives of Neurology and Psychiatry, 43, 284–298.

    Google Scholar 

  • Wall, P., Bery, J., & Saade, N. (1988). Effects of lesions to rat spinal cord lamina I cell projection pathways on reactions to acute and chronic noxious stimuli. Pain, 35, 327–339.

    PubMed  CAS  Google Scholar 

  • Wang, C. C., Willis, W. D., & Westlund, K. N. (1999). Ascending projections from the area around the spinal cord central canal: A Phaseolus vulgaris leucoagglutinin study in rats. The Journal of Comparative Neurology, 415(3), 341–367.

    PubMed  CAS  Google Scholar 

  • Wang, J., Gu, C., & Al-Chaer, E. D. (2008). Altered behavior and digestive outcomes in adult male rats primed with minimal colon pain as neonates. Behavioral and Brain Functions, 4, 28.

    PubMed  CAS  Google Scholar 

  • White, J. C. (1943). Sensory innervation of the viscera: Studies on visceral afferent neurons in man based on neurosurgical procedures for the relief of intractable pain. Research Publications – Association for Research in Nervous and Mental Disease, 23, 373–390.

    Google Scholar 

  • White, J. C., & Sweet, W. H. (1969). Pain and the neurosurgeon. Springfield: Charles C. Thomas.

    Google Scholar 

  • Willis, W. D. (1982). Control of nociceptive transmission in the spinal cord. In D. Ottoson (Ed.), Progress in sensory physiology 3. Berlin: Springer.

    Google Scholar 

  • Willis, W. D. (1985). The pain system. Basel: Karger.

    Google Scholar 

  • Willis, W. D., Al-Chaer, E. D., Quast, M. J., & Westlund, K. N. (1999). A visceral pain pathway in the dorsal column of the spinal cord. Proceedings of the National Academy of Sciences of the United States of America, 96(14), 7675–7679.

    PubMed  CAS  Google Scholar 

  • Willis, W. D., & Coggeshall, R. E. (2004). Sensory mechanisms of the spinal cord (3rd ed.). New York: Plenum Press.

    Google Scholar 

  • Willis, W. D., Kenshalo, D. R. J., & Leonard, R. B. (1979). The cells of origin of the primate spinothalamic tract. The Journal of Comparative Neurology, 188, 543–574.

    PubMed  CAS  Google Scholar 

  • Willis, W. D., Trevino, D. L., Coulter, J. D., & Maunz, R. A. (1974). Responses of primate spinothalamic tract neurons to natural stimulation of hindlimb. Journal of Neurophysiology, 37, 358–372.

    PubMed  CAS  Google Scholar 

  • Willis, W. D., & Westlund, K. N. (1997). Neuroanatomy of the pain system and of the pathways that modulate pain. Journal of Clinical Neurophysiology, 14(1), 2–31.

    PubMed  CAS  Google Scholar 

  • Woolf, C., & Fitzgerald, M. (1983). The properties of neurons recorded in the superficial dorsal horn of the rat spinal cord. The Journal of Comparative Neurology, 221, 313–328.

    PubMed  CAS  Google Scholar 

  • Woolf, C. J., & Ma, Q. (2007). Nociceptors–noxious stimulus detectors. Neuron, 55(3), 353–364.

    PubMed  CAS  Google Scholar 

  • Woolf, C. J., & Salter, M. W. (2000). Neuronal plasticity: Increasing the gain in pain. Science, 288(5472), 1765–1769.

    PubMed  CAS  Google Scholar 

  • Xie, J., Yoon, Y. W., Yom, S. S., et al. (1995). Norepinephrine rekindles mechanical allodynia in sympathectomized neuropathic rat. Analgesia, 1, 107–113.

    CAS  Google Scholar 

  • Yokota, T., Nishikawa, Y., & Koyama, N. (1988). Distribution of trigeminal nociceptive neurons in nucleus ventralis posteromedialis of primates. In R. Dubner, G. F. Gebhart, & M. R. Bond (Eds.), Pain research and clinical management (Vol. 3). Amsterdam: Elsevier.

    Google Scholar 

  • Yoss, R. E. (1953). Studies of the spinal cord. Part 3. Pathways for deep pain within the spinal cord and brain. Neurology, 3, 163–175.

    PubMed  CAS  Google Scholar 

  • Zhuo, M., & Gebhart, G. F. (2002). Facilitation and attenuation of a visceral nociceptive reflex from the rostroventral medulla in the rat. Gastroenterology, 122, 1007–1019.

    PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Ms. Kirsten Garner for assistance with editing the manuscript. This work was supported by NIH Grants DK077733, DK081628.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elie D. Al-Chaer MS, PhD, JD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Al-Chaer, E.D. (2013). Neuroanatomy of Pain and Pain Pathways. In: Moore, R.J. (eds) Handbook of Pain and Palliative Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1651-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1651-8_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1650-1

  • Online ISBN: 978-1-4419-1651-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics