Skip to main content

Global Constraints: A Survey

  • Chapter
  • First Online:
Hybrid Optimization

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 45))

Abstract

Constraint programming (CP) is mainly based on filtering algorithms; their association with global constraints is one of the main strengths of CP because they exploit the specific structure of each constraint. This chapter is an overview ofthese two techniques. A collection of the most frequently used global constraints is given and some filtering algorithms are detailed. In addition, we try to identify how filtering algorithms can be designed. At last, we identify some problems that deserve to be addressed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Van Hoeve and Régin gave an example of a scheduling alternative: consider a set of activities and suppose that each activity can be processed either on the factory line 1 formed by the set of unary resources R1, or on the factory line 2 formed by the set of unary resources R2. Thus, at the beginning, the set of resources that will be used by an activity is not known. Also the set of activities that will be processed by a resource is not known. However, it is useful to express that the activities that will be processed on each line must be pairwise different. This can be done by defining two alldiff constraints, involving the start variables of each activity, and by stating that a start variable will be involved in exactly one alldiff constraint. Van Hoeve and Régin shown how arc consistency can be efficiently establish for the conjunction of these 2 alldiff constraints.

  2. 2.

    This complexity comes from the integer capacities. In this case, the flow is augmented by at least one for each iteration.

  3. 3.

    This algorithm can be viewed as a generalization of the constructive disjunction in the case where several constraints must be satisfied and not only one.

  4. 4.

    Note that imposing an item means that the problem is equivalent to the problem where the item is ignored and K becomes Kw i and B becomes Bp i.

  5. 5.

    A partial function δ(q,x) does not have to be defined for any combination of qQ and xΣ; and if δ(q,x) is defined and equal to q′ then it does not exist another symbol y such that δ(q,y)=q′.

  6. 6.

    This is really at the same time because the two papers were presented during the same session at the same conference: CP’04.

  7. 7.

    Once again it was exactly at the same time, because the two papers were presented at the same conference : CP’06

References

  1. Ågren M, Beldiceanu N, Carlsson M, Sbihi M, Truchet C, Zampelli S (2009) Six ways of integrating symmetries within non-overlapping constraints. In: CPAIOR’09, pp 11–25

    MATH  Google Scholar 

  2. Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows. Prentice Hall, NJ

    MATH  Google Scholar 

  3. Amilhastre J (1999) Reprsentation par un automate d’ensemble de solutions de problme de satisfaction de contraintes. PhD thesis, University of Montpellier II

    Google Scholar 

  4. Aron I, Van Hentenryck P (2002) A constraint satisfaction approach to the robust spanning tree problem with interval data. In: Proceedings of UAI, pp 18–25

    Google Scholar 

  5. Artiouchine K, Baptiste P (2005) Inter-distance constraint: an extension of the all-different constraint for scheduling equal length jobs. In: CP, pp 62–76

    MATH  Google Scholar 

  6. Artiouchine K, Baptiste P (2007) Arc-b-consistency of the inter-distance constraint. Constraints 12(1):3–19

    MathSciNet  MATH  Google Scholar 

  7. Beldiceanu N (2000) Global constraints as graph properties on a structured network of elementary constraints of the same type. In: Proceedings CP, pp 52–66

    MATH  Google Scholar 

  8. Beldiceanu N (2001) Pruning for the minimum constraint family and for the number of distinct values constraint family. In: Proceedings CP’01. Pathos, Cyprus, pp 211–224

    MATH  Google Scholar 

  9. Beldiceanu N (2005) Global constraint catalog. In: SICS technical report, pp T–2005–08

    Google Scholar 

  10. Beldiceanu N, Carlsson M (2001) Revisiting the cardinality operator and introducing the cardinality-path constraint family. In: Proceedings ICLP, vol 2237, pp 59–73

    MATH  Google Scholar 

  11. Beldiceanu N, Carlsson M (2001) Sweep as a generic pruning technique applied to the non-overlapping rectangles constraints. Proceedings CP’01, pp 377–391

    Google Scholar 

  12. Beldiceanu N, Carlsson M, Debruyne R, Petit T (2005) Reformulation of global constraints based on constraint checkers. Constraints 10(4):339–362

    MathSciNet  MATH  Google Scholar 

  13. Beldiceanu N, Carlsson M, Demassey S, Petit T (2006) Filtrage bas sur des proprits de graphes. In: Proceedings of JFPC’06

    Google Scholar 

  14. Beldiceanu N, Carlsson M, Demassey S, Petit T (2006) Graph-based filtering. In: Proceedings of CP’06, pp 59–74

    Google Scholar 

  15. Beldiceanu N, Carlsson M, Petit T (2004) Deriving filtering algorithms from constraint checkers. In: CP’04, pp 107–122

    MATH  Google Scholar 

  16. Beldiceanu N, Carlsson M, Rampon J-X, Truchet C (2005) Graph invariants as necessary conditions for global constraints. In: Proceedings of CP’05, pp 92–106

    Google Scholar 

  17. Beldiceanu N, Contejean E (1994) Introducing global constraints in chip. Math Comput Model 20(12):97–123

    MATH  Google Scholar 

  18. Beldiceanu N, Flener P, Lorca X (2005) The tree constraint. In: Proceedings of CPAIOR05, pp 64–78

    MATH  Google Scholar 

  19. Beldiceanu N, Flener P, Lorca X (2008) Combining tree partitioning, precedence, and incomparability constraints. Constraints 13(4):459–489

    MathSciNet  MATH  Google Scholar 

  20. Beldiceanu N, Guo Q, Thiel S (2001) Non-overlapping constraints between convex polytopes. In: Proceedings CP’01, Pathos, Cyprus, 2001, pp 392–407

    Google Scholar 

  21. Beldiceanu N, Katriel I, Lorca X (2006) Undirected forest constraints. In: CPAIOR’06, pp29–43

    Google Scholar 

  22. Beldiceanu N, Lorca X (2007) Necessary condition for path partitioning constraints. In: CPAIOR’07, pp 141–154

    MATH  Google Scholar 

  23. Beldiceanu N, Petit T, Rochart G (2005) Bornes de caractristiques de graphes. In: Proceedings of JFPC’05

    Google Scholar 

  24. Beldiceanu N, Petit T, Rochart G (2005) Bounds of graph characteristics. In: Proceedings of CP’05, pp 742–746

    MATH  Google Scholar 

  25. Beldiceanu N, Carlsson M, Poder E, Sadek R, Truchet C (2007) A generic geometrical constraint kernel in space and time for handling polymorphic k-dimensional objects. In: CP’07, pp 180–194

    Google Scholar 

  26. Berge C (1970) Graphe et Hypergraphes. Dunod, Paris

    MATH  Google Scholar 

  27. Bessiere C, Hebrard E, Hnich B, Kiziltan Z, Quimper C-G, Walsh T (2007) Reformulating global constraints: the slide and regular constraints. In: Proceedings of SARA’07, pp 80–92

    Google Scholar 

  28. Bessière C, Régin J-C (1996) Mac and combined heuristics: two reasons to forsake fc (and cbj?) on hard problems. In: CP96, second international conference on principles and practice of constraint programming, Cambridge, USA, pp 61–75

    Google Scholar 

  29. Bessière C, Régin J-C (1997) Arc consistency for general constraint networks: preliminary results. In: Proceedings of IJCAI’97, Nagoya, pp 398–404

    Google Scholar 

  30. Bessière C, Régin J-C (1999) Enforcing arc consistency on global constraints by solving subproblems on the fly. In: Proceedings of CP’99, Alexandria, VA, USA, pp 103–117

    Google Scholar 

  31. Bessière C, Régin J-C (2001) Refining the basic constraint propagation algorithm. In: Proceedings of IJCAI’01, Seattle, WA, USA, pp 309–315

    Google Scholar 

  32. Bleuzen-Guernalec N, Colmerauer A (1997) Narrowing a 2n-block of sortings in o(nlog(n)). In: Proceedings of CP’97, Linz, Austria, pp 2–16

    Google Scholar 

  33. Brand S, Narodytska N, Quimper C-G, Stuckey P, Walsh T (2007) Encodings of the sequence constraint. In: Proceedings of CP 2007, pp 210–224

    MATH  Google Scholar 

  34. Carlsson M, Beldiceanu N (2002) Arc-consistency for a chain of lexicographic ordering constraints. Technical Report T2002:18, SICS

    Google Scholar 

  35. Carlsson M, Beldiceanu N (2002) Revisiting the lexicographic ordering constraint. Technical Report T2002:17, SICS

    Google Scholar 

  36. Carlsson M, Beldiceanu N (2004) From constraints to finite automata to filtering algorithms. In: European Symposium on Programming (ESOP’04), pp 94–108

    Google Scholar 

  37. Caseau Y, Guillo P-Y, Levenez E (1993) A deductive and object-oriented approach to a complex scheduling problem. In: Proceedings of DOOD’93

    Google Scholar 

  38. Caseau Y, Laburthe F (1997) Solving various weighted matching problems with constraints. In: Proceedings CP97, Austria, pp 17–31

    Google Scholar 

  39. Cormen TH, Leiserson CE, Rivest RL (1990) Introduction to algorithms. MIT Press, Cambridge

    MATH  Google Scholar 

  40. Damaschke P, Müller H, Kratsch D (1990) Domination in convex and chrodal bipartite graphs. Inform Process Lett 36:231–236

    MathSciNet  MATH  Google Scholar 

  41. Dantzig G (1957) Discrete variable extremum problems. Oper Res 5:226–277

    MathSciNet  MATH  Google Scholar 

  42. Dechter R, Meiri I, J Pearl (1991) Temporal constraint network. Artif Intell 49(1–3):61–95

    MathSciNet  MATH  Google Scholar 

  43. Dixon B, Rauch M, Tarjan R (1992) Verification and sensitivity analysis of minimum spanning trees in linear time. SIAM J Comput 21(6):1184–1192

    MathSciNet  MATH  Google Scholar 

  44. Dooms G, Deville Y, Dupont P (2005) Cp(graph): introducing a graph computation domain in constraint programming. In: Proceedings of CP’05

    Google Scholar 

  45. Dooms G, Katriel I (2006) The minimum spanning tree constraint. In: CP’06, pp 152–166

    MATH  Google Scholar 

  46. Dooms G, Katriel I (2007) The not-too-heavy spanning tree constraint. In: Proceedings of CPAIOR07, pp 59–70

    Google Scholar 

  47. Earley J (1970) An efficient context-free parsing algorithm. Commu ACM 2(13):94–102

    MATH  Google Scholar 

  48. Fahle T, Sellmann M (2002) Cost based filtering for the constrained knapsack problem. Ann Oper Res 115(1–4):73–93

    MathSciNet  MATH  Google Scholar 

  49. Focacci F, Lodi A, Milano M (1999) Cost-based domain filtering. In: Proceedings CP’99, Alexandria, VA, USA, pp 189–203

    Google Scholar 

  50. Focacci F, Lodi A, Milano M (1999) Integration of cp and or methods for matching problems. In: Proceedings CP-AI-OR 99, Ferrara, Italy

    Google Scholar 

  51. Freuder E, Wallace R (1992) Partial constraint satisfaction. Artif Intell 58:21–70

    MathSciNet  Google Scholar 

  52. Frisch A, Hnich B, Kiziltan Z, Miguel I, Walsh T (2002) Global constraints for lexicographic orderings. In: CP’02, pp 93–108

    Google Scholar 

  53. Gellermann T, Sellmann M, Wright R (2005) Shorter path constraints for the resource constrained shortest path problem. In: CPAIOR’05, pp 201–216

    MATH  Google Scholar 

  54. Gent I, Jefferson C, Miguel I, Nightingale P (2007) Data structures for generalised arc consistency for extensional constraints. In: Proceedings of AAAI’07, Vancouver, Canada, pp191–197

    Google Scholar 

  55. Gervet C (1994) Conjunto: constraint logic programming with finite set domains. In: Proceedings ILPS-94

    Google Scholar 

  56. Gervet C (2006) Constraints over structured domains. In: Handbook of constraint programming. Elsevier, Amsterdam

    Google Scholar 

  57. Gervet C (2006) Programmation par Contraintes sur Domaines Ensemblistes. Habilitation à diriger des Recherches, Université de Nice-Sophia Antipolis

    Google Scholar 

  58. Gervet C, Van Hentenryck P (2006) Length-lex ordering for set csps. In: AAAI

    Google Scholar 

  59. Gomes C, Regin J-C (2003) The alldiff matrix. Technical report, Intelligent Information Institute – Cornell University

    Google Scholar 

  60. Hanak D (2003) Implementing global constraints as structured graphs of elementary constraints. Sci J Acta Cybern 16:241–258

    MATH  Google Scholar 

  61. Hellsten L, Pesant G, van Beek P (2004) A domain consistency algorithm for the stretch constraint. In: Proceedings of CP’04, pp 290–304

    MATH  Google Scholar 

  62. Henz M, Müller T, Thiel S (2003) Global constraints for round robin tournament scheduling. Eur J Oper Res 153(1):92–101

    MathSciNet  MATH  Google Scholar 

  63. ILOG (1999) ILOG Solver 4.4 User’s manual. ILOG S.A

    Google Scholar 

  64. Janssen P, Vilarem M-C (1988) Problmes de satisfaction de contraintes: Techniques de rsolution et application la synthse de peptides. Technical Report 54, CRIM

    Google Scholar 

  65. Jégou P (1991) Contribution à l’Etude des Problèmes de Satisfaction de Contraintes: Algorithmes de Propagation et de Résolution, Propagation de Contraintes dans les Réseaux dynamiques. PhD thesis, Université de Montpellier II

    Google Scholar 

  66. Kadioglu S, Sellmann M (2008) Efficient context-free grammar constraints. In: AAAI-08, pp310–316

    Google Scholar 

  67. Kadioglu S, Sellmann M (2009) Grammar constraints. Constraints 15(1):117–144

    MathSciNet  MATH  Google Scholar 

  68. Katriel I (2004) Dynamic heaviest paths in dags with arbitrary edge weights. In: CPAIOR’04, pp 190–199

    Google Scholar 

  69. Katriel I, Michel L, Van Hentenryck P (2005) Maintaining longest paths incrementally. Constraints 10(2):159–183

    MathSciNet  MATH  Google Scholar 

  70. Katriel I, Sellmann M, Upfal E, Van Hentenryck P (2007) Propagating knapsack constraints in sublinear time. In: AAAI-07, pp 231–236

    Google Scholar 

  71. Katriel I, Thiel S (2003) Fast bound consistency for the global cardinality constraint. In:Proceedings CP’03, Kinsale, Ireland, pp 437–451

    MATH  Google Scholar 

  72. Katsirelos G, Narodytska N, Walsh T (2009) Reformulating global grammar constraints. In:CPAIOR’09, pp 132–147

    Google Scholar 

  73. Katsirelos G, Walsh T (2007) A compression algorithm for large arity extensional constraints. In:Proceedings of CP’07, Providence, USA, pp 379–393

    Google Scholar 

  74. Kocjan W, Kreuger P (2004) Filtering methods for symmetric cardinality constraints. In: First international conference, CPAIOR 2004, Nice, France, pp 200–208

    MATH  Google Scholar 

  75. Kowalski R (1979) Algorithm=logic+control. Comm ACM 22(7):424–436

    MATH  Google Scholar 

  76. Labbé M, Laporte G, Martello S (2003) Upper bounds and algorithms for the maximum cardinality bin packing problem. Eur J Oper Res 149(3):490–498

    MathSciNet  MATH  Google Scholar 

  77. Larrosa J, Meseguer P, Schiex T, Verfaillie G (1998) Reversible DAC and other improvements for solving Max-CSP. In:Proceedings AAAI, pp 347–352

    Google Scholar 

  78. Larrosa J, Meseguer P (1996) Exploiting the use of DAC in Max-CSP. In:CP

    Google Scholar 

  79. Lawler E (1976) Combinatorial optimization: networks and matroids. Holt, Rinehart and Winston

    MATH  Google Scholar 

  80. Le Pape C, Perron L, Régin J-C, Shaw P (2002) Robust and parallel solving of a network design problem. In:CP’02, Ithaca, NY, USA, pp 633–648

    Google Scholar 

  81. Leconte M (1996) A bounds-based reduction scheme for constraints of difference. In:Constraint-96, second international workshop on constraint-based reasoning, Key West, FL, USA

    Google Scholar 

  82. Lecoutre C, Szymanek R (2006) Generalized arc consistency for positive table constraints. In:Proceedings of CP’06, Providence, USA, pp 284–298

    Google Scholar 

  83. Lhomme O (2004) Arc-consistency filtering algorithms for logical combinations of constraints. In:Proceedings of CP-AI-OR’04, Nice, France

    MATH  Google Scholar 

  84. Lhomme O, Régin J-C (2005) A fast arc consistency algorithm for n-ary constraints. In: Proceedings of AAAI’05, Pittsburgh, USA, pp 405–410

    Google Scholar 

  85. Lopez-Ortiz A, Quimper C-G, Tromp J, van Beek P (2003) A fast and simple algorithm for bounds consistency of the alldifferent constraint. In: IJCAI’03, Acapulco, Mexico, pp 245–250

    Google Scholar 

  86. Maher M (2009) Open constraints in a boundable world. In: CPAIOR, pp 163–177

    MATH  Google Scholar 

  87. Maher M, Narodytska N, Quimper C-G, Walsh T (2008) Flow-based propagators for the sequence and related global constraints. In: Proceedings CP 2008, pp 159–174

    Google Scholar 

  88. Manku G (1994) An o(m+n log* n) algorithm for sensitivity analysis of minimum spanning trees. citeseer.ist.psu.edu/manku94om.html

    Google Scholar 

  89. Martello S, Toth P (1990) Knapsack problems. Wiley, New York

    MATH  Google Scholar 

  90. Melhorn K, Thiel S (2000) Faster algorithms for bound-consistency of the sortedness and the alldifferent constraint. In: Proceedings of CP’00, Singapore, pp 306–319

    Google Scholar 

  91. Micali S, Vazirani VV (1980) An \(O(\sqrt{\vert V \vert }\vert E\vert )\) algorithm for finding maximum matching in general graphs. In: Proceedings 21st FOCS, pp 17–27

    Google Scholar 

  92. Michel L, Van Hentenryck P (2003) Maintaining longest paths incrementally. In: CP’03, pp 540–554

    Google Scholar 

  93. Pachet F, Roy P (1999) Automatic generation of music programs. In: Proceedings of CP’99, Alexandria, VA, USA, pp 331–345

    Google Scholar 

  94. Pesant G (2001) A filtering algorithm for the stretch constraint. In: Proceedings CP’01, Pathos, Cyprus, pp 183–195

    Google Scholar 

  95. Pesant G (2003) A regular language membership constraint for sequence of variables. In: Workshop on modelling and reformulation constraint satisfaction problems, pp 110–119

    Google Scholar 

  96. Pesant G (2004) A regular language membership constraint for finite sequences of variables. In: Proceedins of CP’04, pp 482–495

    MATH  Google Scholar 

  97. Pesant G, Régin J-C (2005) Spread: a balancing constraint based on statistics. In: CP’05, pp 460–474

    MATH  Google Scholar 

  98. Petit T, Régin J-C, Bessière C (2001) Specific filtering algorithms for over-constrained problems. In: Proceedings CP’01, Pathos, Cyprus, pp 451–465

    Google Scholar 

  99. Petit T, Régin J-C, Bessière C (2002) Range-based algorithms for max-csp. In: Proceedings CP’02, Ithaca, NY, USA, pp 280–294

    Google Scholar 

  100. Puget J-F (1994) A c++ implementation of clp. Technical report, ILOG S.A

    Google Scholar 

  101. Quimper C-G, López-Ortiz A, Pesant G (2006) A quadratic propagator for the inter-distance constraint. In: AAAI-06

    Google Scholar 

  102. Quimper C-G, van Beek P, López-Ortiz A, Golynski A, Sadjad SB (2003) An efficient bounds consistency algorithm for the global cardinality constraint. In: Proceedings CP’03, Kinsale, Ireland, pp 600–614

    MATH  Google Scholar 

  103. Quimper C-G, Walsh T (2006) Global grammar constraints. In: CP’06, pp 751–755

    Google Scholar 

  104. Quimper C-G, Walsh T (2006) Global grammar constraints. Technical report, Waterloo University

    MATH  Google Scholar 

  105. Quimper C-G, Walsh T (2007) Decomposing global grammar constraints. In: CP’07, pp590–604

    Google Scholar 

  106. Quimper C-G, Walsh T (2008) Decomposing global grammar constraints. In: NECTAR, AAAI-08, pp 1567–1570

    Google Scholar 

  107. Régin J-C (1994) A filtering algorithm for constraints of difference in CSPs. In: Proceedings AAAI-94, Seattle, Washington, pp 362–367

    Google Scholar 

  108. Régin J-C (1995) Développement d’outils algorithmiques pour l’Intelligence Artificielle. Application à la chimie organique. PhD thesis, Université de Montpellier II

    Google Scholar 

  109. Régin J-C (1996) Generalized arc consistency for global cardinality constraint. In: Proceedings AAAI-96, Portland, Oregon, pp 209–215

    Google Scholar 

  110. Régin J-C (1997) The global minimum distance constraint. Technical report, ILOG

    Google Scholar 

  111. Régin J-C (1999) Arc consistency for global cardinality with costs. In: Proceedings of CP’99, Alexandria, VA, USA, pp 390–404

    Google Scholar 

  112. Régin J-C (1999) The symmetric alldiff constraint. In: Proceedings of IJCAI’99, Stockholm, Sweden, pp 425–429

    Google Scholar 

  113. Régin J-C (2002) Cost based arc consistency for global cardinality constraints. Constraints 7(3-4):387–405

    MathSciNet  MATH  Google Scholar 

  114. Régin J-C (2003) Global constraints and filtering algorithms. In: Milano M (ed) Constraints and integer programming combined Kluwer, Dordrecht

    MATH  Google Scholar 

  115. Régin J-C (2003) Using constraint programming to solve the maximum clique problem. In:CP’03, Kinsale, Ireland, pp 634–648

    MATH  Google Scholar 

  116. Régin J-C (2004) Modeling problems in constraint programming. In: Tutorial CP’04 Available at www.constraint-programming.com/people/regin/papers/modelincp_OnlinePDF.pdf

  117. Régin J-C (2004) Modélisation et Contraintes globales en programmation par contraintes. Habilitation à diriger des Recherches, Université de Nice-Sophia Antipolis

    Google Scholar 

  118. Régin J-C (2005) Combination of among and cardinality constraints. In: Proceedings of CP-AI-OR’05

    Google Scholar 

  119. Régin J-C (2008) Simpler and incremental consistency checking and arc consistency filtering algorithms for the weighted spanning tree constraint. In: CPAIOR’08, pp 233–247

    Google Scholar 

  120. Régin J-C, Gomes C (2004) The cardinality matrix constraint. In: CP’04, Toronto, Canada, pp 572–587

    MATH  Google Scholar 

  121. Régin J-C, Petit T, Bessière C, Puget J-F (2000) An original constraint based approach for solving over constrained problems. In: Proceedings of CP’00, Singapore, pp 543–548

    Google Scholar 

  122. Régin J-C, Petit T, Bessière C, Puget J-F (2001) New lower bounds of constraint violations for over-constrained problems. In: Proceedings CP’01, Pathos, Cyprus, pp 332–345

    MATH  Google Scholar 

  123. Régin J-C, Puget J-F (1997) A filtering algorithm for global sequencing constraints. In: CP97: Third international conference on principles and practice of constraint programming, pp32–46

    Google Scholar 

  124. Régin J-C, Rueher M (2000) A global constraint combining a sum constraint and difference constraints. In: Proceedings of CP’00, Singapore, pp 384–395

    Google Scholar 

  125. Sadler A, Gervet C (2004) Hybrid set domains to strengthen constraint propagation and reduce symmetries. In: CP, pp 604–618

    MATH  Google Scholar 

  126. Sadler A, Gervet C (2008) Enhancing set constraint solvers with lexicographic bounds. JHeuristics 14(1):23–67

    MATH  Google Scholar 

  127. Schaus P (2009) Solving balancing and bin-packing problems with constraint programming. PhD thesis, Universit catholique de Louvain Louvain-la-Neuve

    Google Scholar 

  128. Schaus P, Deville Y, Dupont P, Régin J-C (2007) The deviation constraint. In: CPAIOR’07, pp 260–274

    MATH  Google Scholar 

  129. Schaus P, Deville Y, Dupont P, Rgin J-C (2006) Simplification and extension of the spread constraint. In: CP’06, Workshop on constraint propagation and implementation, pp 72–92

    Google Scholar 

  130. Schaus P, Deville Y, Dupont P, Rgin J-C (2007) Simplification and extension of the SPREAD constraint. In: Future and trends of constraint programming, ISTE, Washington DC, pp 95–99

    Google Scholar 

  131. Schaus P, Deville Y (2008) A global constraint for bin-packing with precedences: application to the assembly line balancing problem. In: AAAI-08, pp 369–374

    Google Scholar 

  132. Sellmann M (2003) Approximated consistency for knapsack constraints. In: CP’03, pp679–693

    Google Scholar 

  133. Sellmann M (2003) Cost-based filtering for shorter path constraints. In: CP’03, pp 694–708

    Google Scholar 

  134. Sellmann M (2004) The practice of approximated consistency for knapsack constraints. In: AAAI-04, pp 179–184

    Google Scholar 

  135. Sellmann M (2006) The theory of grammar constraints. In: CP’06, pp 530–544

    MATH  Google Scholar 

  136. Sellmann M, Gellermann T, Wright R (2007) Cost-based filtering for shorter path constraints. Constraints 12(2):207–238

    MathSciNet  MATH  Google Scholar 

  137. Shaw P (2004) A constraint for bin packing. In: CP’04, pp 648–662

    Google Scholar 

  138. Simonis H (1996) Problem classification scheme for finite domain constraint solving. In: CP96, Workshop on constraint programming applications: an inventory and taxonomy, Cambridge, USA, pp 1–26

    Google Scholar 

  139. Sorlin S, Solnon C (2004) A global constraint for graph isomorphism problems. In: CPAIOR’04, pp 287–302

    MATH  Google Scholar 

  140. Sorlin S, Solnon C (2008) A parametric filtering algorithm for the graph isomorphism problem. Constraints 13(4):518–537

    MathSciNet  MATH  Google Scholar 

  141. Stergiou K, Walsh T (1999) The difference all-difference makes. In: Proceedings of IJCAI’99, Stockholm, Sweden, pp 414–419

    Google Scholar 

  142. Tarjan R (1982) Sensitivity analysis of minimum spanning trees and shortest path trees. Inform Process Lett 14(1):30–33

    MathSciNet  Google Scholar 

  143. Tarjan RE (1983) Data structures and network algorithms. In: CBMS-NSF regional conference series in applied mathematics. SIAM, Philadelphia

    MATH  Google Scholar 

  144. Trick M (2001) A dynamic programming approach for consistency and propagation for knapsack constraints. In: CPAIOR’01

    Google Scholar 

  145. Trick M (2003) A dynamic programming approach for consistency and propagation for knapsack constraints. Ann Oper Res 118:73–84

    MathSciNet  MATH  Google Scholar 

  146. Van Hentenryck P, Deville Y (1991) The cardinality operator: a new logical connective for constraint logic programming. In: Proceedings of ICLP-91, Paris, France, pp 745–759

    Google Scholar 

  147. Van Hentenryck P, Deville Y, Teng CM (1992) A generic arc-consistency algorithm and its specializations. Artif Intell 57:291–321

    MathSciNet  MATH  Google Scholar 

  148. Van Hentenryck P, Michel L (2003) Control abstractions for local search. In: CP’03, pp 66–80

    Google Scholar 

  149. van Hentenryck P, Saraswat V, Deville Y (1998) Design, implementation, and evaluation of the constraint language cc(fd). J Logic Program 37(1–3):139–164

    MATH  Google Scholar 

  150. Van Hentenryck P, Yip J, Gervet C, Dooms G (2008) Bound consistency for binary length-lex set constraints. In: AAAI, pp 375–380

    Google Scholar 

  151. van Hoeve W-J, Katriel I (2006) Global constraints. In: Handbook of constraint programming. Elsevier, Amsterdam

    Google Scholar 

  152. van Hoeve W-J, Pesant G, Rousseau L-M, Sabharwal A (2006) Revisiting the sequence constraint. In: Proceedings of CP 2006, Nantes, France, pp 620–634

    Google Scholar 

  153. van Hoeve W-J, Pesant G, Rousseau L-M, Sabharwal A (2009) New filtering algorithms for combinations of among constraints. Constraints 14:273–292

    MathSciNet  MATH  Google Scholar 

  154. Vempaty N (1992) Solving constraint satisfaction problems using finite state automata. In: AAAI-92, pp 453–458

    Google Scholar 

  155. Wallace R (1994) Directed arc consistency preprocessing as a strategy for maximal constraint satisfaction. In: Proceedings ECAI, pp 69–77

    Google Scholar 

  156. Zampelli S, Deville Y, Solnon C, Sorlin S, Dupont P (2007) Filtering for subgraph isomorphism. In: CP, pp 728–742

    MATH  Google Scholar 

  157. Zhou J (1996) A constraint program for solving the job-shop problem. In: Proceedings of CP’96, Cambridge, pp 510–524

    Google Scholar 

  158. Zhou J (1997) Computing smallest cartesian products of intervals: application to the jobshop scheduling problem. PhD thesis, Université de la Méditerranée, Marseille

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Charles Régin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Régin, JC. (2011). Global Constraints: A Survey. In: van Hentenryck, P., Milano, M. (eds) Hybrid Optimization. Springer Optimization and Its Applications, vol 45. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1644-0_3

Download citation

Publish with us

Policies and ethics