Skip to main content

Growth–Security Models and Stochastic Dominance

  • Chapter
  • First Online:
Stochastic Programming

Abstract

The accumulated wealth from investment in risky assets is a random variable. If investment strategies are to be ordered, so that one is preferred to another, then the ordering of random variables is required. In this paper the levels of stochastic dominance for random variables are used to define bi-criteria problems for determining an efficient investment strategy. The criteria are characterized as growth and security, respectively, and produce an ordering of strategies consistent with stochastic dominance. In the case where the dynamics of asset returns follow geometric Brownian motion in continuous time, the efficient strategies are shown to be proportional to the growth optimum or Kelly strategy. The analogous problem in discrete time requires solving a stochastic program. An example is provided which compares the continuous and discrete time solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Algoet, P H., Cover, T.M.: Asymptotic optimality and asymptotic equipartion properties of log-optimum investment. Ann. Probab. 16, 876–898 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Artzner, P., Delbaen, F., Eber, J., Heath, D.: Coherent measures of risk. Math. Financ. 9, 203–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Aucamp, D.: On the extensive number of plays to achieve superior performance with geometric mean strategy. Manage. Sci. 39, 163–172 (1993)

    Article  Google Scholar 

  • Basak, S., Shapiro, A.: Value at Risk based risk management:optimal policies and asset prices. Rev. Financ. Stud. 14, 371–405 (2001)

    Article  Google Scholar 

  • Bell, R.M., Cover, T.M.: Competitive optimality of logarithmic investment. Math. Oper. Res. 5, 161–166 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Blake, D., Lehmann, B.N., Timmermann, A.: Asset allocation dynamics and pension fund performance. J. Bus. 72, 429–461 (1999)

    Article  Google Scholar 

  • Breiman, L.: Optimal gambling system for favorable games. Proc. 4th Berkeley Symp. Math. Stat. Probab. 1, 63–68 (1961)

    Google Scholar 

  • Breitmeyer, C., Hakenes, H., Pfingsten, A., Rechtien, C.: Learning from poverty measurement: An axiomatic approach to measuring downside risk. Working paper, University of Muenster, Germany (1999)

    Google Scholar 

  • Browne, S.: Survival and growth with a liability: Optimal portfolio strategies in continuous time. Math. Oper. Res. 22(2), 468–493 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Browne, S., Whitt, W.: Portfolio choice and the bayesian kelly criterion. Adv. Appl. Prob. 28, 1145–1176 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Carino, D., Ziemba, W.: Formulation of the Russell Yasuda Kasai financial planning model. Oper. Res. 46, 450–462 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Chopra, V., Ziemba, W.: The effect of errors in the mean, variance, and covariance estimates on optimal portfolio choice. J. Portfolio Manage. Winter, 6–11 (1993)

    Article  Google Scholar 

  • Ethier, S.N.: The kelly system maximizes median wealth. J. Appl. Probab. 41, 1230–1236 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Ethier, S.N., Tavare, S.: The proportional bettor’s return on investment. J. Appl. Probab. 20, 563–573 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Finkelstein, M., Whitley, R.: Optimal strategies for repeated games. Adv. Appl. Probab. 13, 415–428 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Grauer, R.R., Hakansson, N.H.: A half century of returns on levered and unlevered portfolios of stocks, bonds and bills, with and without small stocks. J. Business 59, 287–318 (1986)

    Article  Google Scholar 

  • Grauer, R.R., Hakansson, N.H.: Gains from international diversification: 1968-85 returns on portfolios of stocks and bonds. J. Finance 42, 721–739 (1987)

    Article  Google Scholar 

  • Griffin, P.A.: Different measures of win rate for optimal proportional betting. Manage. Sci. 30(12), 1540–1547 (1984)

    Article  MATH  Google Scholar 

  • Grossman, S.J., Zhou, Z.: Optimal investment strategies for controlling drawdowns. Math. Financ. 3(3), 241–276 (1993)

    Article  MATH  Google Scholar 

  • Hakansson, N.H.: Optimal investment and consumption strategies under risk for a class of utility functions. Econometrica 38, 587–607 (1970)

    Article  MATH  Google Scholar 

  • Hakansson, N.H.: Capital growth and the mean-variance approach to portfolio selection. J. Financ. Quant. Anal. 6, 517–557 (1971)

    Article  Google Scholar 

  • Hakansson, N.H., Miller, B.L.: Compound–return mean–variance efficient portfolios never risk ruin. Manage. Sci. 24(4), 391–400 (1975)

    Article  MathSciNet  Google Scholar 

  • Hanoch, G., Levy, H.: Effciency analysis of choices involving risk. Rev. Econ. Stud. 36, 335–346 (1969a)

    Article  MATH  Google Scholar 

  • Hanoch, G., Levy, H.: Efficiency analysis of choices involving risk. Rev. Econ. Stud. 36, 335–346 (1969b)

    Article  MATH  Google Scholar 

  • Hausch, D.B., Ziemba, W.T., Rubinstein, M.E.: Efficiency of the market for race track betting. Manage. Sci. 27, 1435–1452 (1981)

    Article  Google Scholar 

  • Hensel, C.R., Ezra, D.D., Ilkiw, J.H.: The importance of the asset allocation decision. Financ. Anal. J. July–August, 65–72 (1991)

    Article  Google Scholar 

  • Jorion, J.: Value-at-Risk: The Benchmark for Controlling Market Risk. Irwin, Chicago, IL (1997)

    Google Scholar 

  • Kallberg, J., Ziemba, W.T.: Comparison of alternative utility functions in portfolio selection problems. Manage. Sci. 29, 1257–1276 (1983)

    Article  MATH  Google Scholar 

  • Kelly, J.: A new interpretation of information rate. Bell Syst. Technol. J. 35, 917–926 (1956)

    Google Scholar 

  • Levy, H.: Stochastic Dominance. Kluwer, Norwell, MA (1998)

    Book  Google Scholar 

  • Lorenz, M.: Methods for measuring the concentration of wealth. J. Am. Stat. Assoc. 9, 209–219 (1905)

    Google Scholar 

  • MacLean, L.C., Ziemba, W.T.: Growth versus security tradeoffs in dynamic investment analysis. Ann. Oper. Res. 85, 193–225 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • MacLean, L.C., Ziemba, W.T., Blazenko, G.: Growth versus security in dynamic investment analysis. Manage. Sci. 38, 1562–1585 (1992)

    Article  MATH  Google Scholar 

  • MacLean, L.C., Sanegre, R., Zhao, Y., Ziemba, W.: Capital growth with security. J. Econ. Dyn. Control 28, 937–954 (2004)

    Article  MathSciNet  Google Scholar 

  • MacLean, L.C., Thorp, E.O., Zhao, Y., Ziemba, W.T.: How does the Fortune’s Formula – Kelly capital growth model perform? Journal of Portfolio Management, spring, (2011)

    Google Scholar 

  • MacLean, L.C., Thorp, E.O., Ziemba, W.T.: Long term capital growth: The good and bad properties of the Kelly and fractional Kelly capital growth criterion. Quantitative Finance, Vol. 10, No. 7, 681–687 (2010)

    Article  MathSciNet  Google Scholar 

  • MacLean, L.C., Ziemba, W.T., Li, Y.: Time to wealth goals in capital accumulation. Quant. Finance 5, 343–357 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • MacLean, L.C., Zhao, Y., Ziemba, W.T.: Dynamic portfolio selection with process control. J. Bank. Finance 30, 317–339 (2006)

    Article  Google Scholar 

  • MacLean, L.C., Foster, M.E., Ziemba, W.T.: Covariance complexity and rates of return on assets. J. Bank. Finance 31, 3503–3523 (2007)

    Article  Google Scholar 

  • Markowitz, H.M.: Portfolio selection. J. Finance 7, 77–91 (1952)

    Google Scholar 

  • Markowitz, H.M.: Investment for the long run: New evidence for an old rule. J. Finance 31, 1273–1286 (1976)

    Article  Google Scholar 

  • Markowitz, H.M.: Mean–Variance Analysis in Portfolio Choice and Capital Markets. Basil Blackwell, New York, NY (1987)

    MATH  Google Scholar 

  • Merton, R.C.: Continuous-Time Finance, 2nd ed. Blackwell, New York, NY (1992)

    Google Scholar 

  • Mulvey, J.M., Vladimirou, H.: Stochastic network programming for financial planning problems. Manage. Sci. 38(11), 1642–1664 (1992)

    Article  MATH  Google Scholar 

  • Ogryczak, W., Ruszczyński, A.: Dual stochastic dominance and related mean–risk models. SIAM J. Optim. 13, 60–78 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–41 (2000)

    Google Scholar 

  • Rogers, L.C.G.: The relaxed investor and parameter uncertainty. Financ. Stochast. 5, 131–154 (2000)

    Article  Google Scholar 

  • Stutzer, M.: The capital growth-optimal risk tradeoff. University of Iowa, Mimeo (2000)

    Google Scholar 

  • Thorp, E.O.: Portfolio choice and the kelly criterion. In: Ziemba, W.T., Vickson, R.G. (eds.) Stochastic Optimization Models in Finance, pp. 599–619. Academic, New York, NY (1975)

    Google Scholar 

  • Ziemba, R.E.S., Ziemba, W.T.: Scenarios for Risk Management and Global Investment Strategies. Wiley, New York, NY (2007)

    MATH  Google Scholar 

  • Ziemba, W.T.: The Stochastic Programming Approach to Asset, Liability, and Wealth Management. AMIR, Virginia (2003)

    Google Scholar 

  • Ziemba, W.T., Hausch, D.B.: Betting at the Race Track. Dr. Z Investments Inc. San Luis Obispo, CA (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard C. MacLean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

MacLean, L.C., Zhao, Y., Ziemba, W.T. (2010). Growth–Security Models and Stochastic Dominance. In: Infanger, G. (eds) Stochastic Programming. International Series in Operations Research & Management Science, vol 150. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1642-6_13

Download citation

Publish with us

Policies and ethics