Applications of Transparent Conductors to Solar Energy and Energy Efficiency

Chapter

Abstract

New energy sources and increased energy efficiency are important for development, and revolutionary advances in technology appear necessary even to maintain today’s general standard of living and economic prosperity [1]. The problems ahead of us may seem daunting. For example, it has been stated that the warming and precipitation trends due to antropogenic, energy-related climate changes during the past 30 years already claim over 150,000 human lives annually [2, 3]. These climate changes are also expected to be accompanied by more common and/or extreme events such as heatwaves, heavy rainfall, and storms and coastal flooding; there are also fears that non-linear climate responses will lead to breakdown of ocean “conveyor belt” circulation, collapse of major ice sheets, and/or release of large quantities of methane at high latitudes thus intensifying global warming [4]. Adding to the precarious situation, the urgently needed advances in energy related technology must take place for an increasing population, whose growing concentration in mega-cities leads to “heat islands” which tend to aggravate the warming [5] and can increase the urban cooling load by up to 25% compared to the case of surrounding rural areas [6]. By 2050 there will be some ten billion people in the World. Energy must be available to them all, and it has to be clean. New technologies are necessary to accomplish this. Some of these technologies – mainly related to efficient solar energy utilization and to energy savings in the built environment – will be discussed in this Chapter.

Keywords

SiO2 Convection Cage Hexagonal Tungsten 

References

  1. 1.
    Smalley R.E., “Future Global Energy Prosperity: The Terawatt Challenge”, MRS Bull. 30 (2005) 412–417.CrossRefGoogle Scholar
  2. 2.
    Mc Michael A.J., Campbell-Lendrum D., Wilkinson P., Nicholls R., Hales S., Tanser F., Le Sueur D., Schlesinger M., and Andronova N., “Global Climate Change”, in “Comparative Quantification of Health Risks: Global and Regional Burden of Disease due to Selected Major Risk Factors”, edited by Ezzati M., Lopez A.D., Rodgers A., and Murray C.J.L. (World Health Organization, Geneva, Switzerland, 2004), Ch. 20, pp. 1543–1649.Google Scholar
  3. 3.
    Palz J.A., Campbell-Lendrum D., Holloway T., and Foley J.A., “Impact of Regional Climate Change on Human Health”, Nature 438 (2005) 310–317.CrossRefGoogle Scholar
  4. 4.
    Mitchell J.F.B., Lowe J., Wood R.A., and Vellinga M., “Extreme Events Due to Human-Induced Climate Change”, Philos. Trans. Roy. Soc. A 364 (2006) 2117–2133.CrossRefGoogle Scholar
  5. 5.
    Santamouris M., “Solar and Natural Resources for a Better Efficiency in the Built Environment”, in “Solar Energy: The State of the Art”, edited by Gordon J. (James & James, London, UK, 2001), Ch. 1, pp. 1–28.Google Scholar
  6. 6.
    Kolokotroni M., Zhang Y., and Watkins R., “The London Heat Island and Building Cooling Design”, Solar Energy 81 (2007) 102–110.CrossRefGoogle Scholar
  7. 7.
    Granqvist C.G., “Transparent Conductors as Solar Energy Materials: A Panoramic Review”, Solar Energy Mater. Solar Cells 92 (2007) 1529–1598.CrossRefGoogle Scholar
  8. 8.
    Granqvist C.G., “Solar Energy Materials”, Adv. Mater. 15 (2003) 1789–1803.CrossRefGoogle Scholar
  9. 9.
    Granqvist C.G., “Solar Energy Materials”, in “Encyclopedia of Energy”, editor-in-chief Cleveland C.J. (Elsevier, Oxford, UK, 2004), Vol. 3, pp. 845–858.CrossRefGoogle Scholar
  10. 10.
    Granqvist C.G., “Solar Energy Materials”, in “Kirk-Othmer Encyclopedia of Chemical Technology”, 5th edition (Wiley, Hoboken, USA, 2006), Vol. 23, pp. 1–32.Google Scholar
  11. 11.
    Lampert C.M. and Granqvist C.G., editors, “Large-Area Chromogenics: Materials and Devices for Transmittance Control” (The International Society for Optical Engineering, Bellingham, USA, 1990), Vol. IS4.Google Scholar
  12. 12.
    Granqvist C.G., “Radiative Heating and Cooling with Spectrally Selective Surfaces”, Appl. Opt. 20 (1981) 2606–2615.CrossRefGoogle Scholar
  13. 13.
    Granqvist C.G., editor, “Materials Science for Solar Energy Conversion Systems” (Pergamon, Oxford, UK, 1991).Google Scholar
  14. 14.
    Fanger P.O., “Thermal Comfort: Analysis and Applications in Environmental Engineering” (Danish Technical Press, Copenhagen, Denmark, 1970).Google Scholar
  15. 15.
    Jelle B.P., Gustavsen A., Nilsen T.N., and Jacobsen T., “Solar Material Protection Factor (SMPF) and Solar Skin Protection Factor (SSPF) for Window Panes and Other Glass Structures in Buildings”, Solar Energy Mater. Solar Cells 91 (2007) 342–354.CrossRefGoogle Scholar
  16. 16.
    Azens A. and Granqvist C.G., “Electrochromic Smart Windows: Energy Efficiency and Device Aspects”, J. Solid State Electrochem. 7 (2003) 64–68.Google Scholar
  17. 17.
    Roos A., Covalet D., Fanton X., Persson M.-L., Platzer W., Nielsen T.R., Wilson H.R., Zinzi M., Köhl M., Heck M., and Chevalier B., “Energy Performance of Switchable Glazing”, in “Proceedings of the International Conference on the Durability of Building Materials and Components” (Lyon, France, 2005), pp. 17–20.Google Scholar
  18. 18.
    Roos A., Persson M.-L., Platzer W., and Köhl M., “Energy Efficiency of Switchable Glazing in Office Buildings”, in “Proceedings Glass Processing Days” (Tampere, Finland, 2005), pp. 566–569.Google Scholar
  19. 19.
    Lee E.S., DiBartolomeo D.L., and Selkowitz S.E., “Daylighting Control Performance of a Thin-Film Ceramic Electrochromic Window: Field Study Results”, Energy Build. 38 (2006) 30–44.CrossRefGoogle Scholar
  20. 20.
    Lee E.S., Selkowitz S.E., Clear R.D., DiBartolomeo D.L., Klems J.H., Fernandes L.L., Ward G.J., Inkarojrit V., and Yazdanian M., “Advancement of Electrochromic Windows” (California Energy Commission, PIER, 2006), CEC-500-2006-052, 87 pages.Google Scholar
  21. 21.
    Persson M.-L., “Windows of Opportunities: The Glated Area and Its Impact an the Energy Balanced of Buildings”, PhD Thesis, Department of Engineering Sciences, Uppsala Universty, Uppsala, Sweden, 2006.Google Scholar
  22. 22.
    Clear R.D., Inkarojrit V., and Lee E.S., “Subject Responses to Electrochromic Windows”, Energy Build. 38 (2006) 758–779.CrossRefGoogle Scholar
  23. 23.
    Reinhart C.F., “Energy Efficient Solar Buildings”, in “The Future for Renewable Energy 2: Prospects and Directions” (James & James, London, UK, 2002), Ch. 4, pp. 79–114.Google Scholar
  24. 24.
    Bojić M. and Yik F., “Cooling Energy Evaluation for High-Rise Residential Buildings in Hong Kong”, Energy Build.37 (2005) 345–351.CrossRefGoogle Scholar
  25. 25.
    Barnham K.W.J., Mazzer M., and Clive B., “Resolving the Energy Crisis: Nuclear or Photovoltaics?”, Nat. Mater. 5 (2006) 161–164.CrossRefGoogle Scholar
  26. 26.
    Jäger-Waldau A., editor, “REF-SYST Status Report 2004”, EUR 21297 EN (JRC, Ispra, Italy, 2004).Google Scholar
  27. 27.
    Brockett D., Fridley D., Lin J.-M., and Jin J., “A Tale of Five Cities: The China Residential Energy Consumption Survey”, in “Human and Social Dimensions of Energy Use: Understanding Markets and Demands” (ACEEE Summer Study on Building Energy Efficiency, 2002), pp. 8.29–8.40.Google Scholar
  28. 28.
    Darwich M.A., “Energy Efficient Air Conditioning: Case Study for Kuwait”, Kuwait J. Sci. Eng. 32 (2005) 209–222.Google Scholar
  29. 29.
    Granqvist C.G., “Energy Efficient Windows: Present and Forthcoming Technology”, in “Materials Science for Solar Energy Conversion Systems”, edited by Granqvist C.G. (Pergamon, Oxford, UK, 1991), Ch. 5, pp. 106–167.Google Scholar
  30. 30.
    Smith G.B., Deller C.A., Swift P.D., Gentle A., Garrett P.D., and Fisher W.K., “Nanoparticle-Doped Polymer Foils for Use in Solar Control Glazing”, J. Nanopart. Res. 4 (2002) 157–165.CrossRefGoogle Scholar
  31. 31.
    Schelm S. and Smith G.B., “Dilute LaB6 Nanoparticles in Polymer as Optimized Clear Solar Control Glazing”, Appl. Phys. Lett. 82 (2003) 4346–4348.CrossRefGoogle Scholar
  32. 32.
    Nostell P., Roos A., and Karlsson B., “Optical and Mechanical Properties of Sol-Gel Antireflective Films for Solar Energy Applications”, Thin Solid Films 351 (1999) 170–175.CrossRefGoogle Scholar
  33. 33.
    Janicki V., Gäbler D., Wilbrandt S., Leitel R., Stenzel O., Kaiser N., Lappschies M., Görtz B., Ristau D., Rickers C., and Vergöhl M., “Deposition and Spectral Performance of an Inhomogeneous Broadband Wide-Angular Antireflective Coating”, Appl. Opt. 45 (2006) 7851–7857.CrossRefGoogle Scholar
  34. 34.
    Tikhonravov A.V., Trubetskov M.K., Amotchkina T.V., Kokarev M.A., Kaiser N., Stenzel O., Wilbrandt S., and Gäbler D., “New Optimization Algorithm for the Synthesis of Rugate Optical Coatings”, Appl. Opt. 45 (2006) 1515–1524.CrossRefGoogle Scholar
  35. 35.
    Wigginton M., “Glass in Architecture” (Phaidon, London, UK, 1996).Google Scholar
  36. 36.
    Lampert C.M., “Large-Area Smart Glass and Integrated Photovoltaics”, Solar Energy Mater. Solar Cells 76 (2003) 489–499.CrossRefGoogle Scholar
  37. 37.
    Hollands K.G.T., Wright J.L., and Granqvist C.G., “Glazings and Coatings”, in “Solar Energy: The State of the Art”, edited by Gordon J. (James & James, London, UK, 2001), Ch. 2, pp. 29–107.Google Scholar
  38. 38.
    Manz H., Brunner S., and Wullschleger L., “Triple Vacuum Glazing: Heat Transfer and Basic Mechanical Design Constraints”, Solar Energy 80 (2006) 1632–1642.CrossRefGoogle Scholar
  39. 39.
    Ebbesen T.W., Lezec H.J., Ghaemi H.F., Thio T., and Wolff P.A., “Extraordinary Optical Transmission Through Sub-Wavelength Hole Arrays”, Nature 391 (1998) 667–669.CrossRefGoogle Scholar
  40. 40.
    Genet C. and Ebbesen T.W., “Light in Tiny Holes”, Nature 445 (2007) 39–46.CrossRefGoogle Scholar
  41. 41.
    Gao H., Henzie J., and Odom T.W., “Direct Evidence for Surface Plasmon-Mediated Enhanced Light Transmission through Metallic Nanohole Arrays”, Nano Lett. 6 (2006) 2104–2108.CrossRefGoogle Scholar
  42. 42.
    Lin L., Reeves R.J., and Blaikie R.J., “Surface-Plasmon-Enhanced Light Transmission through Planar Metallic Films”, Phys. Rev. B 74 (2006) 155407-1–155407-6.Google Scholar
  43. 43.
    Ye Y.-H., Wang Z.-B., Yan D., and Zhang J.-Y., “Multiple Transmission Bands through Metal Films Perforated with Two Periodic Arrays of Apertures”, Appl. Phys. Lett. 89 (2006) 221108-1–221108-3.Google Scholar
  44. 44.
    Degiron A., and Ebbesen T.W., “The Role of Localized Plasmon Modes in the Enhanced Transmission of Periodic Subwavelength Apertures”, J. Opt. A Pure Appl. Opt. 7 (2005) S90–S96.CrossRefGoogle Scholar
  45. 45.
    Prasher R., “Far Field Thermal Radiation Through Nanoholes and Apertures”, Nano Lett. 6 (2006) 2135–2139.CrossRefGoogle Scholar
  46. 46.
    Valkonen E., Karlsson B., and Ribbing C.-G., “Solar Optical Properties of Thin Films of Cu, Ag, Au, Cr, Fe, Co, Ni, and Al”, Solar Energy 32 (1984) 211–222.CrossRefGoogle Scholar
  47. 47.
    Valkonen E. and Karlsson B., “Optimization of Metal-Based Multilayers for Transparent Heat Mirrors”, Energy Res. 11 (1987) 397–403.CrossRefGoogle Scholar
  48. 48.
    Smith G.B., Niklasson G.A., Svensson J.S.E.M., and Granqvist C.G., “Noble-Metal-Based Transparent Infrared Reflectors: Experiments and Theoretical Analyses for Very Thin Gold Films”, J. Appl. Phys. 59 (1986) 571–581.CrossRefGoogle Scholar
  49. 49.
    Andersson K.E., Wahlström M.K., and Roos, A., “High Stability Titanium Nitride Based Solar Control Films”, Thin Solid Films 214 (1992) 213–218.CrossRefGoogle Scholar
  50. 50.
    Andersson K.E., Veszelei M., and Roos A., “Zirconium Nitride Based Transparent Heat Mirror Coatings: Preparation and Characterization”, Solar Energy Mater. Solar Cells 32 (1994) 199–212.CrossRefGoogle Scholar
  51. 51.
    Avrekh M., Thibadeau B.M., Monteiro O.R., and Brown I.G., “Transparent, Conducting, Metallic Thin Films”, Rev. Sci. Instrum. 70 (1999) 4328–4330.CrossRefGoogle Scholar
  52. 52.
    Kunz M., Niklasson G.A., and Granqvist C.G., “Optical and Electrical Properties of Sputter-Deposited Al Films Close to the Percolation Threshold”, J. Appl. Phys. 64 (1988) 3740–3742.CrossRefGoogle Scholar
  53. 53.
    Kaiser N., “Review of the Fundamentals of Thin-Film Growth”, Appl. Opt. 41 (2002) 3053–3060.CrossRefGoogle Scholar
  54. 54.
    Markert C., Lützenkirchen-Hecht D., and Frahm R., “Structural and Electrical Properties of Thin d.c. Magnetron-Sputtered Gold Films Deposited on Float Glass”, Surf. Interface Anal. 38 (2006) 715–718.CrossRefGoogle Scholar
  55. 55.
    Niklasson G.A., “Optical Properties of Inhomogeneous Two-Component Materials”, in “Materials Science for Solar Energy Conversion Systems”, edited by Granqvist C.G. (Pergamon, Oxford, UK, 1991), Ch. 2, pp. 7–43.Google Scholar
  56. 56.
    Niklasson G.A., Granqvist C.G., and Hunderi O., “Effective Medium Models for the Optical Properties of Inhomogeneous Materials”, Appl. Opt. 20 (1981) 26–30.CrossRefGoogle Scholar
  57. 57.
    Gadenne P., Yagil Y., and Deutscher G., “Transmittance and Reflectance In Situ Measurements of Semicontinuous Gold Films During Deposition”, J. Appl. Phys. 66 (1989) 3019–3025.CrossRefGoogle Scholar
  58. 58.
    Murray W.A., Astilean S., and Barnes W.L., “Transition from Localized Surface Plasmon Resonance to Extended Surface Plasmon-Polariton as Metallic Nanoparticles Merge to Form a Periodic Hole Array”, Phys. Rev. B 69 (2004) 165407-1–165407-7.Google Scholar
  59. 59.
    Seal K., Genov D.A., Sarychev A.K., Noh H., Shalaev V.M., Ying Z.C., Zhang X., and Cao H., “Coexistence of Localized and Delocalized Surface Plasmon Modes in Percolating Metal Films”, Phys. Rev. Lett. 97 (2006) 206103-1–206103-4.CrossRefGoogle Scholar
  60. 60.
    Valkonen E. and Ribbing C.G., “Optical Selectivity of Thin Silver Films Prepared by rf-Assisted dc Magnetron Sputtering”, Mater. Lett. 3 (1984) 29–32.CrossRefGoogle Scholar
  61. 61.
    Leftheriotis G., Papaefthimiou S., and Yanoulis P., “Integrated Low-Emittance Electrochromic Devices Incorporating ZnS/Ag/ZnS Coatings as Transparent Conductors”, Solar Energy Mater. Solar Cells 61 (2000) 107–112.CrossRefGoogle Scholar
  62. 62.
    Papaefthimiou S., Leftheriotis G., and Yanoulis P., “Advanced Electrochromic Devices Based on WO3 Thin Films”, Electrochim. Acta 46 (2001) 2145–2150.CrossRefGoogle Scholar
  63. 63.
    Sahu D.R. and Huang J.-L., “High Quality Transparent Conductive ZnO/Ag/ZnO Multilayer Films”, Thin Solid Films 515 (2006) 876–879.CrossRefGoogle Scholar
  64. 64.
    Sahu D.R., Chen C.Y., Lin S.Y., and Huang J.-L., “Effect of Substrate Temperature and Annealing Treatment on the Electrical and Optical Properties of Silver-Based Multilayer Coating Electrodes”, Thin Solid Films 515 (2006) 932–935.CrossRefGoogle Scholar
  65. 65.
    Sahu D.R., Lin S.-Y., and Huang J.-L., “ZnO/Ag/ZnO Multilayer Films for the Application of a Very Low Resistance Transparent Electrode”, Appl. Surf. Sci. 252 (2006) 7509–7514.CrossRefGoogle Scholar
  66. 66.
    Sahu D.R. and Huang J.-L., “Characteristics of ZnO-Cu-ZnO Multilayer Films on Copper Layer Properties”, Appl. Surf. Sci. 253 (2006) 827–832.CrossRefGoogle Scholar
  67. 67.
    Sahu D.R. and Huang J.-L., “Dependence of Film Thickness on the Electrical and Optical Properties of ZnO-Cu-ZnO Multilayers”, Appl. Surf. Sci. 253 (2006) 915–918.CrossRefGoogle Scholar
  68. 68.
    Bender M., Seelig W., Daube C., Frankenberger H., Ocker B., and Stollenwerk J., “Dependence of Film Composition and Thickness on Optical and Electrical Properties of ITO/Metal/ITO Multilayers”, Thin Solid Films 326 (1998) 67–71.CrossRefGoogle Scholar
  69. 69.
    Choi K.H., Kim J.Y., Lee Y.S., and Kim H.J., “ITO/Ag/ITO Multilayer Films for the Application of a Very Low Resistance Transparent Electrode”, Thin Solid Films 341 (1999) 152–155.CrossRefGoogle Scholar
  70. 70.
    Klöppel A., Meyer B., and Trube J., “Influence of Substrate Temperature and Sputtering Atmosphere on Electrical and Optical Properties of Double Silver Layer Systems”, Thin Solid Films 392 (2001) 311–314.CrossRefGoogle Scholar
  71. 71.
    Fahland M., Karlsson P., and Charton C., “Low Resistivity Transparent Electrodes for Displays on Polymer Substrates”, Thin Solid Films 392 (2001) 334–337.CrossRefGoogle Scholar
  72. 72.
    Bertran E., Corbella C., Vives M., Pinyol A., Person C., and Porqueras I., “RF Sputtering Deposition of Ag/ITO Coatings at Room Temperature”, Solid State Ionics 165 (2003) 139–148.CrossRefGoogle Scholar
  73. 73.
    Jung Y.S., Choi Y.W., Lee H.C., and Lee D.W., “Effects of Thermal Treatment on the Electrical and Optical Properties of Silver-Based Indium Tin Oxide/Metal/Indium Tin Oxide Structures”, Thin Solid Films 440 (2003) 278–284.CrossRefGoogle Scholar
  74. 74.
    Georgson M., Roos A., and Ribbing C.-G., “The Influence of Preparation Conditions on the Optical Properties of Titanium Nitride Based Solar Control Films”, J. Vac. Sci. Technol. A 9 (1991) 2191–2195.CrossRefGoogle Scholar
  75. 75.
    Zhao Q.-N. and Zhao X.-J., “Preparation and Characterization of TiO2/TiN/TiO2 Multi-Layer Solar Control Coatings Deposited by D.C. Reactive Magnetron Sputtering at Different Substrate Temperature”, J. Wuhan Univ. Technol. 16 (2001) 9–12.MATHGoogle Scholar
  76. 76.
    Jung M.J., Lee H.Y., Han J.G., Jung C.-K., Moon J.-S., and Boo J.-H., “High-Rate and Low-Temperature Synthesis of TiO2, TiN, TiO2/TiN/TiO2 Thin Films and Study of Their Optical and Interfacial Characteristics”, J. Vac. Sci. Technol. B 23 (2005) 1826–1831.CrossRefGoogle Scholar
  77. 77.
    Okada M., Tazawa M., Jin P., Yamada Y., and Yoshimura K., “Fabrication of Photocatalytic Heat-Mirror with TiO2/TiN/TiO2 Stacked Layers”, Vacuum 80 (2006) 732–735.CrossRefGoogle Scholar
  78. 78.
    Granqvist C.G. and Hultåker A., “Transparent and Conducting ITO Films: New Developments and Applications”, Thin Solid Films 411 (2002) 1–5.CrossRefGoogle Scholar
  79. 79.
    Coutts T.J., Young D.L., and Li X., “Characterization of Transparent Conducting Oxides”, MRS Bull. 25(8) (2000) 58–65.CrossRefGoogle Scholar
  80. 80.
    Ginley D.S. and Bright C., “Transparent Conducting Oxides”, MRS Bull. 25(8) (2000) 15–18.CrossRefGoogle Scholar
  81. 81.
    Kawazoe H., Yanagi H., Ueda, K., and Hosono H., “Transparent p-Type Conducting Oxides: Design and Fabrication of p-n Heterojunctions”, MRS Bull. 25(8) (2000) 28–36.CrossRefGoogle Scholar
  82. 82.
    Minami T., “New n-Type Transparent Conducting Oxides”, MRS Bull. 25(8) (2000) 38–44.CrossRefGoogle Scholar
  83. 83.
    Minami T., “Transparent Conducting Oxide Semiconductors for Transparent Electrodes”, Semicond. Sci. Technol. 20 (2005) S35–S44.CrossRefGoogle Scholar
  84. 84.
    Edwards P.P., Porsch A., Jones M.O., Morgan D.V., and Perks R.M., “Basic Materials Physics of Transparent Conducting Oxides”, Dalton Trans. (19) (2004) 2995–3002.Google Scholar
  85. 85.
    Nath P., Bunshah R.F., Basol B.M., and Staffsud O.M., “Electrical and Optical Properties of In2O3:Sn Films Prepared by Activated Reactive Evaporation”, Thin Solid Films 72 (1980) 463–468.CrossRefGoogle Scholar
  86. 86.
    Takaki S., Matsumoto K., and Suzuki, K., “Properties of Highly Conducting ITO Films Prepared by Ion Plating”, Appl. Surf. Sci. 33/34 (1988) 919–925.CrossRefGoogle Scholar
  87. 87.
    Adurodija F.O., Izumi H., Ishihara T., Yoshioka H., and Motoyama M., “Effect of Sn Doping on the Electronic Doping Mechanism of Indium-Tin-Oxide Films Grown by Pulsed Laser Deposition Coupled with Substrate Irradiation”, J. Appl. Phys. 88 (2000) 4175–4180.CrossRefGoogle Scholar
  88. 88.
    Adurodija F.O., Izumi H., Ishihara T., Yoshioka H., Motoyama M., and Murai K., “Pulsed Laser Deposition of Crystalline Indium Tin Oxide Films at Room Temperature by Substrate Irradiation”, Jpn. J. Appl. Phys. 39 (2000) L377–L379.CrossRefGoogle Scholar
  89. 89.
    Ohta H., Orita M., Hirano M., Tanji H., Kawazoe H., and Hosono H., “High Electrically Conductive Indium-Tin-Oxide Thin Films Epitaxially Grown on Yttria-Stabilized Zirconia (100) by Pulsed Laser Deposition”, Appl. Phys. Lett. 76 (2000) 2740–2742.CrossRefGoogle Scholar
  90. 90.
    Ohta H., Orita M., Hirano M., Tanji H., and Hosono H. (2002), “Surface Morphology and Crystal Quality of Low Resistive Indium Tin Oxide Grown on Yttria-Stabilized Zirconia”, J. Appl. Phys. 91 (2002) 3547–3550.CrossRefGoogle Scholar
  91. 91.
    Terzini E., Thilakan P., and Minarini C., “Properties of ITO Thin Films Deposited by RF Reactive Magnetron Sputtering at Elevated Substrate Temperature”, Mater. Sci. Eng. B 77 (2000) 110–114.CrossRefGoogle Scholar
  92. 92.
    Suzuki A., Matsushita T., Aoki T., Yoneyama Y., and Okuda M. (2001), “Pulsed Laser Deposition of Transparent Conducting Indium Tin Oxide Films in Magnetic Field Perpendicular to Plume”, Jpn. J. Appl. Phys. 40 (2001) L401–L403.CrossRefGoogle Scholar
  93. 93.
    Izumi H., Adurodija F.O., Kaneyoshi T., Ishihara T., Yoshioka H., and Motoyama M., “Electrical and Structural Properties of Indium Tin Oxide Films Prepared by Pulsed Laser Deposition”, J. Appl. Phys. 91 (2002) 1213–1218.CrossRefGoogle Scholar
  94. 94.
    Takaoka G.H., Yamazaki D., and Matsuo J., “High Quality ITO Film Formation by the Simultaneous Use of Cluster Ion Beam and Laser Irradiation”, Mater. Chem. Phys. 74 (2002) 104–108.CrossRefGoogle Scholar
  95. 95.
    Ohno S., Kawaguchi Y., Miyamura A., Sato Y., Song P.K., Yoshikawa M., Frach P., and Shigesato, Y., “High Rate Deposition of Tin-Doped Indium Oxide Films by Reactive Magnetron Sputtering with Unipolar Pulsing and Plasma Emission Feedback Systems”, Sci. Technol. Adv. Mater. 7 (2006) 56–61.CrossRefGoogle Scholar
  96. 96.
    Agura H., Suzuki A., Matsushita T., Aoki T., and Okuda M. (2003), “Low Resistivity Transparent Conducting Al-Doped ZnO Films Prepared by Pulsed Laser Deposition”, Thin Solid Films 445 (2003) 263–267.CrossRefGoogle Scholar
  97. 97.
    Park S.-M., Ikegami T., and Ebihara K., “Effects of Substrate Temperature on the Properties of Ga-Doped ZnO by Pulsed Laser Deposition”, Thin Solid Films 513 (2006) 90–94.CrossRefGoogle Scholar
  98. 98.
    Park S.-M., Ikegami T., Ebihara K., and Shin P.-K., “Structure and Properties of Transparent Conductive Doped ZnO Films by Pulsed Laser Deposition”, Appl. Surf. Sci. 253 (2006) 1522–1527.CrossRefGoogle Scholar
  99. 99.
    Bellingham J.R., Phillips W.A., and Adkins C.J., “Intrinsic Performance Limits in Transparent Conducting Oxides”, J. Mater. Sci. Lett. 11 (1992) 263–265.CrossRefGoogle Scholar
  100. 100.
    Suzuki T., Suzuki M., Sawada Y., and Matsushita J.-I., “DSC of Silver-Added Indium-Tin-Oxide (ITO) Transparent Conductive Materials”, Thermochim. Acta 352–353 (2000) 87–90.CrossRefGoogle Scholar
  101. 101.
    Hultåker A., Järrendahl K., Lu J., Granqvist C.G., and Niklasson G.A., “Electrical and Optical Properties of Sputter Deposited Tin Doped Indium Oxide Thin Films with Silver Additive”, Thin Solid Films 392 (2001) 305–310.CrossRefGoogle Scholar
  102. 102.
    Houng B., “Tin Doped Indium Oxide Transparent Conducting Thin Films Containing Silver Nanoparticles by Sol-Gel Technique”, Appl. Phys. Lett. 87 (2005) 251922-1–251922-3.CrossRefGoogle Scholar
  103. 103.
    Lu J., Hultåker A., Niklasson G.A., Granqvist C.G., and Olsson E., “Microstructure of Sputter Deposited Tin Doped Indium Oxide Films with Silver Additive”, Thin Solid Films 479 (2005) 107–112.CrossRefGoogle Scholar
  104. 104.
    Omata T., Kita M., Okada H., Otsuka-Yao-Matsuo S., Ono N., and Ikawa H., “Characterization of Indium-Tin Oxide Sputtering Targets Showing Various Densities of Nodule Formation”, Thin Solid Films 503 (2006) 22–28.CrossRefGoogle Scholar
  105. 105.
    Kim B.-C., Lee J.-H., Kim J.-J., and Ikegami T., “Rapid Rate Sintering of Nanocrystalline Indium Tin Oxide Ceramics: Particle Size Effect”, Mater. Lett. 52 (2002) 114–119.CrossRefGoogle Scholar
  106. 106.
    Rogozin A., Vinnichenko M., Shevchenko N., Kolitsch A., and Möller W., “Plasma Influence on the Properties and Structure of Indium Tin Oxide Films Produced by Reactive Middle Frequency Pulsed Magnetron Sputtering”, Thin Solid Films 496 (2006) 197–204.CrossRefGoogle Scholar
  107. 107.
    Iwase H., Hoshi Y., and Kameyama M., “Electrical Properties of Indium-Tin Oxide Films Deposited on Nonheated Substrates Using a Planar-Magnetron Sputtering System and a Facing-Targets Sputtering System”, J. Vac. Sci. Technol. A 24 (2006) 65–69.CrossRefGoogle Scholar
  108. 108.
    Betz U., Kharazzi Olsson M., Marthy J., Escolà M.F., and Atamny F., “Thin Films Engineering of Indium Tin Oxide: Large Area Flat Panel Displays Application”, Surf. Coating Technol. 200 (2006) 5751–5759.CrossRefGoogle Scholar
  109. 109.
    Bae J.W., Lee S.W., and Yeom G.Y., “Doped-Fluorine on Electrical and Optical Properties of Tin Oxide Films Grown by Ozone-Assisted Thermal CVD”, J. Electrochem. Soc. 154 (2007) D34–D37.CrossRefGoogle Scholar
  110. 110.
    Stjerna B., Olsson E., and Granqvist C.G., “Electrical and Optical Properties of Tin Oxide Films Doped with Oxygen Vacancies, F, Sb, or Mo”, J. Appl. Phys. 76 (1994) 3798–3817.CrossRefGoogle Scholar
  111. 111.
    Kim H. and Piqué A., “Transparent Conducting Sb-Doped SnO2 Thin Films Grown by Pulsed-Laser Deposition”, Appl. Phys. Lett. 84 (2004) 218–220.CrossRefGoogle Scholar
  112. 112.
    Giraldi T.R., Ribeiro C., Escote M.T., Conti T.G., Chiquito A.J., Leite E.R., Longo E., and Varela J.A., “Deposition of Controlled Thickness Ultrathin SnO2:Sb Films by Spin-Coating”, J. Nanosci. Nanotechnol. 6 (2006) 3849–3853.CrossRefGoogle Scholar
  113. 113.
    Hirata G.A., McKittrick, J., Cheeks T., Siqueiros J.M., Diaz J.A., Contreras O., and Lopez O.A., “Synthesis and Optoelectronic Characterization of Gallium Doped Zinc Oxide Transparent Electrodes”, Thin Solid Films 288 (1996) 29–31.CrossRefGoogle Scholar
  114. 114.
    Segura A., Sans J.A., Errandonea D., Martinez-García D., and Fages V. (2006), “High Conductivity of Ga-Doped Rock-Salt ZnO under Pressure: Hint on Deep-Ultraviolet-Transparent Conducting Oxides”, Appl. Phys. Lett. 88 (2006) 011910-1–011910-3.CrossRefGoogle Scholar
  115. 115.
    Nakagawara O., Kishimoto Y., Koshido Y., Yoshino Y., and Makino T., “Moisture-Resistant ZnO Transparent Conductive Films with Ga Heavy Doping”, Appl. Phys. Lett. 89 (2006) 091904-1–091904-3.CrossRefGoogle Scholar
  116. 116.
    Cairns D.R., Witte II R.P., Sparacin D.K., Sachsman S.M., Paine D.C., Crawford G.P., and Newton R.R., “Strain-Dependent Electrical Resistance of Tin-Doped Indium Oxide on Polymer Substrates”, Appl. Phys. Lett. 76 (2000) 1425–1427.CrossRefGoogle Scholar
  117. 117.
    Leterrier Y., Médico L., Månson J.-A.E., Betz U., Escolà M.F., Kharrazi Olsson M., and Atamny F., “Mechanical Integrity of Transparent Conductive Oxide Films for Flexible Polymer-Based Displays”, Thin Solid Films 460 (2006) 156–166.CrossRefGoogle Scholar
  118. 118.
    Cho J.S., Han S., Kim K.H., Beag Y.W., and Koh S.K., “Surface Modification of Polymers by Ion-Assisted Reaction”, Thin Solid Films 445 (2003) 332–341.CrossRefGoogle Scholar
  119. 119.
    Carcia P.F., McLean R.S., Reilly M.H., Li Z.G., Pillone L.J., and Messier R.F., “Low-Stress Indium-Tin-Oxide Thin Films rf Magnetron Sputtered on Polyester Substrates”, Appl. Phys. Lett. 81 (2002) 1800–1802.CrossRefGoogle Scholar
  120. 120.
    Wong F.L., Fung M.K., Tong S.W., Lee C.S., and Lee S.T., “Flexible Organic Light-Emitting Device Based on Magnetron Sputtered Indium-Tin-Oxide on Plastic Substrate”, Thin Solid Films 466 (2004) 225–230.CrossRefGoogle Scholar
  121. 121.
    Dekkers J.M., Rijnders G., and Blank D.H.A., “Role of Sn Doping in In2O3 Thin Films on Polymer Substrates by Pulsed-Laser Deposition at Room Temperature”, Appl. Phys. Lett. 88 (2006) 151908-1–151908-3.CrossRefGoogle Scholar
  122. 122.
    Kim J.H., Jeon K.A., Kim G.H., and Lee S.Y., “Electrical, Structural, and Optical Properties of ITO Thin Films Prepared at Room Temperature by Pulsed Laser Deposition”, Appl. Surf. Sci. 252 (2006) 4834–4837.CrossRefGoogle Scholar
  123. 123.
    Qiu Z., Shin D.-H., Nakada K., Murakami R.-I., and Yoon H.-K., “Influence of the SiO and SiON Layer on IZO Thin Films Deposited on PET by Inclination Opposite Target Type DC Magnetron Sputtering Method”, Int. J. Mod. Phys. B 20 (2006) 3640–3645.CrossRefGoogle Scholar
  124. 124.
    Fortunato E., Pimentel A., Gonçalves, A. Marques A., and R. Martins, “High Mobility Amorphous/Nanocrystalline Indium Zinc Oxide Deposited at Room Temperature”, Thin Solid Films 502 (2006) 104–107.CrossRefGoogle Scholar
  125. 125.
    Han H., Adams D., Mayer J.W., and Alford T.L., “Characterization of the Physical Properties of Indium Tin Oxide on Polyethylene Napthalate”, J. Appl. Phys. 98 (2005) 083705-1–083705-8.Google Scholar
  126. 126.
    Han H., Mayer J.W., and Alford T.L., “Band Gap Shift in the Indium-Tin-Oxide Films on Polyethylene Napthalate after Thermal Annealing in Air”, J. Appl. Phys. 100 (2006) 083715-1–083715-6.Google Scholar
  127. 127.
    Han Y.-G., Kim D.-H., Cho J.-S., Beag Y.-W., and Koh S.-K., “Study of the Substrate Treatment Effect on Initial Growth of Indium-Tin-Oxide Films on Polymer Substrate Using in Situ Conductance Measurement”, Thin Solid Films 496 (2006) 58–63.CrossRefGoogle Scholar
  128. 128.
    Cho S., Lee K., Lim H., and Ha C.-S., “Optical Spectra of Indium-Tin-Oxide Films Deposited on Flexible Colorless Polyimide Substrates”, J. Korean Phys. Soc. 48 (2006) 468–471.Google Scholar
  129. 129.
    Fortunato E., Gonçalves A., Assunção V., Marques A., Águas H., Pereira L., Ferreira I., and Martins R., “Growth of ZnO:Ga Thin Films at Room Temperature on Polymeric Substrates: Thickness Dependence”, Thin Solid Films 442 (2003) 121–126.CrossRefGoogle Scholar
  130. 130.
    Kim J.S., Bae J.W., Kim H.J., Lee N.-E., Yeom G.Y., and Oh K.H., “Effects of Oxygen Radical on the Properties of Indium Tin Oxide Thin Films Deposited at Room Temperature by Oxygen Ion Beam Assisted Evaporation”, Thin Solid Films 377–378 (2000) 103–108.CrossRefGoogle Scholar
  131. 131.
    Kim H.J., Bae J.W., Kim J.S., Kim K.S., Jang Y.C., Yeom G.Y., and Lee N.-E., “Electrical, Optical, and Structural Characteristics of ITO Thin Films by Krypton and Oxygen Dual Ion-Beam Assisted Evaporation at Room Temperature”, Thin Solid Films 377–378 (2000) 115–121.CrossRefGoogle Scholar
  132. 132.
    Bae J.W., Kim J.S., and Yeom G.Y., “Indium-Tin-Oxide Thin Film Deposited by a Dual Ion Beam Assisted e-Beam Evaporation System”, Nucl. Instrum. Methods Phys. Res. B 178 (2001) 311–314.CrossRefGoogle Scholar
  133. 133.
    Kim D., “Low Temperature Deposition of ITO on Organic Films by Using Negative Ion Assisted Dual Magnetron Sputtering System”, Vacuum 81 (2006) 279–284.CrossRefGoogle Scholar
  134. 134.
    Kim D.-H., Park M.-R., Lee H.-J., and Lee G.-H., “Thickness Dependence of Electrical Properties of ITO Films Deposited on a Plastic Substrate by RF Magnetron Sputtering”, Appl. Surf. Sci. 253 (2006) 409–411.CrossRefGoogle Scholar
  135. 135.
    Jung S.K., Kim M.C., Sohn S.H., Park D.K., Lee S.H., and Park L.S., “Properties of Indium Tin Oxide on Polymer Films Deposited by Low-Frequency Magnetron Sputtering Method”, Mol. Cryst. Liq. Cryst. 459 (2006) 167–177.CrossRefGoogle Scholar
  136. 136.
    Park J.M., Kim J.J., Kim H.M., Kim J.H., Ryu S.W., Park S.H., and Ahn J.S., “Substrate Effects on the Characteristics of (In2O3)1–x(ZnO)x Films, J. Korean Phys. Soc. 48 (2006) 1624–1627.Google Scholar
  137. 137.
    Woo B.-J., Hong J.-S., Kim S.-T., Kim H.-M., Park S.-H., Kim J.-J., and Ahn J.-S., “Effect of SiO2 Buffer Layer on the Characteristics of In2O3-ZnO-SnO2 Films Deposited on PET Substrates”, J. Korean Phys. Soc. 48 (2006) 1579–1582.Google Scholar
  138. 138.
    Furubayashi Y., Hitosugi T., Yamamoto Y., Inaba K., Kinoda G., Hirose Y., Shimada T., and Hasegawa T., “A Transparent Metal: Nb-Doped Anatase TiO2”, Appl. Phys. Lett. 86 (2005) 252101-1–252101-3.CrossRefGoogle Scholar
  139. 139.
    Furubayashi Y., Hitosugi T., Yamamoto Y., Hirose Y., Kinoda G., Inaba K., Shimada T., and Hasegawa T., “Novel Transparent Conducting Oxide: Anatase Ti1–xNbxO2”, Thin Solid Films 496 (2006) 157–159.CrossRefGoogle Scholar
  140. 140.
    Hitosugi T., Furubayashi Y., Ueda A., Itabashi K., Inaba K., Hirose Y., Kinoda G., Yamamoto Y., Shimada T., and Hasegawa T., “Ta-Doped Anatase TiO2 Epitaxial Film as Transparent Conducting Oxide”, Jpn. J. Appl. Phys. 34 (2005) L1063–L1065.CrossRefGoogle Scholar
  141. 141.
    Ohta H., Nomura K., Hiramatsu H., Ueda K., Kamiya T., Hirano M., and Hosono H., “Frontier of Transparent Oxide Semiconductors”, Solid-State Electron. 47 (2003) 2261–2267.CrossRefGoogle Scholar
  142. 142.
    Ohta H. and Hosono H., “Transparent Oxide Optoelectronics”, Mater. Today 7(6) (2004) 42–51.CrossRefGoogle Scholar
  143. 143.
    Mott N.F., “Metal-Insulator Transitions”, 2nd edition (Taylor & Francis, London, UK, 1990).Google Scholar
  144. 144.
    Grosse P., “Freie Elektronen in Festkörpern” (Springer, Berlin, Germany, 1979).CrossRefGoogle Scholar
  145. 145.
    Mahan D., “Many Particle Physics” (Plenum, New York, USA, 1981).Google Scholar
  146. 146.
    Hamberg I. and Granqvist C.G., “Evaporated Sn-Doped In2O3 Films: Basic Optical Properties and Applications to Energy Efficient Windows”, J. Appl. Phys. 60 (1986) R123–R159.CrossRefGoogle Scholar
  147. 147.
    Burstein E., “Anomalous Optical Absorption Limit in InSb”, Phys. Rev. 93 (1954) 632–633.CrossRefGoogle Scholar
  148. 148.
    Moss T.S., “The Interpretation of the Properties of Indium Antimonide”, Proc. Phys. Soc. Lond. B 67 (1954) 775–782.CrossRefGoogle Scholar
  149. 149.
    Hamberg I., Granqvist, C.G., Berggren K.-F., Sernelius B.E., and Engström L., “Band-Gap Widening in Heavily Sn-Doped In2O3”, Phys. Rev. B 30 (1984) 3240–3249.CrossRefGoogle Scholar
  150. 150.
    Sernelius B.E., Berggren K.-F., Jin Z.-C, Hamberg I., and Granqvist C.G., “Band-Gap Tailoring of ZnO by Means of Heavy Al Doping”, Phys. Rev. B 37 (1988) 10244–10248.CrossRefGoogle Scholar
  151. 151.
    Jain A., Sagar P., and Mehra R.M., “Band Gap Widening and Narrowing in Moderately and Heavily Doped n-ZnO Films”, Solid-State Electron. 50 (2006) 1420–1424.CrossRefGoogle Scholar
  152. 152.
    Makino T., Sagawa Y., Yoshida S., Tsukazaki A., Ohtomo A., Kawasaki M., and Koinuma H., “Free-Carrier Effects on Zero- and One-Phonon Absorption of n-Type ZnO”, Jpn. J. Appl. Phys. 44 (2005) 7275–7280.CrossRefGoogle Scholar
  153. 153.
    Urbach F., “The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids”, Phys. Rev. 92 (1953) 1324.CrossRefGoogle Scholar
  154. 154.
    Singwi K.S., Tosi M.P., Land R.H., and Sjölander A., “Electron Correlations at Metallic Densities”, Phys. Rev. 176 (1968) 589–599.CrossRefGoogle Scholar
  155. 155.
    Vashishta P. and Singwi K.S., “Electron Correlations at Metallic Densities. V”, Phys. Rev. B 6 (1972) 875–887.CrossRefGoogle Scholar
  156. 156.
    Gerlach E. and Grosse P., “Scattering of Free Electrons and Dynamical Conductivity”, in “Festkörperprobleme/Advances in Solid State Physics”, edited by Treusch J. (Vieweg, Braunschweig, Germany, 1977), Vol. XVII, pp. 157–193.Google Scholar
  157. 157.
    Wooten F., “Optical Properties of Solids” (Academic, New York, USA, 1972).Google Scholar
  158. 158.
    Ederth J., Heszler P., Hultåker A., Niklasson G.A., and Granqvist C.G., “Indium Tin Oxide Films Made from Nanoparticles: Models for the Optical and Electrical Properties”, Thin Solid Films 445 (2003) 199–206.CrossRefGoogle Scholar
  159. 159.
    Ederth J., Johnsson P., Niklasson G.A., Hoel A., Hultåker A., Heszler P., Granqvist C.G., van Doorn A.R., Jongerius M.J., and Burgard D., “Electrical and Optical Properties of Thin Films Consisting of Tin-Doped Indium Oxide Nanoparticles”, Phys. Rev. B 68 (2003) 155410-1–155410-10.CrossRefGoogle Scholar
  160. 160.
    Ederth J., Hultåker A., Niklasson G.A., Heszler P., van Doorn A.R., Jongerius M.J., Burgard D., and Granqvist C.G., “Thin Porous Indium Tin Oxide Nanoparticle Films: Effects of Annealing in Vacuum and Air”, Appl. Phys. A 81 (2005) 1363–1368.CrossRefGoogle Scholar
  161. 161.
    Solieman A. and Aegerter M.A., Modeling of Optical and Electrical Properties of In2O3:Sn Coatings Made by Various Techniques”, Thin Solid Films 502 (2006) 205–211.CrossRefGoogle Scholar
  162. 162.
    Eriksson T.S., Jiang S., and Granqvist C.G., “Dielectric Function of Sputter-Deposited Silicon Dioxide and Silicon Nitride Films in the Thermal Infrared”, Appl. Opt. 24 (1985) 745–746.CrossRefGoogle Scholar
  163. 163.
    Eriksson T.S. and Granqvist C.G., “Infrared Optical Properties of Silicon Oxynitride Films: Experimental Data and Theoretical Interpretation”, J. Appl. Phys. 60 (1986) 2081–2091.CrossRefGoogle Scholar
  164. 164.
    Rohsenow W.M., Hartnett J.P., and Cho Y.I., “Handbook of Heat Transfer”, 3rd edition (McGraw-Hill, New York, USA, 1997).Google Scholar
  165. 165.
    Karlsson J. and Roos A., “Annual Energy Window Performance vs. Glazing Thermal Emittance: The Relevance of Very Low Emittance Values”, Thin Solid Films 392 (2001) 345–348.CrossRefGoogle Scholar
  166. 166.
    Hamberg I. and Granqvist C.G., “Color Properties of Transparent and Heat-Reflecting MgF2-Coated Indium-Tin-Oxide”, Appl. Opt. 22 (1983) 609–614.CrossRefGoogle Scholar
  167. 167.
    Jiang S.-J., Jin Z.-C., and Granqvist C.G., “Low-Refractive-Index Indium-Tin-Oxyfluoride Thin Films Made by High-Rate Reactive dc Magnetron Sputtering”, Appl. Opt. 27 (1988) 2847–2850.CrossRefGoogle Scholar
  168. 168.
    Yin Z.Q., Stjerna B., and Granqvist C.G., “Antireflection Coatings of Sputter-Deposited SnOxFy and SnNxFy”, Proc. Soc. Photo-Opt. Instrum. Eng. 1536 (1991) 149–157.Google Scholar
  169. 169.
    Jin Z.-C., Hamberg I., and Granqvist C.G., “Optical Properties of Sputter-Deposited ZnO:Al Thin Films”, J. Appl. Phys. 64 (1988) 5117–5131.CrossRefGoogle Scholar
  170. 170.
    Ederth J., Niklasson G.A., Hultåker A., Heszler P., Granqvist C.G., van Doorn A.R., Jongerius M.J., and Burgard D., “Characterization of Porous Indium Tin Oxide Thin Films Using Effective Medium Theory”, J. Appl. Phys. 93 (2003) 984–988.CrossRefGoogle Scholar
  171. 171.
    Sheng P., “Fluctuation-Induced Tunnelling Conduction in Disordered Materials”, Phys. Rev. B 21 (1980) 2180–2195.CrossRefGoogle Scholar
  172. 172.
    Collins R.E. and Simko T.M., “Current Status of the Science and Technology of Vacuum Glazing”, Solar Energy 62 (1998) 189–213.CrossRefGoogle Scholar
  173. 173.
    Griffiths P.W., di Leo M., Cartwright P., Eames P.C., Yianoulis P., Leftheriotis G., and Norton B., “Fabrication of Evacuated Glazing at Low Temperature”, Solar Energy 63 (1998) 243–249.CrossRefGoogle Scholar
  174. 174.
    Ng N., Collins R.E., and So L., “Thermal and Optical Evolution of Gas in Vacuum Glazing”, Mater. Sci. Eng. B 119 (2005) 258–264.CrossRefGoogle Scholar
  175. 175.
    Minaai T., Kumagai M., Nara A., and Tanemura S., “Study of the Outgassing Behavior of SnO2:F Films on Glass in Vacuum under External Energy Excitation”, Mater. Sci. Eng. B 119 (2005) 252–257.CrossRefGoogle Scholar
  176. 176.
    Granqvist C.G. and Eriksson T.S., “Materials for Radiative Cooling to Low Temperatures”, in “Materials Science for Solar Energy Conversion Systems”, edited by Granqvist C.G. (Pergamon, Oxford, UK, 1991), Ch. 6, pp. 168–203.Google Scholar
  177. 177.
    Cucumo M., De Rosa A., and Marinelli V., “Experimental Testing of Correlations to Calculate the Atmospheric “Transparency Window” Emissivity Coefficient”, Solar Energy 80 (2006) 1031–1038.CrossRefGoogle Scholar
  178. 178.
    Eriksson T.S. and Granqvist C.G., “Radiative Cooling Computed for Model Atmospheres”, Appl. Opt. 21 (1982) 4381–4388.CrossRefGoogle Scholar
  179. 179.
    Nilsson T.M.J., Niklasson G.A., and Granqvist C.G., “A Solar Reflecting Material for Radiative Cooling Applications: ZnS Pigmented Polyethylene”, Solar Energy Mater. Solar Cells 28 (1992) 175–193.CrossRefGoogle Scholar
  180. 180.
    Mastai Y., Diamant Y., Aruna S.T., and Zaban A., “TiO2 Nanocrystalline Pigmented Polyethylene Foils for Radiative Cooling Applications: Synthesis and Characterization”, Langmuir 17 (2001) 7118–7123.CrossRefGoogle Scholar
  181. 181.
    Nilsson T.M.J., Vargas W.E., Niklasson G.A., and Granqvist C.G., “Condensation of Water by Radiative Cooling”, Renewable Energy 5 (1992) 310–317.CrossRefGoogle Scholar
  182. 182.
    Hamberg I., Svensson J.S.E.M., Eriksson T.S., Granqvist C.G., Arrenius P., and Norin F., “Radiative Cooling and Frost Formation on Surfaces with Different Thermal Emittance: Theoretical Analysis and Practical Experience”, Appl. Opt. 26 (1987) 2131–2136.CrossRefGoogle Scholar
  183. 183.
    Werner A. and Roos A., “Condensation Tests on Glass Samples for Energy Efficient Windows”, in “Conference Proceedings: EuroSun 2006, Glasgow, UK, 27–30 June”, edited by Burek S., Hutchins M.G., Lockhart-Ball H., and Abrahamson S. (The Solar Energy Society, Abingdon, UK, 2006), 6 pages.Google Scholar
  184. 184.
    Fujishima A., Hashimoto K., and Watanabe T., “TiO2 Photocatalysis” (BKC, Tokyo, Japan, 1999).Google Scholar
  185. 185.
    Kaneko M. and Okura I., editors, “Photocatalysis: Science and Technology” (Springer, Berlin, Germany, 2002).Google Scholar
  186. 186.
    Parkin I.P. and Palgrave R.G., “Self-Cleaning Coatings”, J. Mater. Chem. 15 (2005) 1689–1695.CrossRefGoogle Scholar
  187. 187.
    Paschoalino M.P., Kiwi J., and Jardim W.F., “Gas-Phase Photocatalytic Decontamination Using Polymer Supported TiO2”, Appl. Catal. B Environ. 68 (2006) 68–73.CrossRefGoogle Scholar
  188. 188.
    Sánchez B., Coronado J.M., Candal R., Portela R., Tejedor I., Anderson M.A., Tompkins D., and Lee T., “Preparation of TiO2 Coatings on PET Monoliths for the Photocatalytic Elimination of Trichloroethylene in the Gas Phase”, Appl. Catal. B Environ. 66 (2006) 295–301.CrossRefGoogle Scholar
  189. 189.
    Zhang X., Jin M., Liu Z., Nishimoto S., Saito H., Murakami T., and Fujishima A., “Preparation and Photocatalytic Wettability Conversion of TiO2-Based Superhydrophobic Surfaces”, Langmuir 22 (2006) 9477–9479.CrossRefGoogle Scholar
  190. 190.
    Asahi R., Morikawa T., Ohwaki T., Aoki K., and Taga Y., “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides”, Science 293 (2001) 296–271.CrossRefGoogle Scholar
  191. 191.
    Lindgren T., Mwabora J.M., Avendaño E., Jonsson J., Hoel A., Granqvist C.G., and Lindquist S.-E., “Photoelectrochemical and Optical Properties of Nitrogen Doped Titanium Dioxide Films Prepared by Reactive DC Magnetron Sputtering”, J. Phys. Chem. B 107 (2003) 5709–5716.CrossRefGoogle Scholar
  192. 192.
    Mwabora J.M., Lindgren T., Avendaño E., Jaramillo T.F., Lu J., Lindquist S.-E., and Granqvist C.G., “Composition and Morphology of Photoelectrochemically Active TiO2–xNx Thin Films Deposited by Reactive DC Magnetron Sputtering”, J. Phys. Chem. B 108 (2004) 20193–20198.CrossRefGoogle Scholar
  193. 193.
    Romualdo Torres G., Lindgren T., Lu J., Granqvist C.G., and Lindquist S.-E., “Photoelectrochemical Study of Nitrogen-Doped Titanium Dioxide for Water Oxidation”, J. Phys. Chem. B 108 (2004) 5995–6003.CrossRefGoogle Scholar
  194. 194.
    Gao B.-F., Ma Y., Cao Y.-A., Yang W.-S., and Yao J.-N., “Great Enhancement of Photocatalytic Activity of Nitrogen-Doped Titania by Coupling with Tungsten Oxide”, J. Chem. Phys. 110 (2006) 14391–14397.CrossRefGoogle Scholar
  195. 195.
    Takeuchi M., Yamasaki T., Tsujimaru K., and Anpo M., “Preparation of Crystalline TiO2 Thin Film Photocatalysts on Polycarbonate Substrates by a RF-Magnetron Sputtering Deposition Method”, Chem. Lett. 35 (2006) 904–905.CrossRefGoogle Scholar
  196. 196.
    Yang C., Tartaglino U., and Persson B.N.J., “Influence of Surface Roughness on Superhydrophobicity”, Phys. Rev. Lett. 97 (2006) 116103-1–116103-4.Google Scholar
  197. 197.
    Krč J., Zeman M., Kluth O., Smole F., and Topič M., “Effect of Roughness of ZnO:Al Films on Light Scattering in Hydrogenated Amorphous Silicon Solar Cells”, Thin Solid Films 426 (2003) 296–304.CrossRefGoogle Scholar
  198. 198.
    Hüpkes J., Rech B., Calnan S., Kluth O., Zastrow U., Siekmann H., and Wuttig M., “Material Study on Reactively Sputtered Zinc Oxide for Thin Film Silicon Solar Cells”, Thin Solid Films 502 (2006) 286–291.CrossRefGoogle Scholar
  199. 199.
    Ruske F., Jacobs C., Sittinger V., Szyszka B., and Werner W., “Large-Area ZnO:Al Films with Tailored Light Scattering Properties for Photovoltaic Applications”, Thin Solid Films 515 (2007) 8695–8698CrossRefGoogle Scholar
  200. 200.
    Kambe M., Sato K., Kobayashi D., Kurokawa Y., Miyajima S., Fukawa M., Taneda, N., Yamada A., and Konagai M., “TiO2-Coated Transparent Conductive Oxide (SnO2:F) Films Prepared by Atmospheric Pressure Chemical Vapor Deposition with High Durability against Atomic Hydrogen”, Jpn. J. Appl. Phys. 45 (2006) L291–L293.CrossRefGoogle Scholar
  201. 201.
    Natsuhara H., Matsumoto K., Yoshida N., Itoh T., Nonomura S., Fukawa M., and Sato K., “TiO2 Thin Films as Protective Material for Transparent-Conducting Oxides Used in Si Thin Film Solar Cells”, Solar Energy Mater. Solar Cells 90 (2006) 2867–2880.CrossRefGoogle Scholar
  202. 202.
    Abduev A. Kh., Akhmedov A.K., and Asvarov A.Sh., “The Structural and Electrical Properties of Ga-Doped ZnO and Ga,B-Codoped ZnO Thin Films: The Effects of Additional Boron Impurity”, Solar Energy Mater. Solar Cells 91 (2007) 258–260.CrossRefGoogle Scholar
  203. 203.
    Miyata T., Honma Y., and Minami T., “Preparation of Transparent Conducting B-Doped ZnO Films by Vacuum Arc Plasma Evaporation”, J. Vac. Sci. Technol. A 25 (2007) 1193–1197.CrossRefGoogle Scholar
  204. 204.
    Du Pasquier A., Unalan H.E., Kanwal A., Miller S., and Chhowalla M., “Conducting and Transparent Single-Wall Carbon Nanotube Electrodes for Polymer-Fullerene Solar Cells”, Appl. Phys. Lett. 87 (2005) 203511-1–203511-3.CrossRefGoogle Scholar
  205. 205.
    Ulbricht R., Lee S.B., Jiang X., Inoue K., Zhang M., Fang S., Baughman R.H., and Zakhidov A.A., “Transparent Carbon Nanotube Sheets as 3-D Charge Collectors in Organic Solar Cells”, Solar Energy Mater. Solar Cells 91 (2007) 416–419.CrossRefGoogle Scholar
  206. 206.
    Rowell M.W., Topinka M.A., McGehee M.D., Prall H.-J., Dennler G., Sariciftci S., Hu L.-B., and Gruner G., “Organic Solar Cells with Carbon Nanotube Network Electrodes”, Appl. Phys. Lett. 88 (2006) 233506-1–233506-3.CrossRefGoogle Scholar
  207. 207.
    van de Lagemaat J., Barnes T.M., Rumbles G., Shaheen S.E., Coutts T.J., Weeks C., Levitsky I., Peltola J., and Glatkowski P., “Organic Solar Cells with Carbon Nanotubes Replacing In2O3:Sn as the Transparent Electrode”, Appl. Phys. Lett. 88 (2006) 233503-1–233503-3.Google Scholar
  208. 208.
    Hino T., Ogawa Y., and Kuramoto N., “Dye-Sensitized Solar Cell with Single-Walled Carbon Nanotube Thin Film Prepared by an Electrolytic Micelle Disruption Method as the Counterelectrode”, Fullerenes Nanotubes Carbon Nanostruct. 14 (2006) 607–619.CrossRefGoogle Scholar
  209. 209.
    Tonooka K., Bando H., and Aiura Y., “Photovoltaic Effect Observed in Transparent p-n Heterojunctions Based on Oxide Semiconductors”, Thin Solid Films 445 (2003) 327–331.CrossRefGoogle Scholar
  210. 210.
    Mwamburi M., Wäckelgård E., Roos A., and Kivaisi R., “Polarization-Dependent Angular-Optical Reflectance in Solar-Selective SnOx/Al2O3/Al Reflector Surfaces”, Appl. Opt. 41 (2002) 2428–2434.CrossRefGoogle Scholar
  211. 211.
    Morrison G.L., “Solar Collectors”, in “Solar Energy: The State of the Art”, edited by Gordon J. (James & James, London, UK, 2001), Chs. 4 & 5, pp. 145–289.Google Scholar
  212. 212.
    Haitjema H. and Elich J., “The Physical Properties of Fluorine-Doped Tin Dioxide Films and the Influence of Ageing and Impurity Effects”, Solar Energy Mater. 16 (1987) 79–90.CrossRefGoogle Scholar
  213. 213.
    Mbise G., Smith G.B., Niklasson G.A., and Granqvist C.G., “Angular Selective Window Coatings: Theory and Experiment”, Proc. Soc. Photo-Opt. Instrum. Eng. 1149 (1989) 179–199.Google Scholar
  214. 214.
    Otiti T., Niklasson G.A., Svedlindh P., and Granqvist C.G., “Anisotropic Optical, Magnetic, and Electrical Properties of Obliquely Evaporated Ni Films”, Thin Solid Films 307 (1997) 245–249.CrossRefGoogle Scholar
  215. 215.
    Leamy H.J., Gilmer G.H., and Dirks A.G., “The Microstructure of Vapor Deposited Thin Films”, in “Current Topics in Materials Science”, edited by Kaldis E. (North-Holland, Amsterdam, The Netherlands, 1980), Vol. 6, pp. 309–344.Google Scholar
  216. 216.
    Lakhtakia A. and Messier R., “Sculptured Thin Films: Nanoengineered Morphology and Optics” (SPIE Engr. Press, Bellingham, USA, 2004).Google Scholar
  217. 217.
    Brett M.J., “Simulation of Structural Transitions in Thin Films”, J. Mater. Sci. 24 (1989) 623–626.CrossRefGoogle Scholar
  218. 218.
    Lamarre J.-M., Yu Z., Harkati C., Roorda S., and Martinu L., Optical and Microstructural Properties of Nanocomposite Au/SiO2 Films Containing Particles Deformed by Heavy Ion Irradiation”, Thin Solid Films 479 (2005) 232–237.CrossRefGoogle Scholar
  219. 219.
    Mbise G.W., Le Bellac D., Niklasson G.A., and Granqvist C.G., “Angular Selective Window Coatings: Theory and Experiments”, J. Phys. D Appl. Phys. 30 (1997) 2103–2122.CrossRefGoogle Scholar
  220. 220.
    Smith G.B., Dligatch S., Sullivan R., and Hutchins M.G., “Thin Film Angular Selective Glazing”, Solar Energy 62 (1998) 229–244.CrossRefGoogle Scholar
  221. 221.
    Mbise G.W., Niklasson G.A., and Granqvist C.G., “Obliquely Evaporated Cr Films with Large Angular Selectivity”, J. Appl. Phys. 77 (1995) 2816–2818.CrossRefGoogle Scholar
  222. 222.
    Mbise G.W., Niklasson G.A., Granqvist C.G., and Palmer S., “Angular-Selective Optical Transmittance through Obliquely Evaporated Cr Films: Experiments and Theory”, J. Appl. Phys. 80 (1996) 5361–5364.CrossRefGoogle Scholar
  223. 223.
    Le Bellac D., Niklasson G.A., and Granqvist C.G., “Angular-Selective Optical Transmittance of Anisotropic Inhomogeneous Cr-Based Films Made by Sputtering”, J. Appl. Phys. 77 (1995) 6145–6151.CrossRefGoogle Scholar
  224. 224.
    Palmer S., Mbise G.W., Niklasson G.A., and Granqvist C.G., “Angular Selective Properties of Thin Films: Measurement of Polar and Azimuthal Transmittance”, Solar Energy Mater. Solar Cells 44 (1996) 397–403.CrossRefGoogle Scholar
  225. 225.
    Campagno A., “Intelligente Glasfassaden/Intelligent Glass Façades”, 5th edition (Birkhäuser, Basel, Switzerland, 2002).Google Scholar
  226. 226.
    Lampert C.M., “Chromogenic Smart Materials”, Mater. Today 7(3) (2004) 28–35.CrossRefGoogle Scholar
  227. 227.
    Hoffman H.J., “Photochromic Glass”, in “Large-Area Chromogenics: Materials and Devices for Transmittance Control”, edited by Lampert C.M. and Granqvist C.G. (The International Society for Optical Engineering, Bellingham, USA, 1990), Vol. IS4, pp. 86–101.Google Scholar
  228. 228.
    Chu N.Y.C., “Photochromic Plastics”, in “Large-Area Chromogenics: Materials and Devices for Transmittance Control”, edited by Lampert C.M. and Granqvist C.G. (The International Society for Optical Engineering, Bellingham, USA, 1990), Vol. IS4, pp. 102–120.Google Scholar
  229. 229.
    Minkin V.I., “Photo-, Thermo-, Solvato-, and Electrochromic Spiroheterocyclic Compounds”, Chem. Rev. 104 (2004) 2751–2776.CrossRefGoogle Scholar
  230. 230.
    Sone K. and Fukuda Y., “Inorganic Thermochromism” (Springer, Berlin, Germany, 1987), Springer Series on Inorganic Chemistry Concepts, Vol. 10.Google Scholar
  231. 231.
    Day J.H., “Science and Technology of Thermochromic Materials”, in “Large-Area Chromogenics: Materials and Devices for Transmittance Control”, edited by Lampert C.M. and Granqvist C.G. (The International Society for Optical Engineering, Bellingham, USA, 1990), Vol. IS4, pp. 122–141.Google Scholar
  232. 232.
    Granqvist C.G., “Handbook of Inorganic Electrochromic Materials” (Elsevier, Amsterdam, The Netherlands, 1995; reprinted 2002).Google Scholar
  233. 233.
    Monk P.M.S., Mortimer R.J., and Rosseinsky D.R., “Electrochromism: Fundamentals and Applications” (VCH, Weinheim, Germany, 1995).Google Scholar
  234. 234.
    Granqvist C.G., “Electrochromic Tungsten Oxide Films: Review of Progress 1993–1998”, Solar Energy Mater. Solar Cells 60 (2000) 201–262.CrossRefGoogle Scholar
  235. 235.
    Granqvist C.G., Avendaño E., and Azens A., “Advances in Electrochromic Materials and Devices: Survey of Some Recent Advances”, Thin Solid Films 442 (2003) 201–211.CrossRefGoogle Scholar
  236. 236.
    Byker H., “Electrochromics and Polymers”, Electrochim. Acta 46 (2001) 2015–2022.CrossRefGoogle Scholar
  237. 237.
    Notten P.H.L., Ouwerkerk M., Ledovskikh A., Senoh H., and Iwakura C., “Hydride Forming Electrode Materials Seen from a Kinetic Perspective”, J. Alloys Compd. 356/357 (2003) 759–763.CrossRefGoogle Scholar
  238. 238.
    Greenberg C.B., “Undoped and Doped VO2 Films Grown from VO(OC3H7)3”, Thin Solid Films 110 (1983) 73–82.CrossRefGoogle Scholar
  239. 239.
    Jorgenson G.V. and Lee J.C., “Doped Vanadium Oxide for Optical Switching Films”, Solar Energy Mater. 14 (1986) 205–214.CrossRefGoogle Scholar
  240. 240.
    Babulanam S.M., Eriksson T.S., Niklasson G.A., and Granqvist C.G., “Thermochromic VO2 Films for Energy Efficient Windows”, Solar Energy Mater. 16 (1987) 347–363.CrossRefGoogle Scholar
  241. 241.
    Manning T.D., Parkin I.P., Pemble M.E., Sheel D., and Vernardou D., “Intelligent Window Coatings: Atmospheric Pressure Chemical Vapor Deposition of Tungsten-Doped Vanadium Dioxide”, Chem. Mater. 16 (2004) 744–749.CrossRefGoogle Scholar
  242. 242.
    Parkin I.P. and Manning T.D., “Intelligent Thermochromic Windows”, J. Chem. Educ. 83 (2006) 393–400.CrossRefGoogle Scholar
  243. 243.
    Miyazaki H. and Yasui I., “Effect of Buffer Layer on VOx Film Fabrication by Reactive RF Sputtering”, Appl. Surf. Sci. 252 (2006) 8367–8370.CrossRefGoogle Scholar
  244. 244.
    Qazilbash M.M., Burch K.S., Whisler D., Shrekenhamer D., Chae B.G., Kim H.T., and Basov D.N., “Correlated Metallic State of Vanadium Dioxide”, Phys. Rev. B 74 (2006) 205118-1–205118-5.CrossRefGoogle Scholar
  245. 245.
    Jorgenson G.V. and Lee J.C., “Thermochromic Materials and Devices: Inorganic Systems”, in “Large-Area Chromogenics: Materials and Devices for Transmittance Control”, edited by Lampert C.M. and Granqvist C.G. (The International Society for Optical Engineering, Bellingham, USA, 1990), Vol. IS4, pp. 86–101.Google Scholar
  246. 246.
    Katzke H. and Schlögl R., “General Structural Relationships between Rutile-Type VO2 and the Magnéli-Phases VnO2n–1”, Z. Kristallogr. 218 (2003) 432–439.CrossRefGoogle Scholar
  247. 247.
    Sobhan M.A., Kivaisi R.T., Stjerna B., and Granqvist C.G., “Thermochromism of Sputter Deposited WxV1–xO2 Films”, Solar Energy Mater. Solar Cells 44 (1996) 451–455.CrossRefGoogle Scholar
  248. 248.
    Xu G., Jin P., Tazawa M., and Yoshimura K., “Thickness Dependence of Optical Properties of VO2 Thin Films Epitaxially Grown on Sapphire (0001)”, Appl. Surf. Sci. 244 (2005) 449–452.CrossRefGoogle Scholar
  249. 249.
    Jiang S.-J., Ye C.-B., Khan M.S.R., and Granqvist C.G., “Evolution of Thermochromism During Oxidation of Evaporated Vanadium Films”, Appl. Opt. 30 (1991) 847–851.CrossRefGoogle Scholar
  250. 250.
    Yuan N.-Y., Li J.-H., and Lin C.-L., “Valence Reduction Process from Sol-Gel V2O5 to VO2 Thin Films”, Appl. Surf. Sci. 191 (2002) 176–180.CrossRefGoogle Scholar
  251. 251.
    Rogers K.D., Coat J.A., and Lovell M.C., “Characterization of Epitaxially Grown Films of Vanadium Oxides”, J. Appl. Phys. 70 (1991) 1412–1415.CrossRefGoogle Scholar
  252. 252.
    Aliev R. A., Andreev V. N., Kapralova V. M., Klimov V. A., Sobolev A. I., and Shadrin E. B., “Effect of Grain Sizes on the Metal-Insulator Phase Transition in Vanadium Dioxide Polycrystalline Thin Films”, Fiz. Tverd. Tela 48 (2006) 682–687 [English translation Phys. Solid State 48 (2006) 929–934].Google Scholar
  253. 253.
    Narayan J. and Bhosle V.M. (2006), “Phase Transition and Critical Issues in Structure-Property Correlations of Vanadium Oxide”, J. Appl. Phys. 100 (2006) 103524-1–103524-6.Google Scholar
  254. 254.
    Jin P., Tazawa M., Ikeyama M., Tanemura S., Macák K., Wang X., Olafsson S., and Helmersson U., “Growth and Characterization of Epitaxial Films of Tungsten-Doped Vanadium Oxides on Sapphire (110) by Reactive Magnetron Sputtering”, J. Vac. Sci. Technol. A 17 (1999) 1817–1821.CrossRefGoogle Scholar
  255. 255.
    Jin P., Tazawa M., Yoshimura K., Igarashi K., Tanemura S., Macák K., and Helmersson U., “Epitaxial Growth of W-Doped VO2/V2O3 Multilayer on α-Al2O3(110) by Reactive Magnetron Sputtering”, Thin Solid Films 375 (2000) 128–131.CrossRefGoogle Scholar
  256. 256.
    Tazawa M., Jin P., and Tanemura S., “Optical Constants of V1–xWxO2 Films”, Appl. Opt. 37 (1998) 1858–1861.CrossRefGoogle Scholar
  257. 257.
    Tazawa M., Jin P., Yoshimura K., Miki T., and Tanemura S., “New Material Design with V1–xWxO2 Film for Sky Radiator to Obtain Temperature Stability”, Solar Energy 64 (1998) 3–7.CrossRefGoogle Scholar
  258. 258.
    Kato K., Song P.K., Odaka H., and Shigesato Y., “Study on Thermochromic VO2 Films Grown on ZnO-Coated Glass Substrates for «Smart Windows»”, Jpn. J. Appl. Phys. 42 (2003) 6523–6531.CrossRefGoogle Scholar
  259. 259.
    Hörlin T., Niklewski T., and Nygren M., “Electrical and Magnetic Properties of V1–xWxO2, 0 ≤ x ≤ 0.060”, Mater. Res. Bull. 7 (1972) 1515–1524.CrossRefGoogle Scholar
  260. 260.
    Tang C., Georgopolous P., Fine M.E., Cohen J.B., Nygren M., Knapp G.S., and Aldred A., “Local Atomic and Electronic Arrangements in WxV1–xO2”, Phys. Rev. B 31 (1985) 1000–1011.CrossRefGoogle Scholar
  261. 261.
    Wang H.-C., Yi X.-J., and Li Y., “Fabrication of VO2 Films with Low Transition Temperature for Optical Switching Applications”, Opt. Commun. 256 (2005) 305–309.CrossRefGoogle Scholar
  262. 262.
    Lopez R., Boatener L.A., Haynes T.E., Haglund, Jr., R.F., and Feldman L.C., “Switchable Reflectivity on Silicon From a Composite VO2-SiO2 Protecting Layer”, Appl. Phys. Lett. 85 (2004) 1410–1412.CrossRefGoogle Scholar
  263. 263.
    Chen H.-K., Hung H.-C., Yang T.C.-K., and Wang S.-F., “The Preparation and Characterization of Transparent Nano-Sized Thermochromic VO2-SiO2 Films from the Sol-Gel Process”, J. Non-Cryst. Solids 347 (2004) 138–143.CrossRefGoogle Scholar
  264. 264.
    Khan M.S.R., Khan K.A., Estrada W., and Granqvist C.G., “Electrochromism and Thermochromism of LixVO2 Thin Films”, J. Appl. Phys. 69 (1991) 3231–3234.CrossRefGoogle Scholar
  265. 265.
    Khan K.A., Niklasson G.A., and Granqvist C.G., “Optical Properties at the Metal-Insulator Transition in Thermochromic VO2–xFx Thin Films”, J. Appl. Phys. 64 (1988) 3327–3329.CrossRefGoogle Scholar
  266. 266.
    Khan K.A. and Granqvist C.G., “Thermochromic Sputter-Deposited Vanadium Oxyfluoride Coatings with Low Luminous Absorptance”, Appl. Phys. Lett. 55 (1989) 4–6.CrossRefGoogle Scholar
  267. 267.
    Rakotoniaina J.C., Mokrani-Tamellin R., Gavarri J.R., Vacquier G., Casalot, A., and Calvarin G., “The Thermochromic Vanadium Dioxide: I. Role of Stresses and Substitution on Switching Properties”, J. Solid State Chem. 103 (1993) 81–94.CrossRefGoogle Scholar
  268. 268.
    Muraoka Y., Ueda Y., and Hiroi Z., “Large Modification of the Metal-Insulator Transition Temperature in Strained VO2 Films Grown on TiO2 Substrates”, J. Phys. Chem. Solids 63 (2002) 965–967.CrossRefGoogle Scholar
  269. 269.
    Jin P., Xu G., Tazawa M., and Yoshimura K. (2002), “A VO2-Based Multifunctional Window with Highly Improved Luminous Transmittance”, Jpn. J. Appl. Phys. 41 (2002) L278–L280.CrossRefGoogle Scholar
  270. 270.
    Xu G., Jin P., Tazawa M., and Yoshimura K., “Optimization of Antireflection Coating for VO2-Based Energy Efficient Window”, Solar Energy Mater. Solar Cells 83 (2004) 29–37.CrossRefGoogle Scholar
  271. 271.
    Deb S.K., “A Novel Electrophotographic System”, Appl. Opt. Suppl. 3 (1969) 192–195.Google Scholar
  272. 272.
    Deb S.K., “Optical and Photoelectric Properties and Colour Centres in Thin Films of Tungsten Oxide”, Philos. Mag. 27 (1973) 801–822.CrossRefGoogle Scholar
  273. 273.
    Svensson J.S.E.M. and Granqvist C.G., “Electrochromic Tungsten Oxide Films for Energy Efficient Windows”, Solar Energy Mater. 11 (1984) 29–34.CrossRefGoogle Scholar
  274. 274.
    Svensson J.S.E.M. and Granqvist C.G., “Electrochromic Coatings for “Smart Windows”, Solar Energy Mater. 12 (1985) 391–402.CrossRefGoogle Scholar
  275. 275.
    Granqvist C.G., “Electrochromic Materials: Out of a Niche”, Nat. Mater. 5 (2006) 89–90.CrossRefGoogle Scholar
  276. 276.
    Sian T.S. and Reddy G.B., “Effect of Size and Valency of Intercalant Ions on Optical Properties of Polycrystalline MoO3 Films”, J. Electrochem. Soc. 152 (2005) A2323–A2326.CrossRefGoogle Scholar
  277. 277.
    Sian T.S., Reddy G.B., and Shivaprasad S.M., “Effect of Microstructure and Stoichiometry on Absorption in Mg Intercalated MoO3 Thin Films”, Electrochem. Solid-State Lett. 9 (2005) A120–A122.CrossRefGoogle Scholar
  278. 278.
    Kraft A., Rottman M., and Heckner K.-H., “Large-Area Electrochromic Glazing with Ion-Conducting PVB Interlayer and Two Complementary Electrodeposited Electrochromic Layers”, Solar Energy Mater. Solar Cells 90 (2006) 469–476.CrossRefGoogle Scholar
  279. 279.
    Wu Z.-C., Chen Z.-H., Du X., Logan J.M., Sippel J., Nikolou M., Kamaras K., Reynolds J.R., Tanner D.B., Hebard A.F., and Rinzler A.G., “Transparent, Conductive Carbon Nanotube Films”, Science 305 (2004) 1273–1276.CrossRefGoogle Scholar
  280. 280.
    Georg A., Georg A., and Opara Krašovec U., “Photoelectrochromic Window with Pt Catalyst”, Thin Solid Films 502 (2006) 246–251.CrossRefGoogle Scholar
  281. 281.
    Rönnow D., Kullman L., and Granqvist C.G., “Spectroscopic Light Scattering from Electrochromic Tungsten-Oxide-Based Films”, J. Appl. Phys. 80 (1996) 423–430.CrossRefGoogle Scholar
  282. 282.
    Lindström T., Kullman L., Rönnow D., Ribbing C.-G., and Granqvist C.G., “Electrochromic Control of Thin Film Light Scattering”, J. Appl. Phys. 81 (1997) 1464–1469.CrossRefGoogle Scholar
  283. 283.
    Le Bellac D., Azens A., and Granqvist C.G., “Angular Selective Transmittance through Electrochromic Tungsten Oxide Films Made by Oblique Angle Sputtering”, Appl. Phys. Lett. 66 (1995) 1715–1715.CrossRefGoogle Scholar
  284. 284.
    Azens A., Vaivars G., Veszelei M., Kullman L., and Granqvist C.G., “Electrochromic Devices Embodying W Oxide/Ni Oxide Tandem Films”, J. Appl. Phys. 89 (2001) 7885–7887.CrossRefGoogle Scholar
  285. 285.
    Yoo S.J., Lim J.W., and Sung Y.-E., “Improved Electrochromic Device with an Inorganic Solid Electrolyte Protective Layer”, Solar Energy Mater. Solar Cells 90 (2006) 477–484.CrossRefGoogle Scholar
  286. 286.
    Heusing S., Sun D.-L., Otero-Anaya J., and Aegerter M.A., “Grey, Brown and Blue Coloring Sol-Gel Electrochromic Devices”, Thin Solid Films 502 (2006) 240–245.CrossRefGoogle Scholar
  287. 287.
    Niklasson G.A. and Granqvist C.G., “Electrochromics for Smart Windows: Thin Films of Tungsten Oxide and Nickel Oxide, and Devices Based on These”, J. Mater. Chem. 17 (2007) 127–156.CrossRefGoogle Scholar
  288. 288.
    Agnihotry S.A., Singh P., Joshi A.G., Singh D.P., Sood K.N., and Shivaprasad S.M., “Electrodeposited Prussian Blue Films: Annealing Effects”, Electrochim. Acta 51 (2006) 4291–4301.CrossRefGoogle Scholar
  289. 289.
    Hjelm A., Granqvist C.G., and Wills J. M., “Electronic Structure and Optical Properties of WO3, LiWO3, NaWO3, and HWO3”, Phys. Rev. B 54 (1996) 2436–2445.CrossRefGoogle Scholar
  290. 290.
    Chatten R., Chadwick A.V., Rougier A., and Lindan P.J.D., “The Oxygen Vacancy in Crystal Phases of WO3”, J. Phys. Chem. B 109 (2005) 3146–3156.CrossRefGoogle Scholar
  291. 291.
    Niklasson G.A., Berggren L., and Larsson A.-L., “Electrochromic Tungsten Oxide: The Role of Defects”, Solar Energy Mater. Solar Cells 84 (2004) 315–328.CrossRefGoogle Scholar
  292. 292.
    de Wijs G.A. and de Groot R.A., “Structure and Electronic Properties of Amorphous WO3”, Phys. Rev. B 60 (1999) 16463–16474.CrossRefGoogle Scholar
  293. 293.
    Strømme M., Ahuja R., and Niklasson G.A., “New Probe of the Electronic Structure of Amorphous Materials”, Phys. Rev. Lett. 93 (2004) 206403-1–206403-4.CrossRefGoogle Scholar
  294. 294.
    Niklasson G.A., Berggren L., Jonsson A.K., Ahuja R., Skorodumova N.V., Backholm J., and Strømme M., “Electrochemical Studies of the Electron States of Disordered Electrochromic Oxides”, Solar Energy Mater. Solar Cells 90 (2006) 385–394.CrossRefGoogle Scholar
  295. 295.
    Berggren L., Ederth J., and Niklasson G.A., “Electrical Conductivity as a Function of Temperature in Amorphous Lithium Tungsten Oxide”, Solar Energy Mater. Solar Cells 84 (2004) 329–336.CrossRefGoogle Scholar
  296. 296.
    Larsson A.-L., Sernelius B.E., and Niklasson G.A., “Optical Absorption of Li-Intercalated Polycrystalline Tungsten Oxide Films: Comparison to Large Polaron Theory”, Solid State Ionics 165 (2003) 35–41.CrossRefGoogle Scholar
  297. 297.
    Ederth J., Hoel A., Niklasson G.A., and Granqvist C.G., “Small Polaron Formation in Porous WO3–x Nanoparticle Films”, J. Appl. Phys. 96 (2004) 5722–5726.CrossRefGoogle Scholar
  298. 298.
    Raj S., Hashimoto D., Matsui H., Souma S., Sato T., Takahashi T., Ray S., Chakraborty A., Sarma D.D., Mahadevan P., McCarroll W.H., and Greenblatt M., “Angle-Resolved Photoemission Spectroscopy of the Metallic Sodium Tungsten Bronzes NaxWO3”, Phys. Rev. B 72 (2005) 125125-1–125125-8.CrossRefGoogle Scholar
  299. 299.
    Broclawik E., Góra A., Liguzinski P., Petelenz P., and Witek H.A., “Quantum Chemical Modeling of Electrochromism of Tungsten Oxide Films”, J. Chem. Phys. 124 (2006) 054709-1–054709-11.CrossRefGoogle Scholar
  300. 300.
    Denesuk M. and Uhlmann D.R., “Site-Saturation Model for the Optical Efficiency of Tungsten Oxide-Based Devices”, J. Electrochem. Soc. 143 (1996) L186–L188.CrossRefGoogle Scholar
  301. 301.
    Berggren L. and Niklasson G.A., “Optical Charge Transfer Absorption in Lithium-Intercalated Tungsten Oxide Thin Films”, Appl. Phys. Lett. 88 (2006) 081906-1–081906-3.CrossRefGoogle Scholar
  302. 302.
    Goldner R.B., Brofos A., Foley G., Goldner E.L., Haas T.E., Henderson W., Norton P., Ratnam B.A., Weris N., and Wong K.K., “Optical Frequencies Free Electron Scattering Studies on Electrochromic Materials for Variable Reflectivity Windows”, Solar Energy Mater. 12 (1985) 403–410.CrossRefGoogle Scholar
  303. 303.
    Svensson J.S.E.M. and Granqvist C.G., “Modulated Transmittance and Reflectance in Crystalline Electrochromic WO3 Films”, Appl. Phys. Lett. 45 (1984) 828–830.CrossRefGoogle Scholar
  304. 304.
    Li J.-L., Riganese G.-M., and Louie S.G., “Quasiparticle Energy Bands of NiO in the GW Approximation”, Phys. Rev. B 71 (2005) 193102-1–193102-4.Google Scholar
  305. 305.
    Nakajima N., Kato H., and Sakisaka Y., “Surface Metallic Nature Caused by an In-Gap State of Reduced NiO: A Photoemission Study”, J. Electron Spectros. Relat. Phenomena 144–147 (2005) 873–875.CrossRefGoogle Scholar
  306. 306.
    Avendaño E., Azens A., Niklasson G.A., and Granqvist C.G., “Electrochromism in Nickel Oxide Films Containing Mg, Al, Si, V, Zr, Nb, Ag, or Ta”, Solar Energy Mater. Solar Cells 84 (2004) 337–350.CrossRefGoogle Scholar
  307. 307.
    Avendaño E., Azens A., Niklasson G.A., and Granqvist C.G., “Proton Diffusion and Electrochromism in Hydrated NiOy and Ni1–xVxOy Thin Films”, J. Electrochem. Soc. 152 (2005) F203–F212.CrossRefGoogle Scholar
  308. 308.
    Avendaño E., Kuzmin A., Purans J., Azens A., Niklasson G.A., and Granqvist C.G., “Changes in the Local Structure of Nanocrystalline Films of Hydrated Nickel Vanadium Oxide upon Ozone-Induced Coloration”, Phys. Scr. T115 (2005) 464–466.CrossRefGoogle Scholar
  309. 309.
    Avendaño, E., Rensmo H., Azens A., Sandell A., Niklasson G.A., Siegbahn H., and Granqvist C.G., “Coloration Mechanism in Proton Intercalated Electrochromic Hydrated NiOy and Ni1–xVxOy Thin Films”, J. Electrochem. Soc. 156 (2009) P132–P138.CrossRefGoogle Scholar
  310. 310.
    Bode H., Dehmelt K., and Witte J., “Zur Kenntnis der Nickelhydroxidelektrode-I. Über das Nickel(II)-Hydroxidhydrat”, Electrochim. Acta 11 (1966) 1079–1087.CrossRefGoogle Scholar
  311. 311.
    Bode H., Dehmelt K., and Witte J., “Zur Kenntnis der Nickelhydroxidelektrode. II. Über die Oxydationsprodukten von Nickel(II)-Hydroxiden”, Z. Anorg. Allg. Chem. 366 (1969) 1–21.CrossRefGoogle Scholar
  312. 312.
    Mathew J.H.G., Sapers S.P., Cumbo M.J., O’Brien N.A., Sargent R.B., Raksha V.P., Ladaherne R.B., and Hichwa B.P., “Large Area Electrochromics for Architectural Applications”, J. Non-Cryst. Solids 218 (1997) 342–346.CrossRefGoogle Scholar
  313. 313.
    Lechner R. and Thomas L.K., “All Solid State Electrochromic Devices on Glass and Polymeric Foils”, Solar Energy Mater. Solar Cells 54 (1998) 139–146.CrossRefGoogle Scholar
  314. 314.
    Nagai J., McMeeking G.D., and Saitoh Y., “Durability of Electrochromic Glazing”, Solar Energy Mater. Solar Cells 56 (1999) 309–319.CrossRefGoogle Scholar
  315. 315.
    Karlsson J. and Roos A., “Angle-Resolved Optical Characterization of an Electrochromic Device”, Solar Energy 68 (2000) 493–497.CrossRefGoogle Scholar
  316. 316.
    Jonsson A.K., Larsson A.-L., Niklasson G.A., and Strømme M., “H+ Conduction in Solid-State Electrochromic Devices Analyzed by Transient Current Measurements”, J. Electrochem. Soc. 152 (2005) A377–A379.CrossRefGoogle Scholar
  317. 317.
    Larsson A.-L. and Niklasson G.A., “Optical Properties of Electrochromic All-Solid-State Devices”, Solar Energy Mater. Solar Cells 84 (2004) 351–360.CrossRefGoogle Scholar
  318. 318.
    Subrahmanyam A., Kumar C.S., and Karuppasamy K.M., “A Note on Fast Protonic Solid State Electrochromic Device: NiOx/Ta2O5/WO3–x”, Solar Energy Mater. Solar Cells 91 (2007) 62–66.CrossRefGoogle Scholar
  319. 319.
    Azens A., Gustavsson G., Karmhag R., and Granqvist C.G., “Electrochromic Devices on Polyester Foil”, Solid State Ionics 165 (2003) 1–5.CrossRefGoogle Scholar
  320. 320.
    Azens A., Avendaño E., Backholm J., Berggren L., Gustavsson G., Karmhag R., Niklasson G.A., Roos A., and Granqvist C.G., “Flexible Foils with Electrochromic Coatings: Science, Technology, and Applications”, Mater. Sci. Eng. B 119 (2005) 214–223.CrossRefGoogle Scholar
  321. 321.
    Mecerreyes D., Marcilla R., Ochoteco E., Grande H., Pomposo J.A., Vergaz R., and Pena J.M.S., “A Simplified All-Polymer Flexible Electrochromic Device”, Electrochim. Acta 49 (2004) 3555–3559.CrossRefGoogle Scholar
  322. 322.
    Vergaz Benito R., Pena J.M.S., Gonzalo A.B., Ollero J.M., Vásquez C., Pomposo J.A., Grande H.-J., and Mecerreyes D., “Characterization of Novel All-Plastic Electrochromic Devices: Electro-Optic and Voltammetric Response”, Opt. Eng. 43 (2004) 2967–2975.CrossRefGoogle Scholar
  323. 323.
    Giri A.P. and Messier R., “Physical Structure and the Electrochromic Effect in Tungsten Oxide Films”, Mater. Res. Soc. Symp. Proc. 24 (1984) 221–227.CrossRefGoogle Scholar
  324. 324.
    Azens A., Kullman L., and Granqvist C.G., “Ozone Coloration of Ni Oxide and Cr Oxide Films”, Solar Energy Mater. Solar Cells 76 (2003) 147–153.CrossRefGoogle Scholar
  325. 325.
    Bardé F., Palacin M.R., Beaudoin B., and Tarascon J.-M., “Ozonation: A Unique Route to Prepare Nickel Oxyhydroxides: Synthesis Optimization and Reaction Mechanism Study”, Chem. Mater. 17 (2005) 470–476.CrossRefGoogle Scholar
  326. 326.
    Azens A., Private communication.Google Scholar
  327. 327.
    Lampert C.M., Agrawal A., Baertlien C., and Nagai J., “Durability Evaluation of Electrochromic Devices – An Industry Perspective”, Solar Energy Mater. Solar Cells 56 (1999) 449–463.CrossRefGoogle Scholar
  328. 328.
    Bell J.M. and Skryabin I.L., “Failure Modes of Sol-Gel Deposited Electrochromic Devices”, Solar Energy Mater. Solar Cells 56 (1999) 437–448.CrossRefGoogle Scholar
  329. 329.
    van Kampen N.G., “Stochastic Processes in Physics and Chemistry” (Elsevier, Amsterdam, The Netherlands, 1992).Google Scholar
  330. 330.
    Smulko J., Azens A., Kish L.B., and Granqvist C.G., “Low-Frequency Current Noise in Electrochromic Devices”, Smart Mater. Struct. 17 (2) (2008) 025005.CrossRefGoogle Scholar
  331. 331.
    Cottis R.A., “Sources of Electrochemical Noise in Corroding Systems”, Elektrokhim. 42 (2006) 557–566 [English translation Russ. J. Electrochem. 42 (2006) 497–505].Google Scholar
  332. 332.
    Smulko J., “Methods of Electrochemical Noise Analysis for Investigation of Corrosion Processes”, Fluctuation Noise Lett. 6 (2006) R1–R9.CrossRefGoogle Scholar
  333. 333.
    Buyan M., Brühwiler P.A., Azens A., Gustavsson G., Karmhag R., and Granqvist C.G., “Facial Warming with Tinted Helmet Visors”, Int. J. Ind. Ergon. 36 (2006) 11–16.CrossRefGoogle Scholar
  334. 334.
    Larsson A.-L. and Niklasson G.A., “Infrared Emittance of All-Thin-Film Electrochromic Devices”, Mater. Lett. 58 (2004) 2517–2520.CrossRefGoogle Scholar
  335. 335.
    Beluze L., Morcrette M., Viana B., Badot J.C., Baffier N., and Tarascon J.M., “Infrared Electroactive Materials and Devices”, J. Phys. Chem. Solids 67 (2006) 1330–1333.CrossRefGoogle Scholar
  336. 336.
    Chandrasekhar P., Zay B.J., Birur G.C., Rawal S., Pierson E.A., Kauder L., and Swanson T., “Large, Switchable Electrochromism in the Visible through Far-Infrared in Conducting Polymer Devices”, Adv. Funct. Mater. 12 (2002) 95–103.CrossRefGoogle Scholar
  337. 337.
    Chandrasekhar P., Zay B.J., McQueeney T., Scara A., Ross D., Birur G.C., Haapanen S., Kauder L., Swanson T., and Douglas D., “Conducting Polymer (CP) Infrared Electrochromics in Spacecraft Thermal Control and Military Applications”, Synth. Met. 135–136 (2003) 23–24.CrossRefGoogle Scholar
  338. 338.
    Gruner G., “Carbon Nanotube Films for Transparent and Plastic Electronics”, J. Mater. Chem. 16 (2006) 3533–3539.CrossRefGoogle Scholar
  339. 339.
    Zhou Y.-X., Hu L.-B., and Grüner G., “A Method of Printing Carbon Nanotube Thin Films”, Appl. Phys. Lett. 88 (2006) 123109-1–123109-3.Google Scholar
  340. 340.
    Stadermann M., Papadakis S.J., Falvo M.R., Novak J., Snow E., Fu Q., Liu J., Fridman Y., Boland J.J., Superfine R., and Washburn S., “Nanoscale Study of Conduction through Carbon Nanotube Networks”, Phys. Rev. B 69 (2004) 201402-1–201402-3.CrossRefGoogle Scholar
  341. 341.
    Goh S.K., Kaiser A.B., Lee S.W., Lee D.S., Yu H.Y., and Park Y.W., “Some Aspects of Conduction in Metallic Single-Wall Carbon Nanotubes”, Curr. Appl. Phys. 6 (2006) 919–924.CrossRefGoogle Scholar
  342. 342.
    Aguirre C.M., Auvray S., Pigeon S., Izquierdo R., Desjardins P., and Martel R., “Carbon Nanotube Sheets as Electrodes in Organic Light-Emitting Diodes”, Appl. Phys. Lett. 88 (2006) 183104-1–183104-3.CrossRefGoogle Scholar
  343. 343.
    Dyke C.A. and Tour J.M., “Covalent Functionalization of Single-Walled Carbon Nanotubes for Materials Applications”, J. Phys. Chem. A 108 (2004) 11151–11159.CrossRefGoogle Scholar
  344. 344.
    Lu X. and Chen Z.-F., “Curved Pi-Conjugation, Aromaticity, and the Related Chemistry of Small Fullerenes (<C60) and Single-Walled Carbon Nanotubes”, Chem. Rev. 195 (2005) 3643–3696.CrossRefGoogle Scholar
  345. 345.
    Lee Y.-S. and Marzari N., “Cycloaddition Functionalizations to Preserve or Control the Conductance of Carbon Nanotubes”, Phys. Rev. Lett. 97 (2006) 116801-1–116801-4.Google Scholar
  346. 346.
    Hayashi K., Matsuishi S., Kamiya T., Hirano M., and Hosono H., “Light-Induced Conversion of an Insulating Refractory Oxide into a Persistent Electronic Conductor”, Nature 419 (2002) 462–465.CrossRefGoogle Scholar
  347. 347.
    Sushko P.V., Shluger A.L., Hayashi K., Hirano M., and Hosono H., “Role of Hydrogen Atoms in the Photoinduced Formation of Stable Electron Centers in H-Doped 12CaO·7Al2O3”, Phys. Rev. B 73 (2006) 045120-1–045120-13.Google Scholar
  348. 348.
    Toda Y., Miyakawa M., Hayashi K., Kamiya T., Hirano M., and Hosono H., “Thin Film Fabrication of Nano-Porous 12CaO·7Al2O3 Crystal and Its Conversion into Transparent Conductive Films by Light Illumination”, Thin Solid Films 445 (2003) 309–312.CrossRefGoogle Scholar
  349. 349.
    Sushko P.V., Shluger A.L., Hayashi K., Hirano M., and Hosono H., “Hopping and Optical Absorption of Electrons in Nano-Porous Crystal 12CaO·7Al2O3”, Thin Solid Films 445 (2003) 161–167.CrossRefGoogle Scholar
  350. 350.
    Sushko P.V., Shluger A.L., Hayashi K., Hirano M., and Hosono H., “Mechanisms of Oxygen Ion Diffusion in a Nanoporous Complex Oxide 12CaO·7Al2O3”, Phys. Rev. B 73 (2006) 014101-1–014101-10.Google Scholar
  351. 351.
    Medvedeva J.E., Freeman A.J., Bertoni M.I., and Mason T.O., “Electronic Structure and Light-Induced Conductivity of a Transparent Refractory Oxide”, Phys. Rev. Lett. 93 (2004) 016408-1–016408-4.CrossRefGoogle Scholar
  352. 352.
    Beltrán, L.O., Lee E.S., and Selkowitz S.E., “Advanced Optical Daylighting Systems: Light Shelves and Light Pipes”, J. Illum. Engr. Soc. 26(2) (1997) 91–106.Google Scholar
  353. 353.
    Heshong L., Wright R.L., and Okura S., “Daylighting Impacts on Human Performance in Schools”, J. Illum. Eng. Soc 31 (2002) 101–114.Google Scholar
  354. 354.
    Heshong L., Wright R.L., and Okura S., “Daylighting Impact on Retail Sales Performance”, J. Illum. Eng. 31 (2002) 21–25.Google Scholar
  355. 355.
    Schwartz-Schampera U. and Herzig P.M., “Indium: Geology, Mineralogy, and Economics” (Springer, Berlin, Germany, 2002).Google Scholar
  356. 356.
    Feltrin A. and Freundlich A., “Material Challenges for Terawatt Level Deployment of Photovoltaics”, in “Conference Record of the 2006 IEEE Fourth World Conference on Photovoltaic Energy Conversion”, Vol. 2, pp. 2469–2472.Google Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  1. 1.Department of Engineering Sciences, The Ångström LaboratoryUppsala UniversityUppsalaSweden

Personalised recommendations