Transparent Conductors

Chapter

Abstract

Over the last 6 years the field of transparent conducting oxides has had a dramatic increase in interest with a huge influx in the number of active groups and the diversity of materials and approaches. Why? There are a number of primary motivators for this, some of the most compelling are the increase in portable electronics, displays, flexible electronics, multi-functional windows, solar cells and, most recently, transistors. The diverse nature of the materials integrated into these devices, including semiconductors, molecular and polymer organics, ceramics, glass, metal and plastic, have necessitated the need for TCO materials with new performance, processibility and even morphology. The remarkable applications dependent on these materials have continued to make sweeping strides. These include the advent of larger flat-screen high-definition televisions (HDTVs including LCD, Plasma and OLED based displays), larger and higher-resolution flat screens for portable computers, the increasing importance of energy-efficient low-emittance (“low-e”), solar control and electrochromic windows, a dramatic increase in the manufacturing of thin film photovoltaics (PV), the advent of oxide based transistors and transparent electronics as well as a plethora of new hand-held, flexible and smart devices, all with smart displays.

Keywords

Zinc TiO2 Crystallization Microwave Sulfide 

Notes

Acknowledgments

The National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL) funded this work. NREL is a U.S. Department of Energy laboratory operated by Midwest Research Institute-Battelle-Bechtel under contract No. DE-AC36-99-GO10337.

References

  1. 1.
    “Highly transparent and conductive ZnO-In2O3 thin films prepared by dc magnetron sputtering”, T. Minami, T. Kakumu, Y. Takeda and S. Takata, Thin Solid Films 291, 1–5 (1996).CrossRefGoogle Scholar
  2. 2.
    “General mobility and carrier concentration relationship in transparent amorphous indium zinc oxide films”, A.J. Leenheer, J.D. Perkins, M. Van Hest, J.J. Berry, R.P. O'hayre and D.S. Ginley, Physical Review B 77, 115215 (2008).CrossRefGoogle Scholar
  3. 3.
    “Titanium-doped indium oxide: A high-mobility transparent conductor”, M. Van Hest, M.S. Dabney, J.D. Perkins, D.S. Ginley and M.P. Taylor, Applied Physics Letters 87, 032111 (2005).CrossRefGoogle Scholar
  4. 4.
    “Criteria for choosing transparent conductors”, R.G. Gordon, MRS Bulletin 25, 52 (2000).CrossRefGoogle Scholar
  5. 5.
    “Transparent conductors as solar energy materials: A panoramic review”, C.G. Granqvist, Solar Energy Materials and Solar Cells 91, 1529–1598 (2007).CrossRefGoogle Scholar
  6. 6.
    “History of the development and industrial production of low thermal emissivity coatings for high heat insulating glass units”, H.J. Glaser, Applied Optics 47, C193-C199 (2008).CrossRefGoogle Scholar
  7. 7.
    “Nanomaterials for benign indoor environments: Electrochromics for “smart windows”, sensors for air quality, and photo-catalysts for air cleaning”, C.G. Granqvist, A. Azens, P. Heszler, L.B. Kish and L. Osterlund, Solar Energy Materials and Solar Cells 91, 355–365 (2007).CrossRefGoogle Scholar
  8. 8.
    “Annual energy window performance vs. glazing thermal emittance - the relevance of very low emittance values”, J. Karlsson and A. Roos, Thin Solid Films 392, 345–348 (2001).CrossRefGoogle Scholar
  9. 9.
    “Pilkington and the flat glass industry 2008”, Pilkington Group Limited, St. Helens, United Kingdom WA10 3TT, www.pilkington.com
  10. 10.
    “China Low-E Glass Market Report, 2007–2008”, Research and Markets, Guinness Centre, Taylors Lane, Dublin 8, Ireland, www.researchandmarkets.com/reports/c88669
  11. 11.
    “Global market and technology trends on coated glass for architectural, automotive and display applications”, H. Ohsaki and Y. Kokubu, Thin Solid Films 351, 1–7 (1999).CrossRefGoogle Scholar
  12. 12.
    “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors”, K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, Nature 432, 488–492 (2004).CrossRefGoogle Scholar
  13. 13.
    “BP Statistical Review of World Energy June 2007”, http://www.bp.com/statisticalreview (2007).
  14. 14.
    “Asynchrony of Antarctic and Greenland climate change during the last glacial period”, T. Blunier, J. Chappellaz, J. Schwander, A. Dallenbach, B. Stauffer, T.F. Stocker, D. Raynaud, J. Jouzel, H.B. Clausen, C.U. Hammer and S.J. Johnsen, Nature 394, 739–743 (1998).CrossRefGoogle Scholar
  15. 15.
    “Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica”, A. Indermuhle, T.F. Stocker, F. Joos, H. Fischer, H.J. Smith, M. Wahlen, B. Deck, D. Mastroianni, J. Tschumi, T. Blunier, R. Meyer and B. Stauffer, Nature 398, 121–126 (1999).CrossRefGoogle Scholar
  16. 16.
    “Historical CO2 record from the Siple Station ice core. In Trends: A Compendium of Data on Global Change”, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, USA, http://cdiac.ornl.gov/trends/co2/siple.html (1994).
  17. 17.
    “Atmospheric carbon dioxide dry air mole fractions from quasi-continuous measurements at Barrow, Alaska; Mauna Loa, Hawaii; American Samoa; and South Pole, 1973–2006, Version: 200710-01”, Version: 2007-10-01, ftp://ftp.cmdl.noaa.gov/ccg/co2/in-situ/ (2007).
  18. 18.
    “Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia”, M.E. Mann, Z.H. Zhang, M.K. Hughes, R.S. Bradley, S.K. Miller, S. Rutherford and F.B. Ni, Proceedings of the National Academy of Sciences of the United States of America 105, 13252–13257 (2008).CrossRefGoogle Scholar
  19. 19.
    “Combining high conductivity with complete optical transparency: a band structure approach”, J.E. Medvedeva and A.J. Freeman, Europhysics Letters 69, 583–587 (2005).CrossRefGoogle Scholar
  20. 20.
    “Combining high conductivity with complete optical transparency: a band-structure approach”, J.E. Medvedeva and A.J. Freeman, Los Alamos National Laboratory, Preprint Archive, Condensed Matter 1–3, arXiv:cond-mat/0405317 (2004).Google Scholar
  21. 21.
    “Bipolar doping and band-gap anomalies in delafossite transparent conductive oxides”, X. Nie, S.-H. Wei and S.B. Zhang, Physical Review Letters 88, 066405/1–066405/4 (2002).CrossRefGoogle Scholar
  22. 22.
    “Indium tin oxide alternatives - high work function transparent conducting oxides as anodes for the organic light-emitting diodes”, J. Cui, A. Wang, N.L. Edleman, J. Ni, P. Lee, N.R. Armstrong and T.J. Marks, Advanced Materials (Weinheim, Germany) 13, 1476–1480 (2001).CrossRefGoogle Scholar
  23. 23.
    “Chemical and thin-film strategies for new transparent conducting oxides”, A.J. Freeman, K.R. Poeppelmeier, T.O. Mason, R.P.H. Chang and T.J. Marks, MRS Bulletin 25, 45–51 (2000).CrossRefGoogle Scholar
  24. 24.
    “Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O: Experiment and ab initio calculations”, K. Nomura, T. Kamiya, H. Ohta, T. Uruga, M. Hirano and H. Hosono, Physical Review B 75, 035212 (2007).CrossRefGoogle Scholar
  25. 25.
    “Amorphous transparent conductive oxide InGaO3(ZnO)m (m ≤ 4): a Zn 4s conductor”, M. Orita, H. Ohta, M. Hirano, S. Narushima and H. Hosono, Philosophical Magazine B: Physics of Condensed Matter: Statistical Mechanics, Electronic, Optical and Magnetic Properties 81, 501–515 (2001).CrossRefGoogle Scholar
  26. 26.
    “Amorphous transparent conductors: the cadmium oxide-tin dioxide system”, F.T.J. Smith and S.L. Lyu, Journal of the Electrochemical Society 128, 1083–1088 (1981).CrossRefGoogle Scholar
  27. 27.
    “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples”, H. Hosono, N. Kikuchi, N. Ueda and H. Kawazoe, Journal of Non-Crystalline Solids 200, 165–169 (1996).CrossRefGoogle Scholar
  28. 28.
    “New amorphous semiconductor: 2CdO center dot PbOx”, H. Hosono, Y. Yamashita, N. Ueda, H. Kawazoe and K. Shimidzu, Applied Physics Letters 68, 661–663 (1996).CrossRefGoogle Scholar
  29. 29.
    “A transparent metal: Nb-doped anatase TiO2”, Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada and T. Hasegawa, Applied Physics Letters 86, 252101/1–252101/3 (2005).CrossRefGoogle Scholar
  30. 30.
    “rf magnetron sputter deposition of transparent conducting Nb-doped TiO2 films on SrTiO3”, M.A. Gillispie, M. Van Hest, M.S. Dabney, J.D. Perkins and D.S. Ginley, Journal of Applied Physics 101, 033125 (2007).Google Scholar
  31. 31.
    “Fabrication of highly conductive Ti1-xNbxO2 polycrystalline films on glass substrates via crystallization of amorphous phase grown by pulsed laser deposition”, T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, T. Shimada and T. Hasegawa, Applied Physics Letters 90, 212106 (2007).CrossRefGoogle Scholar
  32. 32.
    “Electronic structure and light-induced conductivity of a transparent refractory oxide”, J.E. Medvedeva, A.J. Freeman, M.I. Bertoni and T.O. Mason, Physical Review Letters 93, 016408 (2004).CrossRefGoogle Scholar
  33. 33.
    “Light-induced conversion of an insulating refractory oxide into a persistent electronic conductor”, K. Hayashi, S. Matsuishi, T. Kamiya, M. Hirano and H. Hosono, Nature 419, 462–465 (2002).CrossRefGoogle Scholar
  34. 34.
    “Function cultivation of transparent oxides utilizing built-in nanostructure”, H. Hosono, T. Kamiya and M. Hirano, Bulletin of the Chemical Society of Japan 79, 1–24 (2006).CrossRefGoogle Scholar
  35. 35.
    “High electron doping to a wide band gap semiconductor 12CaO center dot 7Al(2)O(3) thin film”, M. Miyakawa, M. Hirano, T. Kamiya and H. Hosono, Applied Physics Letters 90, 182105 (2007)Google Scholar
  36. 36.
    “Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides”, S. Lany and A. Zunger, Physical Review Letters 98, 045501 (2007).CrossRefGoogle Scholar
  37. 37.
    “P-Type electrical conduction in transparent thin films of CuAlO2”, H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi and H. Hosono, Nature 389, 939–942 (1997).CrossRefGoogle Scholar
  38. 38.
    “SrCu2O2: A p-type conductive oxide with wide band gap”, A. Kudo, H. Yanagi, H. Hosono and H. Kawazoe, Applied Physics Letters 73, 220–222 (1998).CrossRefGoogle Scholar
  39. 39.
    “p-Type electrical conduction in ZnO thin films by Ga and N codoping”, M. Joseph, H. Tabata and T. Kawai, Japanese Journal of Applied Physics Part 2-Letters 38, L1205–L1207 (1999).CrossRefGoogle Scholar
  40. 40.
    “Solution using a codoping method to unipolarity for the fabrication of p-type ZnO”, T. Yamamoto and H. Katayama-Yoshida, Japanese Journal of Applied Physics Part 2-Letters 38, L166–L169 (1999).CrossRefGoogle Scholar
  41. 41.
    “Studies of minority carrier diffusion length increase in p-type ZnO:Sb”, O. Lopatiuk-Tirpak, L. Chernyak, F.X. Xiu, J.L. Liu, S. Jang, F. Ren, S.J. Pearton, K. Gartsman, Y. Feldman, A. Osinsky and P. Chow, Journal of Applied Physics 100, 086101/1–086101/3 (2006).CrossRefGoogle Scholar
  42. 42.
    “Fabrication of p-type Li-doped ZnO films by pulsed laser deposition”, B. Xiao, Z. Ye, Y. Zhang, Y. Zeng, L. Zhu and B. Zhao, Applied Surface Science 253, 895–897 (2006).CrossRefGoogle Scholar
  43. 43.
    “Progress in ZnO materials and devices”, D.C. Look, Journal of Electronic Materials 35, 1299–1305 (2006).CrossRefGoogle Scholar
  44. 44.
    “p-Type behavior in In-N codoped ZnO thin films”, L.L. Chen, J.G. Lu, Z.Z. Ye, Y.M. Lin, B.H. Zhao, Y.M. Ye, J.S. Li and L.P. Zhu, Applied Physics Letters 87, 252106/1–252106/3 (2005).Google Scholar
  45. 45.
    “Diffusion of phosphorus and arsenic using ampoule-tube method on undoped ZnO thin films and electrical and optical properties of P-type ZnO thin films”, S.-J. So and C.-B. Park, Journal of Crystal Growth 285, 606–612 (2005).CrossRefGoogle Scholar
  46. 46.
    “Pulsed-laser-deposited p-type ZnO films with phosphorus doping”, V. Vaithianathan, B.-T. Lee and S.S. Kim, Journal of Applied Physics 98, 043519/1–043519/4 (2005).CrossRefGoogle Scholar
  47. 47.
    “p-Type ZnO thin films grown by MOCVD”, X. Li, S.E. Asher, B.M. Keyes, H.R. Moutinho, J. Luther and T.J. Coutts, Conference Record of the IEEE Photovoltaic Specialists Conference 31st, 152–154 (2005).Google Scholar
  48. 48.
    “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO”, A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma and M. Kawasaki, Nature Materials 4, 42–46 (2005).CrossRefGoogle Scholar
  49. 49.
    “Quantum Hall effect in polar oxide heterostructures”, A. Tsukazaki, A. Ohtomo, T. Kita, Y. Ohno, H. Ohno and M. Kawasaki, Science 315, 1388–1391 (2007).CrossRefGoogle Scholar
  50. 50.
    “Transparent p-type semiconductor: LaCuOS layered oxysulfide”, K. Ueda, S. Inoue, S. Hirose, H. Kawazoe and H. Hosono, Applied Physics Letters 77, 2701–2703 (2000).CrossRefGoogle Scholar
  51. 51.
    “p-Type conductivity in wide-band-gap BaCuQF (Q=S,Se)”, H. Yanagi, J. Tate, S. Park, C.H. Park and D.A. Keszler, Applied Physics Letters 82, 2814–2816 (2003).CrossRefGoogle Scholar
  52. 52.
    “p-Type transparent conducting oxides”, S. Sheng, G. Fang, C. Li, S. Xu and X. Zhao, Physica Status Solidi A: Applications and Materials Science 203, 1891–1900 (2006).CrossRefGoogle Scholar
  53. 53.
    “Frontier of transparent conductive oxides”, H. Ohta, M. Orita, H. Hiramatsu, K. Nomura, M. Miyakawa, K. Ueda, M. Hirano and H. Hosono, Advances in Science and Technology (Faenza, Italy) 33, 983–994 (2003).Google Scholar
  54. 54.
    “Non-vacuum and PLD growth of next generation TCO materials”, D. Ginley, B. Roy, A. Ode, C. Warmsingh, Y. Yoshida, P. Parilla, C. Teplin, T. Kaydanova, A. Miedaner, C. Curtis, A. Martinson, T. Coutts, D. Readey, H. Hosono and J. Perkins, Thin Solid Films 445, 193–198 (2003).CrossRefGoogle Scholar
  55. 55.
    “Fabrication and characterization of heteroepitaxial p-n junction diode composed of wide-gap oxide semiconductors p-ZnRh2O4/n-ZnO”, H. Ohta, H. Mizoguchi, M. Hirano, S. Narushima, T. Kamiya and H. Hosono, Applied Physics Letters 82, 823–825 (2003).CrossRefGoogle Scholar
  56. 56.
    “ZnIr2O4, a p-type transparent oxide semiconductor in the class of spinel zinc-d(6)-transition metal oxide”, M. Dekkers, G. Rijnders and D.H.A. Blank, Applied Physics Letters 90, 021903 (2007).CrossRefGoogle Scholar
  57. 57.
    “Electrical and magnetic properties of spinel-type magnetic semiconductor ZnCo2O4 grown by reactive magnetron sputtering”, H.J. Kim, I.C. Song, J.H. Sim, H. Kim, D. Kim, Y.E. Ihm and W.K. Choo, Journal of Applied Physics 95, 7387–7389 (2004).CrossRefGoogle Scholar
  58. 58.
    “A p-type amorphous oxide semiconductor and room temperature fabrication of amorphous oxide p-n heterojunction diodes”, S. Narushima, H. Mizoguchi, K. Shimizu, K. Ueda, H. Ohta, M. Hirano, T. Kamiya and H. Hosono, Advanced Materials 15, 1409–1413 (2003).CrossRefGoogle Scholar
  59. 59.
    “Electrical properties and structure of p-type amorphous oxide semiconductor xZnO center dot Rh2O3”, T. Kamiya, S. Narushima, H. Mizoguchi, K. Shimizu, K. Ueda, H. Ohta, M. Hirano and H. Hosono, Advanced Functional Materials 15, 968–974 (2005).CrossRefGoogle Scholar
  60. 60.
    “Progress in optically transparent conducting polymers”, V. Seshadri and G.A. Sotzing, Optical Science and Engineering 99, 495–527 (2005).CrossRefGoogle Scholar
  61. 61.
    “Functional conductive 3,4-polyethylendioxythiophene layers”, F. Jonas and S. Kirchmeyer, Jahrbuch Oberflaechentechnik 62, 162–169 (2006).Google Scholar
  62. 62.
    “Conducting and transparent polymer electrodes”, F. Zhang and O. Inganaes, Optical Science and Engineering 99, 479–494 (2005).CrossRefGoogle Scholar
  63. 63.
    “Technical trend in conductive polymers”, M. Takeuchi, Idemitsu Giho 48, 323–327 (2005).Google Scholar
  64. 64.
    “PEDOT/PSS patterning for plastic electronics”, H. Okuzaki, Kobunshi Kako 54, 367–372 (2005).Google Scholar
  65. 65.
    “Transparent, Conductive, and Flexible Carbon Nanotube Films and Their Application in Organic Light-Emitting Diodes”, D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M.E. Tompson and C. Zhou, Nano Letters 6, 1880–1886 (2006).CrossRefGoogle Scholar
  66. 66.
    “Metallic single-walled carbon nanotubes for transparent conductive films”, Y.-P. Sun, Y. Lin, K.A.S. Fernando, X. Wang and Y. Liu, Abstracts of Papers, 231st ACS National Meeting, Atlanta, GA, United States, March 26–30, 2006 IEC-197 (2006).Google Scholar
  67. 67.
    “Transparent conductor coating films containing carbon nanotubes prepared by contacting carbon-containing compounds to impregnated metals”, Y. Maeda and Y. Ozeki, Application: JP (Toray Industries, Inc., Japan). 15 pp (2006).Google Scholar
  68. 68.
    “Transparent and conductive coatings with carbon nanotubes”, M. Kaempgen, Jahrbuch Oberflaechentechnik 61, 88–92 (2005).Google Scholar
  69. 69.
    “Transparent and conducting electrodes for organic electronics from reduced graphene oxide”, G. Eda, Y.Y. Lin, S. Miller, C.W. Chen, W.F. Su and M. Chhowalla, Applied Physics Letters 92, 233305 (2008).CrossRefGoogle Scholar
  70. 70.
    “The rise of graphene”, A.K. Geim and K.S. Novoselov, Nature Materials 6, 183–191 (2007).CrossRefGoogle Scholar
  71. 71.
    “Electric field effect in atomically thin carbon films”, K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Science 306, 666–669 (2004).CrossRefGoogle Scholar
  72. 72.
    “Electronic and structural properties of graphene-based transparent and conductive thin film electrodes”, A. Vollmer, X.L. Feng, X. Wang, L.J. Zhi, K. Mullen, N. Koch and J.P. Rabe, Applied Physics a-Materials Science & Processing 94, 1–4 (2009).CrossRefGoogle Scholar
  73. 73.
    “Transparent, conductive graphene electrodes for dye-sensitized solar cells”, X. Wang, L.J. Zhi and K. Mullen, Nano Letters 8, 323–327 (2008).CrossRefGoogle Scholar
  74. 74.
    “High-mobility amorphous In2O3-10 wt %ZnO thin film transistors”, B. Yaglioglu, H.Y. Yeom, R. Beresford and D.C. Paine, Applied Physics Letters 89, 062103 (2006).CrossRefGoogle Scholar
  75. 75.
    “Novel oxide amorphous semiconductors: Transparent conducting amorphous oxides”, H. Hosono, M. Yasukawa and H. Kawazoe, Journal of Non-Crystalline Solids 203, 334–344 (1996).CrossRefGoogle Scholar
  76. 76.
    “Electrochromic tungsten oxide films: Review of progress 1993-1998”, C.G. Granqvist, Solar Energy Materials and Solar Cells 60, 201–262 (2000).CrossRefGoogle Scholar
  77. 77.
    “Stand-alone photovoltaic-powered electrochromic smart window”, S.K. Deb, S.H. Lee, C.E. Tracy, J.R. Pitts, B.A. Gregg and H.M. Branz, Electrochimica Acta 46, 2125–2130 (2001).CrossRefGoogle Scholar
  78. 78.
    C.G. Granqvist (1995). Handbook of Inorganic Electrochromic Materials. Amsterdam, Elsevier.Google Scholar
  79. 79.
    “Optical analysis of thin film combinatorial libraries”, J.D. Perkins, C.W. Teplin, M. Van Hest, J.L. Alleman, X. Li, M.S. Dabney, B.M. Keyes, L.M. Gedvilas, D.S. Ginley, Y. Lin and Y. Lu, Applied Surface Science 223, 124–132 (2004).CrossRefGoogle Scholar
  80. 80.
    “Highly conductive epitaxial CdO thin films prepared by pulsed laser deposition”, M. Yan, M. Lane, C.R. Kannewurf and R.P.H. Chang, Applied Physics Letters 78, 2342 (2001).CrossRefGoogle Scholar
  81. 81.
    “High-efficiency polycrystalline CdTe thin-film solar cells”, X.Z. Wu, Solar Energy 77, 803–814 (2004).CrossRefGoogle Scholar
  82. 82.
    “Recent progress in transparent oxide semiconductors: Materials and device application”, H. Hosono, Thin Solid Films 515, 6000–6014 (2007).CrossRefGoogle Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  1. 1.National Renewable Energy LaboratoryGoldenUSA

Personalised recommendations