Skip to main content

Partial and Total Differentiation

  • Chapter
  • First Online:
A Course in Multivariable Calculus and Analysis

Part of the book series: Undergraduate Texts in Mathematics ((UTM))

  • 8102 Accesses

Abstract

The notion of derivative of a function of one-variable does not really have a solitary analogue for functions of several variables. Indeed, for a function of two (or more) variables, there is a plethora of derivatives depending on whether we choose to become partial to one of the variables, or opt to move about in a specific direction, or prefer to take the total picture in consideration. The first two viewpoints lead to the notions of partial derivatives and directional derivatives, while the last leads to a somewhat more abstract notion of differentiability and, in turn, to the notion of total derivative.We define partial and directional derivatives in Section 3.1, and prove a number of basic properties including two distinct analogues of the mean value theorem and a version of Taylor’s theorem using higher-order directional derivatives. In Section 3.2, we study the notion of differentiability and prove the classical version of the Implicit Function Theorem. It may be remarked that those wishing to bypass the abstract notion of differentiability can always replace it, wherever invoked, by a slightly stronger but more pragmatic condition on the existence and continuity of partial derivatives. (See Proposition 3.33.) These readers can, therefore, skip all of Section 3.2 except perhaps the classical version of the Implicit Function Theorem. Some key results regarding differentiable functions of two variables such as the classical version of Taylor’s theorem and the chain rule are discussed in Section 3.3. Next, in Section 3.4, we revisit the notions of monotonicity, bimonotonicity, convexity, and concavity introduced in Chapter 1, and relate these to partial derivatives. Finally, in Section 3.5, we briefly outline how some of the results discussed in previous sections extend to functions of three variables, and also discuss the notions of tangent plane and normal line, which can be better understood in the context of surfaces defined (implicitly) by functions of three variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir R. Ghorpade .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ghorpade, S.R., Limaye, B.V. (2010). Partial and Total Differentiation. In: A Course in Multivariable Calculus and Analysis. Undergraduate Texts in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1621-1_3

Download citation

Publish with us

Policies and ethics