Skip to main content

Gut Microbes, Immunity, and Metabolism

  • Chapter
  • First Online:

Abstract

The colonic microbiome is remarkable in that, it is among the most densely populated microbial habitats on Earth. It is increasingly apparent that the gut microbiome produces substances that are absorbed by the host, which then significantly influences metabolic function. Thus, the study of gut microbial ecology and its interplay with the host metabolome has emerged as a critical frontier in contemporary nutritional and metabolic research. Advances in high throughput DNA sequencing technology have allowed investigators, for the first time, an opportunity to more thoroughly explore the composition of the gut microbiome and its gene representations. Combined with gnotobiotic studies in murine models, new insights into the mutualistic, symbiotic and, sometimes, pathogenic interactions between the gut microbiome and its mammalian host are becoming apparent. Examples of the latter include the development of diet-induced obesity, insulin resistance, and diabetes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Savage, D. C. (1977). Microbial ecology of the gastrointestinal tract. Annual Review of Microbiology, 31, 107–133.

    Article  PubMed  CAS  Google Scholar 

  2. Xu, J., Gordon, J. I. (2003). Inaugural article: Honor thy symbionts. Proceedings of the National Academy of Sciences of the United States of America, 100, 10452–10459.

    Article  PubMed  CAS  Google Scholar 

  3. Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R., & Gordon, J. I. (2008). Worlds within worlds: evolution of the vertebrate gut microbiota. Nature Reviews. Microbiology, 6, 776–788.

    Article  PubMed  CAS  Google Scholar 

  4. Hooper, L. V., & Gordon, J. I. (2001). Commensal host-bacterial relationships in the gut. Science, 292, 1115–1118.

    Article  PubMed  CAS  Google Scholar 

  5. Parsonnet, J., Vandersteen, D., Goates, J., Sibley, R. K., Pritikin, J., Chang, Y. (1991). Helicobacter pylori infection in intestinal- and diffuse-type gastric adenocarcinomas. Journal of the National Cancer Institute, 83, 640–643.

    Article  PubMed  CAS  Google Scholar 

  6. Ott, S. J., Musfeldt, M., Wenderoth, D. F., et al. (2004). Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut, 53, 685–693.

    Article  PubMed  CAS  Google Scholar 

  7. Seksik, P., Rigottier-Gois, L., Gramet, G., et al. (2003). Alterations of the dominant faecal bacterial groups in patients with Crohn’s disease of the colon. Gut, 52, 237–242.

    Article  PubMed  CAS  Google Scholar 

  8. Dumas, M. E., Barton, R. H., Toye, A., et al. (2006). Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proceedings of the National Academy of Sciences of the United States of America, 103, 12511–12516.

    Article  PubMed  CAS  Google Scholar 

  9. Shanahan, F. (2007). Irritable bowel syndrome: shifting the focus toward the gut microbiota. Gastroenterology, 133, 340–342.

    Article  PubMed  CAS  Google Scholar 

  10. Fell, J. M. (2005). Neonatal inflammatory intestinal diseases: necrotising enterocolitis and allergic colitis. Early Human Development, 81, 117–122.

    Article  PubMed  CAS  Google Scholar 

  11. Cani, P. D., Possemiers, S., Van de Wiele, T., et al. (2009). Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut, 58:1091–1103.

    Article  PubMed  CAS  Google Scholar 

  12. Wostmann, B. S. (1981). The germfree animal in nutritional studies. Annual Review of Nutrition, 1, 257–279.

    Article  PubMed  CAS  Google Scholar 

  13. Hooper, L. V., Wong, M. H., Thelin, A., Hansson, L., Falk, P. G., Gordon, J. I. (2001). Molecular analysis of commensal host-microbial relationships in the intestine. Science, 291, 881–884.

    Article  PubMed  CAS  Google Scholar 

  14. Ivanov, I. I., Atarashi, K., Manel, N., et al. (2009). Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell, 139, 485–498.

    Article  PubMed  CAS  Google Scholar 

  15. Neish, A. S. (2009). Microbes in gastrointestinal health and disease. Gastroenterology, 136, 65–80.

    Article  PubMed  Google Scholar 

  16. Moore, W. E., Cato, E. P., & Holdeman, L. V. (1978). Some current concepts in intestinal bacteriology. The American Journal of Clinical Nutrition, 31, S33–42.

    PubMed  CAS  Google Scholar 

  17. Xu, J., Bjursell, M. K., Himrod, J., et al. (2003). A genomic view of the human – Bacteroides thetaiotaomicron symbiosis. Science, 299, 2074–2076.

    Article  PubMed  CAS  Google Scholar 

  18. Hooper, L. V., Midtvedt, T., & Gordon, J. I. (2002). How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annual Review of Nutrition, 22, 283–307.

    Article  PubMed  CAS  Google Scholar 

  19. Bergman, E. N. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews, 70, 567–590.

    PubMed  CAS  Google Scholar 

  20. McNeil, N. I. (1984). The contribution of the large intestine to energy supplies in man. The American Journal of Clinical Nutrition, 39, 338–342.

    PubMed  CAS  Google Scholar 

  21. Roediger, W. E. (1980). Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut, 21, 793–798.

    Article  PubMed  CAS  Google Scholar 

  22. Bergman, E. N., Roe, W. E., & Kon, K. (1966). Quantitative aspects of propionate metabolism and gluconeogenesis in sheep. The American Journal of Physiology, 211, 793–799.

    PubMed  CAS  Google Scholar 

  23. Hill, M. J. (1997). Intestinal flora and endogenous vitamin synthesis. European Journal of Cancer Prevention: the Official Journal of the European Cancer Prevention Organisation (ECP), 6, Suppl 1:S43–S45.

    Google Scholar 

  24. Moore, W. E., & Holdeman, L. V. (1974). Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Applied Microbiology, 27, 961–979.

    PubMed  CAS  Google Scholar 

  25. Hayashi, H., Sakamoto, M., & Benno, Y. (2002). Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiology and Immunology, 46, 535–548.

    PubMed  CAS  Google Scholar 

  26. Anderson, I. C., &Cairney, J. W. (2004). Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environmental Microbiology, 6, 769–779.

    Article  PubMed  CAS  Google Scholar 

  27. Schena, M., Shalon, D., Davis, R. W., & Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467–470.

    Article  PubMed  CAS  Google Scholar 

  28. Coppee, J. Y. (2008). Do DNA microarrays have their future behind them? Microbes and Infection/Institut Pasteur, 10, 1067–1071.

    PubMed  CAS  Google Scholar 

  29. Tan, P. K., Downey, T. J., Spitznagel, E. L., Jr., et al. (2003). Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Research, 31, 5676–5684.

    Article  PubMed  CAS  Google Scholar 

  30. Hildebrandt, M. A., Hoffmann, C., Sherrill-Mix, S. A., et al. (2009). High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology, 137, 1716–1724 e1–e2.

    Article  PubMed  CAS  Google Scholar 

  31. McKenna, P., Hoffmann, C., Minkah, N., et al. (2008). The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis. PLoS Pathogens, e20, 4.

    Google Scholar 

  32. Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. Science, 307, 1915–1920.

    Article  PubMed  CAS  Google Scholar 

  33. Eckburg, P. B., Bik, E. M., Bernstein, C. N., et al. (2005). Diversity of the human intestinal microbial flora. Science, 308, 1635–1638.

    Article  PubMed  Google Scholar 

  34. von Wintzingerode, F., Gobel, U. B., & Stackebrandt, E. (1997). Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiology Reviews, 21, 213–229.

    Article  PubMed  CAS  Google Scholar 

  35. Call, D. R., Borucki, M. K., & Loge, F. J. (2003). Detection of bacterial pathogens in environmental samples using DNA microarrays. Journal of Microbiological Methods, 53, 235–243.

    Article  PubMed  CAS  Google Scholar 

  36. Backhed, F., Ding, H., Wang, T., et al. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 101, 15718–15723.

    Article  PubMed  CAS  Google Scholar 

  37. Kurokawa, K., Itoh, T., Kuwahara, T., et al. (2007). Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes, 14, 169–181.

    CAS  Google Scholar 

  38. Verberkmoes, N. C., Russell, A. L., Shah, M., et al. (2009). Shotgun metaproteomics of the human distal gut microbiota. ISME Journal, 3, 179–189.

    Article  PubMed  CAS  Google Scholar 

  39. Martin, F. P., Dumas, M. E., Wang, Y., et al. (2007). A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Molecular Systems Biology, 3, 112.

    Article  PubMed  CAS  Google Scholar 

  40. Jones, B. V., Begley, M., Hill, C., Gahan, C. G., & Marchesi, J. R. (2008). Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proceedings of the National Academy of Sciences of the United States of America, 105, 13580–13585.

    Article  PubMed  Google Scholar 

  41. Ley, R. E., Turnbaugh, P. J., Klein, S., & Gordon, J. I. (2006). Microbial ecology: human gut microbes associated with obesity. Nature, 444, 1022–1023.

    Article  PubMed  CAS  Google Scholar 

  42. Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444, 1027–1031.

    Article  PubMed  Google Scholar 

  43. Wikoff, W. R., Anfora, A. T., Liu, J., et al. (2009). Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences of the United States of America, 106, 3698–3703.

    Article  PubMed  Google Scholar 

  44. Claus, S. P., Tsang, T. M., Wang, Y., et al. (2008). Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Molecular Systems Biology, 4, 219.

    Article  PubMed  CAS  Google Scholar 

  45. Stella, C., Beckwith-Hall, B., Cloarec, O., et al. (2006). Susceptibility of human metabolic phenotypes to dietary modulation. Journal of Proteome Research, 5, 2780–2788.

    Article  PubMed  CAS  Google Scholar 

  46. Nicholson, J. K., & Wilson, I. D. (2003). Opinion: understanding ‘global’ systems biology: metabonomics and the continuum of metabolism. Nature reviews. Drug discovery, 2, 668–676.

    Article  PubMed  CAS  Google Scholar 

  47. Ley, R. E., Backhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 102, 11070–11075.

    Article  PubMed  CAS  Google Scholar 

  48. Turnbaugh, P. J., Backhed, F., Fulton, L., & Gordon, J. I. (2008). Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe, 3, 213–223.

    Article  PubMed  CAS  Google Scholar 

  49. Samuel, B. S., Shaito, A., Motoike, T., et al. (2008). Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of the National Academy of Sciences of the United States of America, 105, 16767–16772.

    Article  PubMed  Google Scholar 

  50. Backhed, F., Manchester, J. K., Semenkovich, C. F., & Gordon, J. I. (2007). Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proceedings of the National Academy of Sciences of the United States of America, 104, 979–984.

    Article  PubMed  CAS  Google Scholar 

  51. Turnbaugh, P. J., Hamady, M., Yatsunenko, T., et al. (2009). A core gut microbiome in obese and lean twins. Nature, 457, 480–484.

    Article  PubMed  CAS  Google Scholar 

  52. Dethlefsen, L., Eckburg, P. B., Bik, E. M., & Relman, D. A. (2006). Assembly of the human intestinal microbiota. Trends in Ecology & Evolution (Personal Edition), 21, 517–523.

    Google Scholar 

  53. Harmsen, H. J., Wildeboer-Veloo, A. C., Raangs, G. C., et al. (2000). Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. Journal of Pediatric Gastroenterology and Nutrition, 30, 61–67.

    Article  PubMed  CAS  Google Scholar 

  54. Favier, C. F., Vaughan, E. E., De Vos, W. M., & Akkermans, A. D. (2002). Molecular monitoring of succession of bacterial communities in human neonates. Applied and Environmental Microbiology, 68, 219–226.

    Article  PubMed  CAS  Google Scholar 

  55. Sonnenburg, J. L., Xu, J., Leip, D. D., et al. (2005). Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science, 307, 1955–1959.

    Article  PubMed  CAS  Google Scholar 

  56. Ley, R. E., Hamady, M., Lozupone, C., et al. (2008). Evolution of mammals and their gut microbes. Science, 320, 1647–1651.

    Article  PubMed  CAS  Google Scholar 

  57. Crawford, P. A., Crowley, J. R., Sambandam, N., et al. (2009). Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation. Proceedings of the National Academy of Sciences of the United States of America, 106, 11276–11281.

    Article  PubMed  Google Scholar 

  58. Turnbaugh, P. J., Ridaura, V. K., Faith, J. J., Rey, F. E., Knight, R., & Gordon, J. I. (2009). The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Science Translational Medicine, 1, 6ra14.

    Article  PubMed  CAS  Google Scholar 

  59. Duncan, S. H., Belenguer, A., Holtrop, G., Johnstone, A. M., Flint, H. J., & Lobley, G. E. (2007). Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Applied and Environmental Microbiology, 73, 1073–1078.

    Article  PubMed  CAS  Google Scholar 

  60. Ahima, R. S., & Flier, J. S. (2000). Adipose tissue as an endocrine organ. Trends in Endocrinology and Metabolism: TEM, 11, 327–332.

    Article  PubMed  CAS  Google Scholar 

  61. Yudkin, J. S., Stehouwer, C. D., Emeis, J. J., & Coppack, S. W. (1999). C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arteriosclerosis, Thrombosis, and Vascular Biology, 19, 972–978.

    PubMed  CAS  Google Scholar 

  62. Lyon, C. J., Law, R. E., & Hsueh, W. A. (2003). Minireview: adiposity, inflammation, and atherogenesis. Endocrinology, 144, 2195–2200.

    Article  PubMed  CAS  Google Scholar 

  63. Yuan, M., Konstantopoulos, N., Lee, J., et al. (2001). Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science, 293, 1673–1677.

    Article  PubMed  CAS  Google Scholar 

  64. Hundal, R. S., Petersen, K. F., Mayerson, A. B., et al. (2002). Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. The Journal of Clinical Investigation, 109, 1321–1326.

    PubMed  CAS  Google Scholar 

  65. Medzhitov, R. (2001). Toll-like receptors and innate immunity. Nature Reviews. Immunology, 1, 135–145.

    Article  PubMed  CAS  Google Scholar 

  66. Poltorak, A., He, X., Smirnova, I., et al. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 282, 2085–2088.

    Article  PubMed  CAS  Google Scholar 

  67. Lee, J. Y., Ye, J., Gao, Z., et al. (2003). Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids. The Journal of Biological Chemistry, 278, 37041–37051.

    Article  PubMed  CAS  Google Scholar 

  68. Zuany-Amorim, C., Hastewell, J., & Walker, C. (2002). Toll-like receptors as potential therapeutic targets for multiple diseases. Nature Reviews. Drug discovery, 1, 797–807.

    Article  PubMed  CAS  Google Scholar 

  69. Vijay-Kumar, M., Aitken, J. D., Carvalho, F. A., et alFloat As per style specification (APA), Please provide six author names and et al. in the reference list. As per style specification (APA), Please provide six author names and et al. in the reference list.. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science, 328, 228–231.

    Google Scholar 

  70. Shi, H., Kokoeva, M. V., Inouye, K., Tzameli, I., Yin, H., & Flier, J. S. (2006). TLR4 links innate immunity and fatty acid-induced insulin resistance. The Journal of Clinical Investigation, 116, 3015–3025.

    Article  PubMed  CAS  Google Scholar 

  71. Tsukumo, D. M., Carvalho-Filho, M. A., Carvalheira, J. B., et al. (2007). Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes, 56, 1986–1998.

    Article  PubMed  CAS  Google Scholar 

  72. Davis, J. E., Gabler, N. K., Walker-Daniels, J., & Spurlock, M. E. (2008). Tlr-4 deficiency selectively protects against obesity induced by diets high in saturated fat. Obesity (Silver Spring), 16, 1248–1255.

    Article  CAS  Google Scholar 

  73. Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J., & Mathison, J. C. (1990). CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science, 249, 1431–1433.

    Article  PubMed  CAS  Google Scholar 

  74. Neal, M. D., Leaphart, C., Levy, R., et al. (2006). Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. Journal of Immunology (Baltimore, Md.: 1950), 176, 3070–3079.

    CAS  Google Scholar 

  75. Cani, P. D., Amar, J., Iglesias, M. A., et al. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56, 1761–1772.

    Article  PubMed  CAS  Google Scholar 

  76. Cani, P. D., Bibiloni, R., Knauf, C., et al. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes, 57, 1470–1481.

    Article  PubMed  CAS  Google Scholar 

  77. Pozzilli, P., Signore, A., Williams, A. J., & Beales, P. E. (1993). NOD mouse colonies around the world–recent facts and figures. Immunology Today, 14, 193–196.

    Article  PubMed  CAS  Google Scholar 

  78. Wen, L., Ley, R. E., Volchkov, P. Y., et al. (2008). Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature, 455, 1109–1113.

    Article  PubMed  CAS  Google Scholar 

  79. McGilvery, R. (1970). Biochemistry: A functional approach. Philadelphia: Saunders.

    Google Scholar 

  80. Dintzis, R. Z., & Hastings, A. B. (1953). The effect of antibiotics on urea breakdown in mice. Proceedings of the National Academy of Sciences of the United States of America, 39, 571–578.

    Article  PubMed  CAS  Google Scholar 

  81. Levenson, S. M., Crowley, L. V., Horowitz, R. E., & Malm, O. J. (1959). The metabolism of carbon-labeled urea in the germ free rat. The Journal of Biological Chemistry, 234, 2061–2062.

    PubMed  CAS  Google Scholar 

  82. Graham, D. Y., Klein, P. D., Evans, D. J., Jr., et al. (1987). Campylobacter pylori detected noninvasively by the 13C-urea breath test. Lancet, 1, 1174–1177.

    Article  PubMed  CAS  Google Scholar 

  83. Walser, M., & Bodenlos, L. J. (1959). Urea metabolism in man. The Journal of Clinical Investigation, 38, 1617–1626.

    Article  PubMed  CAS  Google Scholar 

  84. Silen, W., Harper, H. A., Mawdsley, D. L., & Weirich, W. L. (1955). Effect of antibacterial agents on ammonia production within the intestine. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine(New York, N.Y.), 88, 138–140.

    CAS  Google Scholar 

  85. Moran, B. J., & Jackson, A. A. (1990). 15N-urea metabolism in the functioning human colon: luminal hydrolysis and mucosal permeability. Gut, 31, 454–457.

    Article  PubMed  CAS  Google Scholar 

  86. Jackson, A. A., Danielsen, M. S., & Boyes, S. (1993). A noninvasive method for measuring urea kinetics with a single dose of [15N15N]urea in free-living humans. The Journal of Nutrition, 123, 2129–2136.

    PubMed  CAS  Google Scholar 

  87. Langran, M., Moran, B. J., Murphy, J. L., & Jackson, A. A. (1992). Adaptation to a diet low in protein: effect of complex carbohydrate upon urea kinetics in normal man. Clinical Science (Lond), 82, 191–198.

    CAS  Google Scholar 

  88. Picou, D., & Phillips, M. (1972). A study with 15N-urea on the effects of a low protein diet and malnutrition on urea metabolism in children. Clinical Science, 43, 17.

    Google Scholar 

  89. Brusilow, S. W., & Maestri, N. E. (1996). Urea cycle disorders: diagnosis, pathophysiology, and therapy. Advances in Pediatrics, 43, 127–170.

    PubMed  CAS  Google Scholar 

  90. Batshaw, M. L., MacArthur, R. B., & Tuchman, M. (2001). Alternative pathway therapy for urea cycle disorders: twenty years later. The Journal of Pediatrics, 138, S46–54; discussion S-5.

    Article  PubMed  CAS  Google Scholar 

  91. Maestri, N. E., Clissold, D., & Brusilow, S. W. (1999). Neonatal onset ornithine transcarbamylase deficiency: A retrospective analysis. The Journal of Pediatrics, 134, 268–272.

    Article  PubMed  CAS  Google Scholar 

  92. Maclayton, D. O., & Eaton-Maxwell, A. (2009). Rifaximin for treatment of hepatic encephalopathy. The Annals of Pharmacotherapy, 43, 77–84.

    Article  PubMed  CAS  Google Scholar 

  93. Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C. M., Knight, R., & Gordon, J. I. (2007). The human microbiome project. Nature, 449, 804–810.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hsu, E., Wu, G. (2011). Gut Microbes, Immunity, and Metabolism. In: Ahima, R. (eds) Metabolic Basis of Obesity. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1607-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1607-5_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1606-8

  • Online ISBN: 978-1-4419-1607-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics