Advertisement

Structure andSynthesis of Lipid A

  • Shoichi KusumotoEmail author
  • Masahito Hashimoto
  • Kazuyoshi Kawahara
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 667)

Abstract

Lipid A is the lipophilic partial structure of bacterial lipopolysaccharide (LPS), which is a characteristic and essential component of the cell surface architecture of Gram negative bacteria. LPS constitutes the outer leaflet of the lipid bilayer of outer membrane which covers the outermost surface of bacterial cells. Structurally, LPS is composed of covalently bound three distinct parts, i. e., O-antigenic polysaccharide, core oligosaccharide and glycolipid called lipid A (Fig. 1). Westphal and Lüderitz found that the linkage between the core oligosaccharide and glycolipid is selectively cleaved by mild acid hydrolysis of LPS. They also observed that the liberated glycolipid, which they named lipid A, is responsible for the endotoxic activity of LPS. 1
Figure 1.

Schematic structure of lipopolysaccharide (LPS).

Keywords

Nuclear Magnetic Resonance Spectroscopy Neisseria Meningitidis Bacterial Lipopolysaccharide Yersinia Pestis Natural Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Westphal O, Lüderitz O. Chemische Erforschung von Lipopolysacchariden Gram-negativer Bacterien. Angew Chem 1954; 66:407–401.CrossRefGoogle Scholar
  2. 2.
    Rietschel ET, Westphal O. Endotoxin: Historical perspectives. In: Endotoxin in health and disease. Brade H, Opal SM, Vogel SN, Morrison DC, eds. New York: Marcel Dekker, 1999:1–31.Google Scholar
  3. 3.
    Gmeiner L, Lüderitz O, Westphal O. Biochemical studies on lipopolysaccharide of Salmonella R mutant 6. Investigation on the structure of the lipid A component. Eur J Biochem 1969; 7:270–379.CrossRefGoogle Scholar
  4. 4.
    Hase S, Rietschel ET. Isolation and analysis of the lipid A backbone. Lipid A structure of lipopolysaccharide from various bacterial group. Eur J Biochem 1976; 63:101–107.PubMedCrossRefGoogle Scholar
  5. 5.
    Takayama K, Qureshi N. Chemical structure of lipid A. In: Morrison DC, Ryan JL, eds. Bacterial endotoxic lipopolysaccharides Vol: I Molecular biochemistry and cellular biology. Boca Raton: CRC Press, 1992:43–65.Google Scholar
  6. 6.
    Zähringer U, Lindner B, Rietschel ET. Molecular structure of lipid A, the endotoxic center of bacterial lipopolysaccharides. Adv Carbohydr Chem Biochem 1994; 50:211–276.PubMedCrossRefGoogle Scholar
  7. 7.
    Galanos C, Lehman V, Lüderitz L. Endotoxic properties of chemically synthesized lipid A part structures—comparison of synthetic lipid A precursor and synthetic analogues with biosynthetic lipid A precursor and free lipid A. Eur J Biochem 1984; 140:221–227.PubMedCrossRefGoogle Scholar
  8. 8.
    Kotani S, Takada H, Tsujimoto M et al. Immunobiologically active lipid A analogs synthesized according to a revised structural model of natural lipid A. Infect Immun 1984; 45:293–296.PubMedGoogle Scholar
  9. 9.
    Takada H, Kotani S, Tsujimoto M et al. Immunopharmacological activities of a synthetic counterpart of a biosynrhetic lipid A precursor molecule and of its analogs. Infect Immun 1985; 48:219–227.PubMedGoogle Scholar
  10. 10.
    Galanos C, Lüderitz O, Rietschel ET et al. Synthetic and natural Escherichia coli free lipid A express identical endotoxic activities. Eur J Biochem 1985; 148:1–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Kotani S, Takada H, Tsujimoto M et al. Synthetic lipid A with endotoxic and related biological activities comparable to those of a natural lipid A from an Escherichia coli Re-murant, Infect Immun 1985; 49:225–237.PubMedGoogle Scholar
  12. 12.
    Galanos C, Lüderitz O, Rietschel ET et al. Newer aspect of the chemistry and biology of bacterial lipopolysaccharides with special reference to their lipid A component. In: Goodwin T, ed. International Review of Biochemistry Vol 14: Biochemistry of lipid II. Baltimore: University Park Press, 1977:239–335.Google Scholar
  13. 13.
    Zähringer U, Lindner B, Rietschel ET. Chemical structure of lipid A: Recent advances in structural analysis of biologically active molecule. In: Endotoxin in health and disease. Brade H, Opal SM, Vogel SN, Morrison DC, eds. New York: Marcel Dekker, 1999:1–31.Google Scholar
  14. 14.
    Rosner MR, Khorana HG, Satterhwait AC. The structure of the lipopolysaccharide from a heptose-less mutant Escherichia coli K-12. J Biol Chem 1979; 254:5918–5925.Google Scholar
  15. 15.
    Imoto M, Kusumoto S, Shiba T et al. Chemical structure of E. coli lipid A: Linkage site of acyl groups in the disaccharide backbone. Tetrahedron Lett 1983; 24:4017–4020.CrossRefGoogle Scholar
  16. 16.
    Imoto M, Yoshimura H, Kusumoto S et al. Total synthesis of lipid A, active principle of bacterial endotoxin. Proc Japan Acad Ser B 1984; 60:285–288.CrossRefGoogle Scholar
  17. 17.
    Imoto M, Kusumoto S, Shiba T et al. Chemical structure of Escherichia coli lipid A. Tetrahedron Lett 1985; 26:907–908.CrossRefGoogle Scholar
  18. 18.
    Lehman V. Isolation, purification and properties of an intermediate in 3-deoxy-D-mannooctulosonic acid-lipid A biosynthesis. Eur J Biochem 1977; 75:257–266.CrossRefGoogle Scholar
  19. 19.
    Qureshi N, Takayama K, Heller D et al. Position of ester groups in the lipid A backbone of lipopolysacchari des obtained from Salmonella typhimurium. J Biol Chem 1983; 258:12947–12951.PubMedGoogle Scholar
  20. 20.
    Takayama K, Qureshi N, Mascagni P. Complete structure of lipid A obtained from Salmonella typhimurium. J Biol Chem 1983; 258:12801–12803.PubMedGoogle Scholar
  21. 21.
    Nishijima M, Raetz CRH. Characterization of two membrane-associated glycolipids from an Escherichia coli mutant deficient in phosphatidylglycerol. J Biol Chem 1981; 256:10690–10896.PubMedGoogle Scholar
  22. 22.
    Takayama K, Qureshi N, Mascagni P et al. Fatty acyl derivatives of glucosamine 1-phosphate in Escherichia coli and their relation to lipid A. J Biol Chem 1983; 258:7379–7385.PubMedGoogle Scholar
  23. 23.
    Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem 2002; 71:635–700.PubMedCrossRefGoogle Scholar
  24. 24.
    Qureshi N, Mascagni P, Ribi E et al. Monophosphoryllipid A obtained from lipopolysaccharides of Salmonella minnesota R595. J Biol Chem 1985; 260:5271–5278.PubMedGoogle Scholar
  25. 25.
    Helander IM, Lindner B, Brade H et al. Chemical structure of the lipopolysaccharide of Haemophylus influenzae strain 1-69 RD-/b+. Eur J Biochem 1988; 177:483–492.PubMedCrossRefGoogle Scholar
  26. 26.
    Tyeng ZL, Datta A, Kolli VK et al. Endotoxin of Neisseria meningitidis composed only of intact lipid A: Inactivation of the meningococcal 2-deoxy-D-manno-octulosonic acid transferase. J Bateriol 2002; 2379–2388.Google Scholar
  27. 27.
    Mohan S, Raetz CRH. Endotoxin biosynthesis in Pseudomonas aeruginosa: Enzymatic incorporation of laurate before 3-deoxy-D-manno-octulosonate. J BacterioI 1994:6944–6951.Google Scholar
  28. 28.
    Tan J, Darby C. Yersinia pestis is viable with endotoxin composed of only lipid A. J Bacteriol 2005; 187:6599–6600.PubMedCrossRefGoogle Scholar
  29. 29.
    Tzeng YL, Datta A, Kolli VK et al. Endotoxin of Neisseria meningitidis composed only of lipid A: inactivation of the menigococcal 3-deoxy-D-manno-octulosonic acid transferase. J Bacteriol 2002; 184:2379–2388.PubMedCrossRefGoogle Scholar
  30. 30.
    Trent MS, Stead CM, Tran AX et al. Diversity of endotoxin and its impact on pathogenesis. J Endotoxin Res 2006; 12:205–223.PubMedCrossRefGoogle Scholar
  31. 31.
    Fukuoka S, Kamishima H, Nagawa Y et al. Structural characterization of lipid A component of Erwinia carorovora lipopolysaccharide. Arch Microbiol 1992; 157:311–318.CrossRefGoogle Scholar
  32. 32.
    Sidorczyk Z, Zähringer U, Rietschel ET. Chemical structure of the lipid A component in the lipopolysaccharide from Proteus mirabilis Re-mutant. Eur J Biochem 1983; 137:15–22.PubMedCrossRefGoogle Scholar
  33. 33.
    Hollingsworth RI, Carlson RW. 27-Hydroxyoctacosanoic acid is major structural fatty acyl component of the lipopolysaccharide of Rhizobium trifolii ANU 843. J Biol Chem 1989; 264:9300–9303.PubMedGoogle Scholar
  34. 34.
    Bhat UR, Forsberg LS, Carlson RW. Structure of lipid A component of Rhizobium leguminosarum bv. Phaseoli lipopolysaccharide. J Biol Chem 1994; 269:14402–14410.PubMedGoogle Scholar
  35. 35.
    Ogawa T. Chemical structure of lipid A from Porphyromonas (Bacteroides) gingivalis lipopolysaccharide. FEBS Letters 1993; 332:197–201.PubMedCrossRefGoogle Scholar
  36. 36.
    Kumada H, Haishima Y, Umemoto T et al. Structural study on the free lipid A isolated from lipopolysaccharide of Porphyromonas gingivalis. J Bacteriol 1995; 177:2098–2106.PubMedGoogle Scholar
  37. 37.
    Seydel U, Lindner B, Wollenweber HW et al. Structural studies on the lipid A component of enterobacteriallipopolysaccharides by laser desorption mass spectrometry. Eur J Biochem 1984; 145:505–509.PubMedCrossRefGoogle Scholar
  38. 38.
    Que NLS, Lin S, Cotter R J et al. Purification and mass spectrometry of six lipid A species from the bacterial endosymbiont Rhysobium etli. J Biol Chem 2000; 275:28006–28016.PubMedGoogle Scholar
  39. 39.
    Salimath PV, Weckesser J, Strittmarer W et al. Structural studies on the nontoxic lipid A from Rhodopseudomonas sphaeroides ATCC 17023. Eur J Biochem 1983; 136:195–200.PubMedCrossRefGoogle Scholar
  40. 40.
    Qureshi N, Honovich JP, Hara H et al. Location of fatty acids in lipid A obtained from lipopolysaccharide of Rhodoseudomonas sphaeroides ATCC 17023. J Biol Chem 1988; 263:5502–5504.PubMedGoogle Scholar
  41. 41.
    Qureshi N, Takayama K, Meyers KC et al. Chemical reduction of 3-oxo and unsaturated groups in fatty acids of diphosphoryllipid A from lipopolysaccharide of Rhodoseudomonas sphaeroides. J Biol chern 1991; 266:6532–6538.Google Scholar
  42. 42.
    Krauss JH, Seydel U, Weckesser J et al. Structural analysis of the nontoxic lipid A of Rhodobacter capsulatus 37b4. Eur J Biochem 1989; 180:519–526.PubMedCrossRefGoogle Scholar
  43. 43.
    Meyer H, Merkofer T, Warth C et al. Position and configuration of double bonds inlipid A-associated monounsaturated fatty acids of Proteobaceteria and Rhodobacter casulatus 37b4. J Endotoxin Res 1996; 3:345–352.Google Scholar
  44. 44.
    Gibbons HS, Lin S, Cottter R J et al. Oxygen requirement for the biosynthesis of the S-2-hydroxymyristate moiety in Salmonella typhimurium lipid A. J Biol Chem 2000; 275:32940–32949.PubMedCrossRefGoogle Scholar
  45. 45.
    Balzer LH, Mattsby-Balzer I. Heterogeneity of lipid A: Structure determination by 13C and 31P NMR of lipid A fraction from lipopolysaccharide of Escherichia coli 0111. Biochemistry 1986; 25:3570–3575.CrossRefGoogle Scholar
  46. 46.
    Lukasiewicz J, Dzieciatkowska M, Niedziela T et al. Complete lipopolysaccharide of Plesiomonas shigelloides 074:H5 (strain CNCTC 144/92). 2. Lipid A, its structural variability, the linkage to the core oligosaccharide and the biological activity of the lipopolysaccharide. Biochemistry 2006; 45: 10434–10447.PubMedCrossRefGoogle Scholar
  47. 47.
    Takayama K, Qureshi N, Hyver K et al. Characterization of a structural series of lipid a obtained from the lipopolysaccharide of Neisseria gonorrhoeae. J Biol Chem 1986; 261:10624–10631.PubMedGoogle Scholar
  48. 48.
    Zähringer U, Salvetzki R, Wanger F et al. Structure and biological characteristics of a novel tetra-acyl lipid A from Escherichia coli F515 lipopolysaccharide acting endotoxin antagonist in human monocytes. J Endotoxin Res 2001; 7:133–146.PubMedGoogle Scholar
  49. 49.
    Kawahara K, Tsukano H, Watanabe H et al. Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infect Immun 2002; 70:4092–4098.PubMedCrossRefGoogle Scholar
  50. 50.
    Knirel YA, Dentovskaya SV, Senchenkova SN et al. Structural feature and structural variability of the lipopolysaccharide of Yersinia pestis, the cause of plaque. J Endotoxin Res 2006; 12:3–9.PubMedGoogle Scholar
  51. 51.
    Montminy SW: Khan N, McGrath S et al. Virulence factor of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nature Immunology 2006; 7:1066–1073.PubMedCrossRefGoogle Scholar
  52. 52.
    Takada H, Kotani S. Structure-function relationships of lipid A. In: Morrison DC, Ryan JL, eds. Bacterial endotoxic lipopolysaccharides Vol: I Molecular biochemistry and cellular biology. Boca Raton: CRC Press, 1992:43–65.Google Scholar
  53. 53.
    Seydel U, Weise A, Schrom AB et al. A Biophysical view on the function and activity of endotoxin. In: Endotoxin in health and disease. Brade H, Opal SM, Vogel SN, Morrison DC, eds, New York: Marcel Dekker, 1999:195–219.Google Scholar
  54. 54.
    Kulshin VA, Zähringer U, Lindner B et al. Structural characterization of the lipid A component of pathogenic Neisseria meningitidis. J Bacteriol 1992; 174:1793–1800.PubMedGoogle Scholar
  55. 55.
    Zhou Z, Ribeiro AA, Raetz CHR. High-resolution NMR spectroscopy of lipid A molecules containing 4-amino-4-deoxy-L-arabinose and phosphoethanolamine susbstituents. J Biol Chem 2000; 275: 13542–13551.PubMedCrossRefGoogle Scholar
  56. 56.
    Vaara M, Vaara T, Jensen A et al. Characterization of the lipopolysacchride from the polymyxin-resistant pmrA mutants of Salmonella typhimurium. FEBS letters 1981; 129:145–149.PubMedCrossRefGoogle Scholar
  57. 57.
    Bhat R, Marx A, Galanos C et al. Structural studies of lipid A from Psudomonas aeruginosa PA01: Occuence of 4-anino-4-deoxyarabinose. J Baceriol 1990; 172:6631–6636.Google Scholar
  58. 58.
    Qureshi N, Kaltashov I, Walker K et al. Structure of the monophosphoryllipid A moiety obtained from the lipopolysaccharide of Chlamydia trachomatis. J Biol Chem 1997; 272:10594–10600.PubMedCrossRefGoogle Scholar
  59. 59.
    Trent MS, Riberio AA, Doerrler WT et al. Accumulation of a polyisoprene-linked amino sugar in polymyxin-resistant Salmonella typhimurium and Escherichia coli. J Biol Chem 2001; 276:43132–43144.PubMedCrossRefGoogle Scholar
  60. 60.
    Lee H, Hsu FF, Turk J et al. The PmrA-regulated pmrC gene mediates phospho ethanolamine modification of lipid A and plymixin resistance in Salmonella enterica. J Bacteriol 2004; 186:4122–4133.Google Scholar
  61. 61.
    Tran AX, Lester ME, Stead CM et al. Resistance to the antimicrobial peptide polymixin requires myristoylation of Escherichia coli and Salmonella typhimurium lipid A. J Biol Chem 2005; 280:28286–28194.Google Scholar
  62. 62.
    Helander IM, Kilpeläinen I, Vaara M. Increased substitution of phosphate groups in lipopolysaccharide of the polymixin-resistant pmrA mutants of Salmonella typhimurium: a 31P-NMR study. Mol Microbiol 1994:11:481–487.PubMedCrossRefGoogle Scholar
  63. 63.
    Nummila K, Kilpeläinen I, Zähringer U et al. Lipopolysaccharides of polymyxin B-resitant mutants of Escherichia coli are extensivelysubstituted by 2-aminoethanol pyrophosphate and contain aminoarabinose in lipid A. Molecular Microbiol 1995; 16:271–278.CrossRefGoogle Scholar
  64. 64.
    Moran AP, Lindner B, Walsh EJ. Structural characterization of the lipid A component of Helicobacter pylori rough-and smooth-form lipopolysaccharides. J Bacteriol 1997; 179:6453–7463.PubMedGoogle Scholar
  65. 65.
    Suda Y, Ogawa T, Kashihara W et al. Chemical structure of lipid A from Helicobacter pylori Strain 206-1 lipopolysaccharide. J Biochem 1997; 121:1129–1133.PubMedGoogle Scholar
  66. 66.
    Suda Y, Kim YM, Ogawa T et al. Chemical structure and biological activity of a lipid A component from Helicobacter pylori strain 206. J Endotoxin Res 2001; 7:95–104.PubMedGoogle Scholar
  67. 67.
    Phillips N, Apicella MA, Griffis M et al. Structural characterization of the cell surface lipopolysaccharides from a Nontypable strain of Haemophilus influenzae. Biochemstry 1992; 31:4515–4526.CrossRefGoogle Scholar
  68. 68.
    Karbarz MJ, Kalb SR, Cotter RL et al. Expression cloning and biochemical characterization of a Rhizobium leguminosarum lipid A I-phosphatase. J Biol Chem 2003; 278:39269–39279.PubMedCrossRefGoogle Scholar
  69. 69.
    Wang X, McGrath SC, Cotter RL et al. Expression cloning and periplasmic orientation of the Francisella novicida lipid A 4′-phosphatase LpxF. J Biol Chem 2006; 281:9321–9330.PubMedCrossRefGoogle Scholar
  70. 70.
    Holst O, Borowiak D, Weckesser J et al. Structural studies on the phosphate-free lipid A of Rhodomicrobium vannielii ATCC 17100. Eur J Biochem 1983; 137:325–332.PubMedCrossRefGoogle Scholar
  71. 71.
    Moran AP, Zähringer U, Seydel U et al. Structural analysis of the lipid A component of Campylobacter jejuni CCUG 10936 (serotype O:2) lipopolysaccharide. Eur J Biochem 1991; 198:459–469.PubMedCrossRefGoogle Scholar
  72. 72.
    Kato H, Haishima Y, Iida T et al. Chemical structure of lipid A from Flavobacterium meningosepticum lipopolysaccharide. J Bacteriol 1998; 180:3891–3899.PubMedGoogle Scholar
  73. 73.
    Que-Gewirth NLS, Ribeiro AA, Kalb SR et al. A methylated phosphate group and four amide-linked acyl chains in Leptospira interrogans lipid A. J Biol Chem 2004; 279:25420–25429.PubMedCrossRefGoogle Scholar
  74. 74.
    Schuwdke D, Linsheid M, Strauch E et al. The obligate predatory Bdellovbibro bacteriovorus posseses a neutral lipid a containing α-D-mannoses that replace phosphate residues. J. Biol Chem 2003; 278:27502–27512.CrossRefGoogle Scholar
  75. 75.
    Plotz BM, Lindner B, Stetter KO et al. Characterization of A novel lipid A containing D-galacturonic acid that replaces phosphate residues. J Biol Chem 2000; 275:11222–11228.PubMedCrossRefGoogle Scholar
  76. 76.
    Que NLS, Ribeiro AA, Raetz CRH. Two dimensional NMR spectroscopy and structures of six lipid A species from Rhysobium etli CE3. J Biol Chem 2000; 275:28017–28027.PubMedGoogle Scholar
  77. 77.
    Gudlavalleti SK, Forsberg LS. Structural characterization of the lipid a component of Shinorizobium sp. NGR234 rough and smooth form lipopplysaccharide. J Biol Chem 2003; 278:3957–3968.PubMedCrossRefGoogle Scholar
  78. 78.
    Kusumoto S, Inage M, Chaki H et al. Chemical synthesis of lipid A for the elucidation of structure-activity relashionship. In: Bacterial lipopolysaccharide. Anderson L, Unger FM, eds. ACS Symposium Series 231. Washington DC: American Chemical Society, 1983:237–254.CrossRefGoogle Scholar
  79. 79.
    Kiso M, Hasegawa M. Synthetic studies on the lipid A component of bacterial lipopolysaccharide. In: Bacterial lipopolysaccharide. Anderson L, Unger FM, eds. ACS Symposium Series 231. Washington DC: American Chemical Society, 1983:277–300.CrossRefGoogle Scholar
  80. 80.
    Inage M, Chaki H, Imoto M et al. Synthetic approach to lipid A: Preparation of phosphorylated disaccharides containing (R)-3-hydroxyacyl and (R)-3-acyloxyacyl groups. Tetrahedron Lett 1983; 24: 2011–2014.CrossRefGoogle Scholar
  81. 81.
    Imoto M, Yoshimura H, Yamamoto M et al. Chemical synthesis of phosphorylated terraacyl disaccharide corresponding to a biosynthetic precursor of lipid A. Tetrahedron Lett 1984; 25:2667–2670.CrossRefGoogle Scholar
  82. 82.
    Imoto M, Yoshimura H, Yamamoto M et al. Chemical synthesis of a biosynthetic precursor of lipid A with a phosphorylated tetraacyl disaccharide structure. Bull Chem Soc Jpn 1987; 60:2197–2204.CrossRefGoogle Scholar
  83. 83.
    Imoto M, Yoshimura H, Shimamoto T et al. Total synthesis of escherichia coli lipid A, the endotoxically active principle of cell-surfacelipopolysaccharide. Bull Chem Soc Jpn 1987; 60:2205–2214.CrossRefGoogle Scholar
  84. 84.
    Kusumoto S, Yoshimura H, Imoto M et al. Chemical synthesis of 1-dephospho derivative of Escherichia coli lipid A. Tetrahedron Lett 1985; 26:909–912.CrossRefGoogle Scholar
  85. 85.
    Liu WC, Oikawa M, Fukase K et al. A divergent synthesis of lipid A and its chemically stable unnatural analogues. Bull Chem Soc Jpn 1999; 72:1377–1385.CrossRefGoogle Scholar
  86. 86.
    Loppnow H, Brade L, Brade H et al. Induction of human interleukin 1 by bacterial and synthetic lipid A. Eur J Immunol 1986; 16:1263–1267.PubMedCrossRefGoogle Scholar
  87. 87.
    Kobayashi M, Saitoh S, Tanimura N et al. Regulatory roles for MD-2 and TLR-4 in ligand-induced receptor clustering. J Immunol 2006; 176:6211–6218.PubMedGoogle Scholar
  88. 88.
    Saito S, Miyake K, Mechanism regulating cell surface expression and activation of Toll-like receptor 4. Chem Reed 2006; 6:311–319.CrossRefGoogle Scholar
  89. 89.
    Takayama K, Qureshi N, Beutler B et al. Diphosphoryllipid A from Rhodopseudomonas sphaeroides ATCC 1702 blocks induction of cachectin in macrophage by lipopolysaccharide. Infec Immun 1989; 57:1336–1338.Google Scholar
  90. 90.
    Kirkland TN, Qureshi N, Takayama K. Diphposphoryllipid A derivative from lipopolysaccharide (LPS) of Rhodopseudomonas sphaeroides inhibits activation of 70Z/3 cells by LPS. Infect Immun 1991; 59:131–136.PubMedGoogle Scholar
  91. 91.
    Golenbock D, Hampton RW, Qureshi N et al. Lipid A-like molecules that antagonize the effects of endotoxins on human monocytes. J Biol Chem 1991; 266:19490–19498.PubMedGoogle Scholar
  92. 92.
    Christ WJ, McGuiness PD, Asano O et al. Total synthesis of the proposed structure of Rhodobacter sphaeroides lipid A resulting in the synthesis of new potent lipopolysaccharide antagonists. J Am Chem Soc 1994; 116:3637–3638.CrossRefGoogle Scholar
  93. 93.
    Rossignol DP, Christ WJ, Hawkins LD et al. Synthetic endotoxin antagonist. In: Endotoxin in health and disease. Brade H, Opal SM, Vogel SN, Morrison DC, eds. New York: Marcel Dekker, 1999:699–717.Google Scholar
  94. 94.
    Christ WJ, Asano O, Robidoux AL et al. E5531, a pure endotoxin antagonist of high potency. Science 1995; 268:80–83.PubMedCrossRefGoogle Scholar
  95. 95.
    Kusumoto S, Fukase K, Oikawa M. The chemical synthesis of lipid A. In: Endotoxin in health and disease. Brade H, Opal SM, Vogel SN, Morrison DC, eds. New York: Marcel Dekker, 1999:243–256.Google Scholar
  96. 96.
    Liu WC, Oikawa M, Fukase K et al. A divergent synthesis of lipid A and its chemically stable unnatural analogues. Bull Chem Soc Jpn 1999; 72:1377–1385.CrossRefGoogle Scholar
  97. 97.
    Fukase K, Oikawa M, Suda Y et al. New synthesis and conformational analysis of lipid A: biological activity and supramolecular assembly. J Endotoxin Res 1999; 5:46–51.CrossRefGoogle Scholar
  98. 98.
    Sakai Y, Oikawa M, Yoshizaki H et al. Synthesis of Helicobacter pylori lipid A and its analogue using p-(triHuoromethyl)benzyl protecting group. Tetrahedron Lett 2000; 41:6843–6847.CrossRefGoogle Scholar
  99. 99.
    Fukase K, Ueno A, Fukase Y et al. Synthesis and biological activities of lipid A analogs possessing β-glycosidic linkage at l-position. Bull Chem Soc Jpn 2003; 76:485–500.CrossRefGoogle Scholar
  100. 100.
    Yoshizaki H, Fukuda N, Sato K et al. First total synthesis of the Re-type lipopolysaccharide. Angew Chem Int Ed 2001; 40:1475–1480.CrossRefGoogle Scholar
  101. 101.
    Sakai Y, Oikawa M, Yoshizaki H et al. Synthesis of Helicobacter pylori lipid A and its analogue using p-Itrifluoromerhyljbenzyl protecting group. Tetrahedron Lett 2000; 41:6843–6847.CrossRefGoogle Scholar
  102. 102.
    Fukase K, Kirikae T, Kirikae F et al. Synthesis of [3H]-labeled bioactive lipid A analogs and their use for detection of lipid A-binding proteins on murine macrophages. Bull Chem Soc Jpn 2001; 74:2189–2197.CrossRefGoogle Scholar
  103. 103.
    Fujimoto Y, Kimura E, Murata S et al. Synthesis and bioactivity of Huorescence-and biotin-labeled lipid A analogues for investigation of recognition mechanism in innate immunity. Tetrahedron Lett 2006; 47:539–543.CrossRefGoogle Scholar
  104. 104.
    Wollenweber HW, Seydel V, Lindner B et al. Nature and location of (R)-3-acyloxyacylgroups in lipid A of lipopolysaccharides from various gram-negative bacteria. Eur J Biochem 1984; 135:265–272.CrossRefGoogle Scholar
  105. 105.
    Iida T, Haishima Y, Tanaka A et al. Chemical structure of lipid A isolated from Comamonas testeroni lipopolysaccharide. Eur J Biochem 1996; 237:468–475.PubMedCrossRefGoogle Scholar
  106. 106.
    Kulshin VA, Zähringer U, Lindner B et al. Structural characterization of the lipid A component of Pseudomonas aeruginosa wild-type and rough mutant lipopolysaccharide. Eur J Biochem 1991; 198:697–704.PubMedCrossRefGoogle Scholar
  107. 107.
    Silipo A, Lanzetta R, Garozzo D et al. Structural determination of lipid A of the lipopolysaccharide from Pseudomonas reactans, A pathogen of cultivated mushrooms. Eur J Biochem 2002; 269:2498–2505.PubMedCrossRefGoogle Scholar
  108. 108.
    Silipo A, Molinaro A, Sturiale L et al. The elicitation of plant innate immunity by lipopolysaccharide of Xanthornonas campestris. J Biol Chem 2005; 280:33660–33668.PubMedCrossRefGoogle Scholar
  109. 109.
    Weintraub A, Zähringer U, Wollenweber HW et al. Structural characterization of the lipid A component of Bacteroides fragilis strain NCTC9343 lipopolysaccharide. Eur J Biochem 1989; 183:425–431.PubMedCrossRefGoogle Scholar
  110. 110.
    Krasikova IN, Kapustina NV, Isakov VV et al. Detailed structure of lipid A isolated from lipopolysaccharide from marine proteobacterium Marinomonas vaga ATCC 27119 T. Eur J Biochem 2004; 271:2895–2904.PubMedCrossRefGoogle Scholar
  111. 111.
    Vinogradov E, Perry MB, Conlan JW Structural analysis of Francissela tularensis lipopolysaccharide. Eur J Biochem 2002; 269:6112–6118.PubMedCrossRefGoogle Scholar
  112. 112.
    Batley N, Packer NH, Redmond JW, Configurations of glycosidic phosphates of lipopolysaccharide from Salmonella minnesota R595. Biochemistry 1982; 21:6580–6586.PubMedCrossRefGoogle Scholar
  113. 113.
    Strain SM Armitage IM, Anderson L et al. Location of polar substituents and fatty acyl chains on lipid A precursors from a 3-deoxy-D-manno-octulosonic acid-deficient mutant of Salmonella typhimurium. Studies by 1H, 13C and 31P nuclear magnetic resonance. J Biol Chem 1985; 260:16089–16098.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • Shoichi Kusumoto
    • 1
    Email author
  • Masahito Hashimoto
    • 2
  • Kazuyoshi Kawahara
    • 3
  1. 1.Suntory Institute for Bioorganic ResearchOsakaJapan
  2. 2.Department of Nanostructure and Advanced Materials Graduate School of Science and EngineeringKagoshima UniversityKagoshimaJapan
  3. 3.Department of Applied Material and Life Science College of EngineeringKanto Gakuin UniversityKanagawaJapan

Personalised recommendations