Chemokine Binding Proteins Encoded by Pathogens

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 666)

Abstract

Chemokines are chemoattractant cytokines that play an important role in immunity. The role of chemokines against invading pathogens is emphasized by the expression of chemokine inhibitors by many pathogens. A mechanims employed by poxviruses and herpesviruses is the secretion of chemokine binding proteins unrelated to host receptors that bind chemokines with high affinity and block their activity. Soluble chemokine binding proteins have also been identified in the human parasite Schistosoma mansoni and in ticks. The binding specificity of these inhibitors of cell migration point at chemokines that contribute to host defense mechanisms against various pathogens. Chemokine binding proteins modulate the immune response and may lead to new therapeutic approaches to treat inflamatory diseases.

Keywords

Migration Attenuation Sarcoma Interferon Meningitis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baggiolini M. Chemokines and leukocyte traffic. Nature 1998; 392(6676):565–568.CrossRefPubMedGoogle Scholar
  2. 2.
    Mackay CR. Chemokines: immunology’s high impact factors. Nat Immunol 2001; 2(2):95–101.CrossRefPubMedGoogle Scholar
  3. 3.
    Zlotnik A, Yoshie O, Nomiyama H. The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol 2006; 7(12):243.CrossRefPubMedGoogle Scholar
  4. 4.
    Johnson Z, Proudfoot AE, Handel TM. Interaction of chemokines and glycosaminoglycans: a new twist in the regulation of chemokine function with opportunities for therapeutic intervention. Cytokine Growth Factor Rev 2005; 16(6):625–636.CrossRefPubMedGoogle Scholar
  5. 5.
    Handel TM, Johnson Z, Crown SE et al. Regulation of protein function by glycosaminoglycans—as exemplified by chemokines. Annu Rev Biochem 2005; 74:385–410.CrossRefPubMedGoogle Scholar
  6. 6.
    Proudfoot AE. Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol 2002; 2(2):106–115.CrossRefPubMedGoogle Scholar
  7. 7.
    Wells TN, Power CA, Shaw JP et al. Chemokine blockers—therapeutics in the making? Trends Pharmacol Sci 2006; 27(1):41–47.CrossRefPubMedGoogle Scholar
  8. 8.
    Finlay BB, McFadden G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 2006; 124(4):767–782.CrossRefPubMedGoogle Scholar
  9. 9.
    Seet BT, Johnston JB, Brunetti CR et al. Poxviruses and immune evasion. Annu Rev Immunol 2003; 21:377–423.CrossRefPubMedGoogle Scholar
  10. 10.
    Alcami A, Koszinowski UH. Viral mechanisms of immune evasion. Immunol Today 2000; 21(9):447–455.CrossRefPubMedGoogle Scholar
  11. 11.
    Alcami A. Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol 2003; 3(1):36–50.CrossRefPubMedGoogle Scholar
  12. 12.
    Upton C, Mossman K, McFadden G. Encoding of a homolog of the IFN-gamma receptor by myxoma virus. Science 1992; 258(5086):1369–1372.CrossRefPubMedGoogle Scholar
  13. 13.
    Mossman K, Upton C, McFadden G. The myxoma virus-soluble interferon-gamma receptor homolog, M-T7, inhibits interferon-gamma in a species-specific manner. J Biol Chem 1995; 270(7):3031–3038.CrossRefPubMedGoogle Scholar
  14. 14.
    Lalani AS, Graham K, Mossman K et al. The purified myxoma virus gamma interferon receptor homolog M-T7 interacts with the heparin-binding domains of chemokines. J Virol 1997; 71(6):4356–4363.PubMedGoogle Scholar
  15. 15.
    Alcami A, Symons JA, Collins PD et al. Blockade of chemokine activity by a soluble chemokine binding protein from vaccinia virus. J Immunol 1998; 160(2): 624–633.PubMedGoogle Scholar
  16. 16.
    Mossman K, Nation P, Macen J et al. Myxoma virus M-T7, a secreted homolog of the interferon-gamma receptor, is a critical virulence factor for the development of myxomatosis in euroapean rabbits. Virology 1996; 215(1):17–30.CrossRefPubMedGoogle Scholar
  17. 17.
    Graham KA, Lalani AS, Macen JL et al. The Tl/35 kDa family of poxvirus-secreted proteins bind chemokines and modulate leukocyte influx into virus-infected tissues. Virology 1997; 229(1): 12–24.CrossRefPubMedGoogle Scholar
  18. 18.
    Smith CA, Smith TD, Smolak PJ et al. Poxvirus genomes encode a secreted, soluble protein that preferentially inhibits beta chemokine activity yet lacks sequence homology to known chemokine receptors. Virology 1997; 236(2):316–327.CrossRefPubMedGoogle Scholar
  19. 19.
    Smith VP, Alcami A. Expression of secreted cytokine and chemokine inhibitors by ectromelia virus. J Virol 2000; 74(18):8460–8471.CrossRefPubMedGoogle Scholar
  20. 20.
    Seet BT, McCaughan CA, Handel TM et al. Analysis of an orf virus chemokine-binding protein: shifting ligand specificities among a family of poxvirus viroceptors. Proc Natl Acad SciUSA 2003; 100(25):15137–15142.CrossRefGoogle Scholar
  21. 21.
    Burns JM, Dairaghi DJ, Deitz M et al. Comprehensive mapping of poxvirus vCCI chemokine-binding protein. Expanded range of ligand interactions and unusual dissociation kinetics. J Biol Chem 2002; 277(4):2785–2789.CrossRefPubMedGoogle Scholar
  22. 22.
    Lalani AS, Ness TL, Singh R et al. Functional comparisons among members of the poxvirus Tl/35 kDa family of soluble CC-chemokine inhibitor glycoproteins. Virology 1998; 250(1): 173–184.CrossRefPubMedGoogle Scholar
  23. 23.
    Seet BT, Barrett J, Robichaud J et al. Glycosaminoglycan binding properties of the myxoma virus CC-chemokine inhibitor, M-Tl. J Biol Chem 2001; 276(32):30504–30513.CrossRefPubMedGoogle Scholar
  24. 24.
    Carfi A, Smith CA, Smolak PJ et al. Structure of a soluble secreted chemokine inhibitor vCCI (p35) from cowpox virus. Proc Natl Acad Sci USA 1999; 96(22):12379–12383.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang L, Dérider M, McCornack MA et al. Solution structure of the complex between poxvirus-encoded CC chemokine inhibitor vCCI and human MIP-1beta. Proc Natl Acad Sci USA 2006; 103(38):13985–13990.CrossRefPubMedGoogle Scholar
  26. 26.
    Beck CG, Studer C, Zuber JF et al. The viral CC chemokine-binding protein vCCI inhibits monocyte chemoattractant protein-1 activity by masking its CCR2B-binding site. J Biol Chem 2001; 276(46):43270–43276.CrossRefPubMedGoogle Scholar
  27. 27.
    Seet BT, Singh R, Paavola C et al. Molecular determinants for CC-chemokine recognition by a poxvirus CC-chemokine inhibitor. Proc Natl Acad Sci USA 2001; 98(16):9008–9013.CrossRefPubMedGoogle Scholar
  28. 28.
    Arnold PL, Fremont DH. Structural determinants of chemokine binding by an ectromelia virus-encoded decoy receptor. J Virol 2006; 80(15):7439–7449.CrossRefPubMedGoogle Scholar
  29. 29.
    Lalani AS, Masters J, Graham K et al. Role of the myxoma virus soluble CC-chemokine inhibitor glycoprotein, M-Tl, during myxoma virus pathogenesis. Virology 1999; 256(2):233–245.CrossRefPubMedGoogle Scholar
  30. 30.
    Martinez-Pomares L, Thompson JP, Moyer RW. Mapping and investigation of the role in pathogenesis of the major unique secreted 35-kDa protein of rabbitpox virus. Virology 1995; 206(1):591–600.CrossRefPubMedGoogle Scholar
  31. 31.
    Reading PC, Symons JA, Smith GL. A soluble chemokine-binding protein from vaccinia virus reduces virus virulence and the inflammatory response to infection. J Immunol 2003; 170(3): 1435–1442.PubMedGoogle Scholar
  32. 32.
    Ng A, Tscharke DC, Reading PC et al. The vaccinia virus A41L protein is a soluble 30 kDa glycoprotein that affects virus virulence. J Gen Virol 2001; 82(Pt 9):2095–2105.PubMedGoogle Scholar
  33. 33.
    Clark RH, Kenyon JC, Bartlett NW et al. Deletion of gene A41L enhances vaccinia virus immunogenicity and vaccine efficacy. J Gen Virol 2006; 87(Pt 1):29–38.CrossRefPubMedGoogle Scholar
  34. 34.
    Bahar MW, Kenyon JC, Putz MM et al. Structure and function of A41, a vaccinia virus chemokine binding protein. PLoS Pathog 2008; 4(1):e5.CrossRefPubMedGoogle Scholar
  35. 35.
    Ruiz-Arguello MB, Smith VP, Campanella GS et al. An ectromelia virus protein that interacts with chemokines through their glycosaminoglycan binding domain. J Virol 2008; 82(2):917–926.CrossRefPubMedGoogle Scholar
  36. 36.
    Hu FQ, Smith CA, Pickup DJ. Cowpox virus contains two copies of an early gene encoding a soluble secreted form of the Type II TNF receptor. Virology 1994; 204(1):343–356.CrossRefPubMedGoogle Scholar
  37. 37.
    Loparev VN, Parsons JM, Knight JC et al. A third distinct tumor necrosis factor receptor of orthopox-viruses. Proc Natl Acad Sci USA 1998; 95(7):3786–3791.CrossRefPubMedGoogle Scholar
  38. 38.
    Saraiva M, Alcami A. CrmE, a novel soluble tumor necrosis factor receptor encoded by poxviruses. J Virol 2001; 75(1):226–233.CrossRefPubMedGoogle Scholar
  39. 39.
    Smith CA, Hu FQ, Smith TD et al. Cowpox virus genome encodes a second soluble homologue of cellular TNF receptors, distinct from CrmB, that binds TNF but not LT alpha. Virology 1996; 223(1):132–147.CrossRefPubMedGoogle Scholar
  40. 40.
    Panus JF, Smith CA, Ray CA et al. Cowpox virus encodes a fifth member of the tumor necrosis factor receptor family: a soluble, secreted CD30 homologue. Proc Natl Acad Sci USA 2002; 99(12):8348–8353.CrossRefPubMedGoogle Scholar
  41. 41.
    Saraiva M, Smith P, Fallon PG et al. Inhibition of Type 1 cytokine-mediated inflammation by a soluble CD30 homologue encoded by ectromelia (mousepox) virus. J Exp Med 2002; 196(6):829–839.CrossRefPubMedGoogle Scholar
  42. 42.
    Alejo A, Ruiz-Arguello MB, Ho Y et al. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus. Proc Natl Acad Sci USA 2006; 103(15):5995–6000.CrossRefPubMedGoogle Scholar
  43. 43.
    Smith GL, McFadden G. Smallpox: anything to declare? Nat Rev Immunol 2002; 2(7):521–527.CrossRefPubMedGoogle Scholar
  44. 44.
    Price N, Tscharke DC, Hollinshead M et al. Vaccinia virus gene B7R encodes an 18-kDa protein that is resident in the endoplasmic reticulum and affects virus virulence. Virology 2000; 267(1):65–79.CrossRefPubMedGoogle Scholar
  45. 45.
    Homey B, Alenius H, Muller A et al. CCL27-CCR10 interactions regulate T-cell-mediated skin inflammation. Nat Med 2002; 8(2):157–165.CrossRefPubMedGoogle Scholar
  46. 46.
    Kunkel EJ, Butcher EC. Chemokines and the tissue-specific migration of lymphocytes. Immunity 2002; 16(1):1–4.CrossRefGoogle Scholar
  47. 47.
    Lazarus NH, Kunkel EJ, Johnston B et al. A common mucosal chemokine (mucosae-associated epithelial chemokine/CCL28) selectively attracts IgA plasmablasts. J Immunol 2003; 170(7):3799–3805.PubMedGoogle Scholar
  48. 48.
    Bowman EP, Kuklin NA, Youngman KR et al. The intestinal chemokine thymus-expressed chemokine (CCL25) attracts IgA antibody-secreting cells. J Exp Med 2002; 195(2):269–275.CrossRefPubMedGoogle Scholar
  49. 49.
    Schaerli P, Willimann K, Ebert LM et al. Cutaneous CXCL14 targets blood precursors to epidermal niches for langerhans cell differentiation. Immunity 2005; 23(3):33T342.CrossRefGoogle Scholar
  50. 50.
    Palumbo GJ, Buller RM, Glasgow WC. Multigenic evasion of inflammation by poxviruses. J Virol 1994; 68(3): 1737–1749.Google Scholar
  51. 51.
    Upton C, Macen JL, Schreiber M et al. Myxoma virus expresses a secreted protein with homology to the tumor necrosis factor receptor gene family that contributes to viral virulence. Virology 1991; 184(1):370–382.CrossRefPubMedGoogle Scholar
  52. 52.
    Parry CM, Simas JP, Smith VP et al. A broad spectrum secreted chemokine binding protein encoded by a herpesvirus. J Exp Med 2000; 191(3):573–578.CrossRefPubMedGoogle Scholar
  53. 53.
    van Berkel V, Barrett J, Tiffany HL et al. Identification of a gammaherpesvirus selective chemokine binding protein that inhibits chemokine action. J Virol 2000; 74(15):6741–6747.CrossRefPubMedGoogle Scholar
  54. 54.
    Webb LM, Smith VP, Alcami A. The gammaherpesvirus chemokine binding protein can inhibit the interaction of chemokines with glycosaminoglycans. FASEB J 2004; 18(3):571–573.PubMedGoogle Scholar
  55. 55.
    Alexander JM, Nelson CA, van Berkel V et al. Structural basis of chemokine sequestration by a herpes-virus decoy receptor. Cell 2002; 111(3):343–356.CrossRefPubMedGoogle Scholar
  56. 56.
    Webb LM, Clark-Lewis I, Alcami A. The gammaherpesvirus chemokine binding protein binds to the N terminus of CXCL8. J Virol 2003; 77(15):8588–8592.CrossRefGoogle Scholar
  57. 57.
    Alexander-Brett JM, Fremont DH. Dual GPCR and GAG mimicry by the M3 chemokine decoy receptor. J Exp Med 2007; 204(13):3157–3172.CrossRefPubMedGoogle Scholar
  58. 58.
    Bridgeman A, Stevenson PG, Simas JP et al. A secreted chemokine binding protein encoded by murine gammaherpesvirus-68 is necessary for the establishment of a normal latent load. J Exp Med 2001; 194(3):301–312.CrossRefPubMedGoogle Scholar
  59. 59.
    van Berkel V, Levine B, Kapadia SB. Critical role for a high-affinity chemokine-binding protein in gamma-herpesvirus-induced lethal meningitis. J Clin Invest 2002; 109(7):905–914.PubMedGoogle Scholar
  60. 60.
    Bryant NA, Davis-Poynter N, Vanderplasschen A et al. Glycoprotein G isoforms from some alphaher-pesviruses function as broad-spectrum chemokine binding proteins. EMBO J 2003; 22(4):833–846.CrossRefGoogle Scholar
  61. 61.
    Van de Walle GR, May ML, Sukhumavasi W et al. Herpesvirus chemokine-binding glycoprotein G (gG) efficiently inhibits neutrophil Chemotaxis in vitro and in vivo. J Immunol 2007; 179(6):4161–4169.PubMedGoogle Scholar
  62. 62.
    Costes B, Ruiz-Arguello MB, Bryant NA et al. Both soluble and membrane-anchored forms of felid herpesvirus 1 glycoprotein G function as a broad-spectrum chemokine-binding protein. J Gen Virol 2005; 86(Pt 12):3209–3214.CrossRefPubMedGoogle Scholar
  63. 63.
    Costes B, Thirion M, Dewals B et al. Felid herpesvirus 1 glycoprotein G is a structural protein that mediates the binding of chemokines on the viral envelope. Microbes Infect 2006; 8(11):2657–2667.CrossRefPubMedGoogle Scholar
  64. 64.
    Van de Walle GR, Sakamoto K, Osterrieder N. CCL3 and viral chemokine-binding protein gg modulate pulmonary inflammation and virus replication during equine herpesvirus 1 infection. J Virol 2008; 82(4):1714–1722.CrossRefPubMedGoogle Scholar
  65. 65.
    Devlin JM, Browning GF, Hartley CA et al. Glycoprotein G is a virulence factor in infectious laryngotracheitis virus. J Gen Virol 2006; 87(Pt 10):2839–2847.CrossRefPubMedGoogle Scholar
  66. 66.
    Balan P, Davis-Poynter N, Bell S et al. An analysis of the in vitro and in vivo phenotypes of mutants of herpes simplex virus Type 1 lacking glycoproteins gG, gE, gI or the putative gJ. J Gen Virol 1994; 75(Pt 6):1245–1258.CrossRefPubMedGoogle Scholar
  67. 67.
    Gomi Y, Sunamachi H, Mori Y et al. Comparison of the complete DNA sequences of the Oka varicella vaccine and its parental virus. J Virol 2002; 76(22): 11447–11459.CrossRefGoogle Scholar
  68. 68.
    Wang D, Bresnahan W, Shenk T. Human cytomegalovirus encodes a highly specific RANTES decoy receptor. Proc Natl Acad Sci USA 2004; 101(47): 16642–16647.CrossRefGoogle Scholar
  69. 69.
    Pearce EJ, MacDonald AS. The immunobiology of schistosomiasis. Nat Rev Immunol 2002; 2(7):499–511.CrossRefPubMedGoogle Scholar
  70. 70.
    Fallon PG, Richardson EJ, Smith P et al. Elevated Type 1, diminished Type 2 cytokines and impaired antibody response are associated with hepatotoxicity and mortalities during Schistosoma mansoni infection of CD4-depleted mice. Eur J Immunol 2000; 30(2):470–480.CrossRefPubMedGoogle Scholar
  71. 71.
    Karanja DM, Colley DG, Nahlen BL et al. Studies on schistosomiasis in Western Kenya: I. evidence for immune-facilitated excretion of schistosome eggs from patients with Schistosoma mansoni and human immunodeficiency virus coinfections. Am J Trop Med Hyg 1997; 56(5):515–521.PubMedGoogle Scholar
  72. 72.
    Smith P, Fallon RE, Mangan NE et al. Schistosoma mansoni secretes a chemokine binding protein with antiinflammatory activity. J Exp Med 2005; 202(10):1319–1325.CrossRefPubMedGoogle Scholar
  73. 73.
    Deruaz M, Frauenschuh A, Alessandri AL et al. Ticks produce highly selective chemokine binding proteins with antiinflammatory activity. J Exp Med 2008; 205 (9):2019–2031.CrossRefPubMedGoogle Scholar
  74. 74.
    Frauenschuh A, Power CA, Deruaz M et al. Molecular cloning and characterization of a highly selective chemokine-binding protein from the tick Rhipicephalus sanguineus. J Biol Chem 2007; 282(37):27250–27258.CrossRefPubMedGoogle Scholar
  75. 75.
    Dinarello CA. The IL-1 family and inflammatory diseases. Clin Exp Rheumatol 2002; 20(5 Suppl 27):S1–13.Google Scholar
  76. 76.
    Feldmann M. Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immunol 2002; 2(5):364–371.CrossRefPubMedGoogle Scholar
  77. 77.
    Graham GJ, McKimmie CS. Chemokine scavenging by D6: a movable feast? Trends Immunol 2006; 27(8):381–386.CrossRefPubMedGoogle Scholar
  78. 78.
    Mantovani A, Bonecchi R, Locati M. Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nat Rev Immunol 2006; 6(12):907–918.CrossRefGoogle Scholar
  79. 79.
    Luster AD, Alon R, von Andrian UH. Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 2005; 6(12):1182–1190.CrossRefPubMedGoogle Scholar
  80. 80.
    Lucas A, McFadden G. Secreted immunomodulatory viral proteins as novel biotherapeutics. J Immunol 2004; 173(8):4765–4774.PubMedGoogle Scholar
  81. 81.
    Fallon PG, Alcami A. Pathogen-derived immunomodulatory molecules: future immunotherapeutics? Trends Immunol 2006; 27(10):470–476.CrossRefPubMedGoogle Scholar
  82. 82.
    Dabbagh K, Xiao Y, Smith C et al. Local blockade of allergic airway hyperreactivity and inflammation by the poxvirus-derived pan-CC-chemokine inhibitor vCCI. J Immunol 2000; 165(6):3418–3422.PubMedGoogle Scholar
  83. 83.
    Liu L, Lalani A, Dai E et al. The viral anti-inflammatory chemokine-binding protein M-T7 reduces intimai hyperplasia after vascular injury. J Clin Invest 2000; 105(11):1613–1621.CrossRefPubMedGoogle Scholar
  84. 84.
    Jensen KK, Chen SC, Hipkin RW et al. Disruption of CCL21-induced Chemotaxis in vitro and in vivo by M3, a chemokine-binding protein encoded by murine gammaherpesvirus 68. J Virol 2003; 77(1):624–630.CrossRefPubMedGoogle Scholar
  85. 85.
    Martin AP, Alexander-Brett JM, Canasto-Chibuque C et al. The chemokine binding protein M3 prevents diabetes induced by multiple low doses of streptozotocin. J Immunol 2007; 178(7):4623–4631.PubMedGoogle Scholar
  86. 86.
    Martin AP, Canasto-Chibuque C, Shang L et al. The chemokine decoy receptor M3 blocks CC chemokine ligand 2 and CXC chemokine ligand 13 function in vivo. J Immunol 2006; 177(10):7296–7302.PubMedGoogle Scholar
  87. 87.
    Pyo R, Jensen KK, Wiekowski MT et al. Inhibition of intimal hyperplasia in transgenic mice conditionally expressing the chemokine-binding protein M3. Am J Pathol 2004; 164(6):2289–2297.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  1. 1.Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones científicasUniversidad Autönoma de Madrid)MadridSpain
  2. 2.Deparment of MedicineUniversity of Cambridge Addenbrooke’s HospitalCambridgeUK
  3. 3.Life and Health Sciences Research Institute School of Health SciencesUniversity of MinhoBragaPortugal

Personalised recommendations