Advertisement

The “O” Class: Crafting Clinical Care with FoxO Transcription Factors

  • Kenneth MaieseEmail author
  • Zhao Zhong Chong
  • Jinling Hou
  • Yan Chen Shang
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 665)

Abstract

Forkhead Transcription Factors: Vital Elementsin Biology and Medicine provides a unique platform for the presentation of novel work and new insights into the vital role that forkhead transcription factors play in both cellular physiology as well as clinical medicine. Internationally recognized investigators provide their insights and perspectives for a number of forkhead genes and proteins that may have the greatest impact for the development of new strategies for a broad array of disorders that can involve aging, cancer, cardiac function, neurovascular integrity, fertility, stem cell differentiation, cellular metabolism, and immune system regulation. Yet, the work clearly sets a precedent for the necessity to understand the cellular and molecular function of forkhead proteins since this family of transcription factors can limit as well as foster disease progression depending upon the cellular environment.

With this in mind, our concluding chapter for Forkhead Transcription Factors: Vital Elements in Biology and Medicine offers to highlight both the diversity and complexity of the forkhead transcription family by focusing upon the mammalian forkhead transcription factors of the O class (FoxOs) that include FoxO1, FoxO3, FoxO4, and FoxO6. FoxO proteins are increasingly considered to represent unique cellular targets that can control numerous processes such as angiogenesis, cardiovascular development, vascular tone, oxidative stress, stem cell proliferation, fertility, and immune surveillance. Furthermore, FoxO transcription factors are exciting considerations for disorders such as cancer in light of their pro-apoptotic and inhibitory cell cycle effects as well as diabetes mellitus given the close association FoxOs hold with cellular metabolism. In addition, these transcription factors are closely integrated with several novel signal transduction pathways, such as erythropoietin and Wnt proteins, that may influence the ability of FoxOs to lead to cell survival or cell injury. Further understanding of both the function and intricate nature of the forkhead transcription factor family, and in particular the FoxO proteins, should allow selective regulation of cellular development or cellular demise for the generation of successful future clinical strategies and patient well-being.

Keywords

Cardiac Hypertrophy Premature Ovarian Failure Forkhead Transcription Factor FoxO Transcription Factor FoxO Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weigel D, Jurgens G, Kuttner F et al. The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the drosophila embryo. Cell 1989; 57(4):645–658.PubMedCrossRefGoogle Scholar
  2. 2.
    Kaestner KH, Knochel W, Martinez DE. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 2000; 14(2): 142–146.PubMedGoogle Scholar
  3. 3.
    Maiese K, Chong ZZ, Shang YC. “Sly as a FOXO”: new paths with forkhead signaling in the brain. Curr Neurovasc Res 2007; 4(4):295–302.PubMedCrossRefGoogle Scholar
  4. 4.
    Parry P, Wei Y, Evans G. Cloning and characterization of the t(X; 11) breakpoint from a leukemic cell line identify a new member of the forkhead gene family. Genes Chromosomes Cancer 1994; 11(2):79–84.PubMedCrossRefGoogle Scholar
  5. 5.
    Hillion J, Le Coniat M, Jonveaux P et al. AF6q21, a novel partner of the MLL gene in t(6;11)(q21;q23), defines a forkhead transcriptional factor subfamily. Blood 1997; 90(9):3714–3719.PubMedGoogle Scholar
  6. 6.
    Castrillon DH, Miao L, Kollipara R et al. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science 2003; 301(5630):215–218.PubMedCrossRefGoogle Scholar
  7. 7.
    Furuyama T, Nakazawa T, Nakano I et al. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem 2000; 349(Pt 2):629–634.CrossRefGoogle Scholar
  8. 8.
    Furuyama T, Yamashita H, Kitayama K et al. Effects of aging and caloric restriction on the gene expression of Foxo1, 3, and 4 (FKHR, FKHRL1, and AFX) in the rat skeletal muscles. Microsc Res Tech 2002; 59(4):331–334.PubMedCrossRefGoogle Scholar
  9. 9.
    Hoekman MF, Jacobs FM, Smidt MP et al. Spatial and temporal expression of FoxO transcription factors in the developing and adult murine brain. Gene Expr Patterns 2006; 6(2):134–140.PubMedCrossRefGoogle Scholar
  10. 10.
    Maiese K, Chong ZZ, Shang YC. OutFOXOing disease and disability: the therapeutic potential of targeting FoxO proteins. Trends Mol Med 2008; 14(5):219–227.PubMedCrossRefGoogle Scholar
  11. 11.
    Modur V, Nagarajan R, Evers BM et al. FOXO proteins regulate tumor necrosis factor-related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer. J Biol Chem 2002; 277(49):47928–47937.PubMedCrossRefGoogle Scholar
  12. 12.
    Biggs WH, Cavenee WK, Arden KC. Identification and characterization of members of the FKHR (FOX 0) subclass of winged-helix transcription factors in the mouse. Mamm Genome 2001; 12(6):416–425.PubMedCrossRefGoogle Scholar
  13. 13.
    Maiese K, Chong ZZ, Shang YC et al. A “FOXO” in sight: Targeting Foxo proteins from conception to cancer. Med Res Rev 2009; 29(3):395–418.PubMedCrossRefGoogle Scholar
  14. 14.
    Clark KL, Halay ED, Lai E et al. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 1993; 364(6436):412–420.CrossRefGoogle Scholar
  15. 15.
    Larson ET, Eilers B, Menon S et al. A winged-helix protein from Sulfolobus turreted icosahedral virus points toward stabilizing disulfide bonds in the intracellular proteins of a hypertherrnophilic virus. Virology 2007; 368(2):249–261.PubMedCrossRefGoogle Scholar
  16. 16.
    Jin C, Marsden I, Chen X et al. Sequence specific collective motions in a winged helix DNA binding domain detected by 15N relaxation NMR. Biochemistry 1998; 37(17):6179–6187.PubMedCrossRefGoogle Scholar
  17. 17.
    Tsai KL, Sun YJ, Huang CY et al. Crystal structure of the human FOX03a-DBD/DNA complex suggests the effects of post-translational modification. Nucleic Acids Res 2007; 35(20):6984–6994.PubMedCrossRefGoogle Scholar
  18. 18.
    Wijchers PJ, Burbach JP, Smidt MP. In control of biology: of mice, men and Foxes. Biochem J 2006; 397(2):233–246.PubMedCrossRefGoogle Scholar
  19. 19.
    Jagani Z, Singh A, Khosravi-Far R. FoxO tumor suppressors and BCR-ABL-induced leukemia: a matter of evasion of apoptosis. Biochim Biophys Acta 2008; 1785(1):63–84.PubMedGoogle Scholar
  20. 20.
    Maiese K, Chong ZZ, Shang YC et al. Clever cancer strategies with FoxO transcription factors. Cell Cycle 2008; 7(24):3829–3839.PubMedGoogle Scholar
  21. 21.
    Van der Horst A, Burgering BM. Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol 2007; 8(6):440–450.PubMedCrossRefGoogle Scholar
  22. 22.
    Chong ZZ, Li F, Maiese K. Activating Akt and the brain’s resources to drive cellular survival and prevent inAammatory injury. Histol Histoparhol 2005; 20(1):299–315.Google Scholar
  23. 23.
    Anitha M, Gondha C, Sutliff R et al. GDNF rescues hyperglycemia-induceddiabetic enteric neuropathy through activation of the PI3K/Akt pathway. J Clin Invest 2006; 116(2):344–356.PubMedCrossRefGoogle Scholar
  24. 24.
    Chong ZZ, Kang JQ, Maiese K. Erythropoietin is a novel vascular protectant through activation of Aktl and mitochondrial modulation of cysteine proteases. Circulation 2002; 106(23):2973–2979.PubMedCrossRefGoogle Scholar
  25. 25.
    Chong ZZ, Li F, Maiese K. Erythropoietin requires NF-kappaB and its nuclear translocation to prevent early and late apoptotic neuronal injury during beta-amyloid toxicity. Curr Neurovasc Res 2005; 2(5):387–399.PubMedCrossRefGoogle Scholar
  26. 26.
    Kim KH, Oudit GY, Backx PH. Erythropoietin protects against doxorubicin-induced cardiomyopathy via a phosphatidylinositol 3-kinase-dependent pathway. J Pharmacol Exp Ther 2008; 324(1):160–169.PubMedCrossRefGoogle Scholar
  27. 27.
    Tajes M, Yeste-Velasco M, Zhu X et al. Activation of Akt by lithium: pro-survival pathways in aging. Mech Ageing Dev 2009; 130(4):253–261.PubMedCrossRefGoogle Scholar
  28. 28.
    Chong ZZ, Kang JQ, Maiese K. Akt1 drives endothelial cell membrane asymmetry and microglial activation through Bcl-x(L) and caspase 1, 3, and 9. Exp Cell Res 2004; 296(2):196–207.PubMedCrossRefGoogle Scholar
  29. 29.
    Kang JQ, Chong ZZ, Maiese K. Critical role for Aktl in the modulation of apoptotic phosphatidylserine exposure and microglial activation. Mol Pharmacol 2003; 64(3):557–569.PubMedCrossRefGoogle Scholar
  30. 30.
    Kang JQ, Chong ZZ, Maiese K. Akt1 protects against inAammatory microglial activation through maintenance of membrane asymmetry and modulation of cysteine protease activity. J Neurosci Res 2003; 74(1):37–51.PubMedCrossRefGoogle Scholar
  31. 31.
    Maiese K, Chong ZZ, Hou J et al. Erythropoietin and oxidative stress. Curr Neurovasc Res 2008; 5(2):125–142.PubMedCrossRefGoogle Scholar
  32. 32.
    Chong ZZ, Maiese K. Erythropoietin involves the phosphatidylinositol 3-kinase pathway, 14–3–3 protein and FOX03a nuclear trafficking to preserve endothelial cell integrity. Br J Pharmacol 2007; 150(7):839–850.PubMedCrossRefGoogle Scholar
  33. 33.
    Maiese K, Li F, Chong ZZ. New avenuesof exploration for erythropoietin. JAMA 2005; 293(1):90–95.PubMedCrossRefGoogle Scholar
  34. 34.
    Van der Heide LP, Jacobs FM, Burbach JP, et al. Fox06 transcriptional activity is regulated by Thr26 and Ser184, independent of nucleo-cytoplasmic shuttling. Biochem J 2005; 391(Pt 3):623–629.PubMedGoogle Scholar
  35. 35.
    Maiese K, Chong ZZ, Shang YC et al. FoxO proteins: cunning concepts and considerations for the cardiovascular system. Clin Sci (Lond) 2009; 116(3):191–203.CrossRefGoogle Scholar
  36. 36.
    Li F, Chong ZZ, Maiese K. Cell Life Versus Cell Longevity: The Mysteries Surrounding the NAD(+) Precursor Nicotinamide. Curr Med Chem 2006; 13(8):883–895.PubMedCrossRefGoogle Scholar
  37. 37.
    Maiese K, Chong ZZ, Li F. Driving cellular plasticity and survival through the signal transduction pathways of metabotropic glutamate receptors. Curr Neurovasc Res 2005; 2(5):425–446.PubMedCrossRefGoogle Scholar
  38. 38.
    Salvesen GS, Riedl SJ. Caspase mechanisms. Adv Exp Med Biol 2008; 615:13–23.PubMedCrossRefGoogle Scholar
  39. 39.
    Chong ZZ, Kang JQ, Maiese K. Apaf-1, Bcl-xL, Cytochrome c, and caspase-9 form the critical elements for cerebral vascular protection by erythropoietin. J Cereb Blood Flow Metab 2003; 23(3):320–330.PubMedCrossRefGoogle Scholar
  40. 40.
    Chong ZZ, Kang JQ, Maiese K. Erythropoietin fosters both intrinsic and extrinsic neuronal protection through modulation of microglia, Aktl, Bad, and caspase-mediated pathways. Br J Pharmacol 2003; 138(6):1107–1118.PubMedCrossRefGoogle Scholar
  41. 41.
    Chong ZZ, Kang JQ, Maiese K. Essential cellular regulatory elements of oxidative stress in early and late phases of apoptosis in the central nervous system. Antioxid Redox Signal 2004; 6(2):277–287.PubMedCrossRefGoogle Scholar
  42. 42.
    Chong ZZ, Li F, Maiese K. Group I metabotropic receptor neuroprotection requires Akt and its substrates that govern FOX03a, Bim, and beta-catenin during oxidative stress. Curr Neurovasc Res 2006; 3(2): 107–117.PubMedCrossRefGoogle Scholar
  43. 43.
    Chong ZZ, Lin SH, Maiese K. The NAD+ precursor nicotinamide governs neuronal survival during oxidative stress through protein kinase B coupled to FOX03a and mitochondrial membrane potential. J Cereb Blood Flow Metab 2004; 24(7):728–743.PubMedCrossRefGoogle Scholar
  44. 44.
    Obexer P, Geiger K, Ambros PF et al. FKHRL1-mediated expression of Noxa and Bim induces apoptosis via the mitochondria in neuroblastoma cells. Cell Death Differ 2007; 14(3):534–547.PubMedCrossRefGoogle Scholar
  45. 45.
    Gomez-Gutierrez JG, Souza V, Hao HY et al. Adenovirus-mediated gene transfer of FKHRL1 triple mutant efficiently induces apoptosis in melanoma cells. Cancer Biol Ther 2006; 5(7):875–883.Google Scholar
  46. 46.
    Shang YC, Chong ZZ, Hou J et al. The forkhead transcription factor Fox03a controls microglial inflammatory activation and eventual apoptotic injury through caspase 3. Curr Neurovasc Res 2009; 6(1):20–31.PubMedCrossRefGoogle Scholar
  47. 47.
    Matsuzaki H, Daitoku H, Hatta M, et al. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci USA 2003; 100(20): 11285–11290.PubMedCrossRefGoogle Scholar
  48. 48.
    Plas DR, Thompson CB. Akt activation promotes degradation of tuberin and FOX03a via the proteasome. J Biol Chem 2003; 278(14):12361–12366.PubMedCrossRefGoogle Scholar
  49. 49.
    Leong ML, Maiyar AC, Kim B et al. Expression of the serum-and glucocorticoid-Inducible protein kinase, Sgk, is a cell survival response to multiple types of environmental stress stimuli in mammary epithelial cells. J Biol Chem 2003; 278(8):5871–5882.PubMedCrossRefGoogle Scholar
  50. 50.
    Lehtinen MK, Yuan Z, Boag PR et al. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 2006; 125(5):987–1001.PubMedCrossRefGoogle Scholar
  51. 51.
    Song JJ, Lee YJ. Differential cleavage ofMst1 by caspase-7/-3 is responsible for TRAIL-induced activation of the MAPK superfamily. Cell Signal 2008; 20(5):892–906.PubMedCrossRefGoogle Scholar
  52. 52.
    Matsuzaki H, Daitoku H, Hatta M et al. Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci USA 2005; 102(32):11278–11283.PubMedCrossRefGoogle Scholar
  53. 53.
    Li F, Chong ZZ, Maiese K. Winding through the WNT pathway during cellular development and demise. Histol Histopathol 2006; 21(1):103–124.PubMedGoogle Scholar
  54. 54.
    Maiese K, Li F, Chong ZZ et al. The Wnt signaling pathway: Aging gracefully as a protectionist? Pharmacol Ther 2008; 118(1):58–81.PubMedCrossRefGoogle Scholar
  55. 55.
    Maiese K. Triple play: promoting neurovascular longevity with nicotinamide, WNT, and erythropoietin in diabetes mellitus. Biomed Pharmacother 2008; 62(4):218–232.PubMedCrossRefGoogle Scholar
  56. 56.
    Li F, Chong ZZ, Maiese K. Vital elements of the writ-frizzled signaling pathway in the nervous system. Curr Neurovasc Res 2005; 2(4):331–340.PubMedCrossRefGoogle Scholar
  57. 57.
    Maiese K, Chong ZZ, Shang YC et al. Rogue proliferation versus restorative protection: where do we draw the line for Wnt and forkhead signaling? Expert Opin Ther Targets 2008; 12(7):905–916.PubMedCrossRefGoogle Scholar
  58. 58.
    Chong ZZ, Li F, Maiese K. Cellular demise and inflammatory microglial activation during beta-amyloid toxicity are governed by Wnt1 and canonical signaling pathways. Cell Signal. 2007; 19(6):1150–1162.PubMedCrossRefGoogle Scholar
  59. 59.
    Smith WW, Norton DD, Gorospe M et al. Phosphorylation of p66Shc and forkhead proteins mediates Abeta toxicity. J Cell Biol 2005; 169(2):331–339.PubMedCrossRefGoogle Scholar
  60. 60.
    Hoogeboom D, Essers MA, Polderman PE et al. Interaction of FOXO with ta-catenin inhibits [beraj-catenin/T cell factor activity. J Biol Chem 2008; 283(14):9224–9230.Google Scholar
  61. 61.
    Kerdiles YM, Beisner DR, Tinoco R et al. Foxo1links homing and survival of naive T cells by regulating Lselectin, CCR7 and interleukin 7 receptor. Nat Immunol 2009; 10(2):176–184.PubMedCrossRefGoogle Scholar
  62. 62.
    Naito AT, Akazawa H, Takano H et al. Phosphatidylinositol S-kinase-Akr pathway plays a critical role in early cardiomyogenesis by regulating canonical Wnt signaling. Circ Res 2005; 97(2):144–151.PubMedCrossRefGoogle Scholar
  63. 63.
    Emami KH, Corey E. When prostate cancer meets bone: control by wnts. Cancer Lett 2007; 253(2):170–179.PubMedCrossRefGoogle Scholar
  64. 64.
    Pohl BS, Knochel W. Overexpression of the transcriptional repressor FoxD3 prevents neural crest formation in xenopus embryos. Mech Dev 2001; 103(1–2):93–106.PubMedCrossRefGoogle Scholar
  65. 65.
    Perreault N, Sackett SD, Katz JP et al. Foxl1 is a mesenchymal modifier of min in carcinogenesis of stomach and colon. Genes Dev 2005; 19(3):311–315.bl]ReferencesPubMedCrossRefGoogle Scholar
  66. 66.
    Balciunaite G, Keller MP, Balciunaite E et al. Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice. Nat Immunol 2002; 3(11):1102–1108.PubMedCrossRefGoogle Scholar
  67. 67.
    Ormestad M, Astorga J, Landgren H et al. Foxf1 and Foxf2 control murine gut development by limiting mesenchymal Wnt signaling and promoting extracellular matrix production. Development 2006; 133(5):833–843.PubMedCrossRefGoogle Scholar
  68. 68.
    Kimura-Yoshida C, Tian E, Nakano H et aI. Crucial roles of Foxa2 in mouse anterior-posterior axis polarization via regulation of anterior visceral endoderm-specific genes. Proc Natl Acad Sci USA 2007; 104(14):5919–5924.PubMedCrossRefGoogle Scholar
  69. 69.
    Sauvageot CM, Kesari S, Stiles CD. Molecular pathogenesis of adult brain tumors and the role of stem cells. Neurol Clin 2007; 25(4):891–924, vii.PubMedCrossRefGoogle Scholar
  70. 70.
    Xu HT, Wei Q, Liu Y et al. Overexpression of axin downregulates TCF-4 and inhibits the development of lung cancer. Ann Surg Oncol 2007; 14(11):3251–3259.PubMedCrossRefGoogle Scholar
  71. 71.
    Kurayoshi M, Oue N, Yamamoto H et al. Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res 2006; 66(21):10439–10448.PubMedCrossRefGoogle Scholar
  72. 72.
    Tomita H, Yamada Y, Oyama T et al. Development of gastric tumors in Apc(Min/+) mice by the activation of the beta-catenin/Tcf signaling pathway. Cancer Res 2007; 67(9):4079–4087.PubMedCrossRefGoogle Scholar
  73. 73.
    Maiese K, Chong ZZ, Li F et aI. Erythropoietin: elucidating new cellular targets that broaden therapeutic strategies. Prog Neurobiol 2008; 85:194–213.PubMedCrossRefGoogle Scholar
  74. 74.
    Kikuchi S, Nagai T, Kunitama M et al. Active FKHRLI overcomes imatinib resistance in chronic myelogenous leukemia-derived cell lines via the production of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Sci 2007; 98(12):1949–1958.PubMedCrossRefGoogle Scholar
  75. 75.
    Nowak K, Killmer K, Gessner C et al. E2F-1 regulates expression of FOXO1 and FOX03a. Biochim Biophys Acta 2007; 1769(4):244–252.PubMedGoogle Scholar
  76. 76.
    Bouchard C, Lee S, Paulus-Hock V et al. FoxO transcription factors suppress Myc-driven lyrnphomagenesis via direct activation of Arf. Genes Dev 2007; 21(21):2775–2787.PubMedCrossRefGoogle Scholar
  77. 77.
    Chong ZZ, Li F, Maiese K. Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 2005; 75(3):207–246.PubMedCrossRefGoogle Scholar
  78. 78.
    Maiese K, Chong ZZ. Nicotinamide: necessary nutrient emerges as a novel cytoprotectant for the brain. Trends Pharmacol Sci 2003; 24(5):228–232.PubMedGoogle Scholar
  79. 79.
    Chong ZZ, Kang J, Li F et al. mGluRI targets microglial activation and selectivelyprevents neuronal cell engulfment through Akt and caspase dependent pathways. Curr Neurovasc Res 2005; 2(3):197–211.PubMedCrossRefGoogle Scholar
  80. 80.
    Li F, Chong ZZ, Maiese K. Microglial integrity is maintained by erythropoietin through integration of Akt and its substrates of glycogen synthase kinase-3bera, beta-catenin, and nuclear factor-kappaB. Curr Neurovasc Res 2006; 3(3):187–201.PubMedCrossRefGoogle Scholar
  81. 81.
    Lin SH, Maiese K. The metabotropic glutamate receptor system protects against ischemic free radical programmed cell death in rat brain endothelial cells. J Cereb Blood Flow Metab 2001; 21(3):262–275.PubMedCrossRefGoogle Scholar
  82. 82.
    Chong ZZ, Lin SH, Kang JQ et al. The tyrosine phosphatase SHP2 modulates MAP kinase p38 and caspase 1 and 3 to foster neuronal survival. Cell Mol Neurobiol 2003; 23(4–5):561–578.PubMedCrossRefGoogle Scholar
  83. 83.
    Salinas M, Diaz R, Abraham NG et al. Nerve growth factor protects against 6-hydroxydopamine-induced oxidativestress by increasing expressionof heme oxygenase-1 in a phosphatidylinositol 3-kinase-dependent manner. J Biol Chem 2003; 278(16):13898–13904.PubMedCrossRefGoogle Scholar
  84. 84.
    Chong ZZ, Maiese K. The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: diversified control of cell growth, inflammation, and injury. Histol Histopathol 2007; 22(11):1251–1267.PubMedGoogle Scholar
  85. 85.
    Maiese K. Diabetic stress: new triumphs and challenges to maintain vascular longevity. Expert Rev Cardiovasc Ther 2008; 6(3):281–284.PubMedCrossRefGoogle Scholar
  86. 86.
    Slomka M, Zieminska E, Lazarewicz J. Nicotinamide and 1-methylnicorinamide reduce homocysteine neurotoxicity in primary cultures of rat cerebellar granule cells. Acta Neurobiol Exp 2008; 68(1):1–9.Google Scholar
  87. 87.
    Nakamura T, Sakamoto K. Forkhead transcription factor FOXO subfamily is essential for reactive oxygen species-induced apoptosis. Mol Cell Endocrinol 2007; 281(1–2):47–55.PubMedGoogle Scholar
  88. 88.
    Barthelemy C, Henderson CE, Pettmann B. Foxo3a induces motoneuron death through the Fas pathway in cooperation with JNK. BMC Neurosci 2004; 5(1):48.PubMedCrossRefGoogle Scholar
  89. 89.
    You H, Yamamoto K, Mak TW. Regulation of transactivation-independent proapoptotic activity of p53 by FOX03a. Proc Natl Acad Sci USA 2006; 103(24):9051–9056.PubMedCrossRefGoogle Scholar
  90. 90.
    Won CK, Ji HH, Koh PO. Estradiol prevents the focal cerebral ischemic injury-induced decrease of forkhead transcription factors phosphorylation. Neurosci Lett 2006; 398(1–2):39–43.PubMedCrossRefGoogle Scholar
  91. 91.
    Caporali A, Sala-Newby GB, Meloni M et al. Identification of the prosurvival activity of nerve growth factor on cardiac myocytes. Cell Death Differ 2008; 15(2):299–311.PubMedCrossRefGoogle Scholar
  92. 92.
    Tothova Z, Kollipara R, Huntly BJ et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007; 128(2):325–339.PubMedCrossRefGoogle Scholar
  93. 93.
    Ferrara N, Rinaldi B, Corbi G et al. Exercisetraining promotes SIRTI activity in aged rats. Rejuvenation Res 2008; 11(1):139–150.PubMedCrossRefGoogle Scholar
  94. 94.
    Maiese K, Chong ZZ, Shang YC. Mechanistic insights into diabetes mellitus and oxidative stress. Curr Med Chem 2007; 14(16):1729–1738.PubMedCrossRefGoogle Scholar
  95. 95.
    Maiese K, Morhan SD, Chong ZZ. Oxidative stress biology and cell injury during type 1 and type 2 diabetes mellitus. Curr Neurovasc Res 2007; 4(1):63–71.PubMedCrossRefGoogle Scholar
  96. 96.
    Maiese K, Chong Z, Li F. Reducing oxidative stress and enhancing neurovascular longevity during diabetes mellitus. In: Neurovascular Medicine: Pursuing Cellular Longevity for Healthy Aging. Maiese, K, ed., New York: Oxford University Press, 2009.Google Scholar
  97. 97.
    Donahoe SM, Stewart GC, McCabe CH et al. Diabetes and mortality following acute coronary syndromes. JAMA 2007; 298(7):765–775.PubMedCrossRefGoogle Scholar
  98. 98.
    Lin K, Dorman JB, Rodan A et al. Daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 1997; 278(5341):1319–1322.PubMedCrossRefGoogle Scholar
  99. 99.
    Ogg S, Paradis S, Gottlieb S et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 1997; 389(6654):994–999.PubMedCrossRefGoogle Scholar
  100. 100.
    Guo S, Rena G, Cichy S et al. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J Biol Chem 1999; 274(24):17184–17192.PubMedCrossRefGoogle Scholar
  101. 101.
    Nakae J, Park BC, Accili D. Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. J Biol Chem 1999; 274(23):15982–15985.PubMedCrossRefGoogle Scholar
  102. 102.
    Kim JR, Jung HS, Bae SW et al. Polymorph isms in FOXO gene family and association analysis with BMI. Obesity (Silver Spring) 2006; 14(2):188–193.CrossRefGoogle Scholar
  103. 103.
    Marchetti V, Menghini R, Rizza S et al. Benfotiamine counteracts glucose toxicity effects on endothelial progenitor cell differentiation via Akt/FoxO signaling. Diabetes 2006; 55(8):2231–2237.PubMedCrossRefGoogle Scholar
  104. 104.
    Fallarino F, Bianchi R, Orabona C et al. CTLA-4-Ig activates forkhead transcription factors and protects dendritic cells from oxidative stress in nonobese diabetic mice. J Exp Med 2004; 200(8):1051–1062.PubMedCrossRefGoogle Scholar
  105. 105.
    Nakae J, Cao Y, Oki M et al. Forkhead transcription factor FoxOl in adipose tissue regulates energy storage and expenditure. Diabetes 2008; 57(3):563–576.PubMedCrossRefGoogle Scholar
  106. 106.
    Puig O, Tjian R. Transcriptional feedback control of insulin receptor by dFOXO/FOXO1. Genes Dev 2005; 19(20):2435–2446.PubMedCrossRefGoogle Scholar
  107. 107.
    Kamagate A, Dong HH. Foxo1 integrates insulin signaling to VLDL production. Cell Cycle 2008; 7(20):3162–3170.PubMedGoogle Scholar
  108. 108.
    Ni YG, Wang N, Cao DJ et al. FoxO transcription factors activate Akt and attenuate insulin signaling in heart by inhibiting protein phosphatases. Proc Natl Acad Sci USA 2007; 104(51):20517–20522.PubMedCrossRefGoogle Scholar
  109. 109.
    Kamei Y, Miura S, Suzuki M et al. Skeletal muscle FOX01 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated type I (slow twitch/red muscle) fiber genes, and impaired glycemiccontrol. J Biol Chem 2004; 279(39):41114–41123.PubMedCrossRefGoogle Scholar
  110. 110.
    Liu CM, Yang Z, Liu CW et al. Effect of RNA oligonucleotide targeting Foxo-1 on muscle growth in normal and cancer cachexia mice. Cancer Gene Ther 2007; 14(12):945–952.PubMedCrossRefGoogle Scholar
  111. 111.
    Sandri M, Lin J, Handschin C et al. PGC-1alpha protects skeletal muscle from atrophy by suppressing Fox03 action and atrophy-specific gene transcription. Proc Natl Acad Sci USA 2006; 103(44):16260–16265.PubMedCrossRefGoogle Scholar
  112. 112.
    Balan V, Miller GS, Kaplun L et al. Life span extension and neuronal cell protection by Drosophila nicotinamidase. J Biol Chem 2008; 283(41):27810–27819.PubMedCrossRefGoogle Scholar
  113. 113.
    Chong ZZ, Maiese K. Enhanced tolerance against early and late apoptotic oxidative stress in mammalian neurons through nicotinamidase and sirtuin mediated pathways. Curr Neurovasc Res 2008; 5(3):159–170.PubMedCrossRefGoogle Scholar
  114. 114.
    Myatt SS, Lam EW. The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 2007; 7(11):847–859.PubMedCrossRefGoogle Scholar
  115. 115.
    Nemoto S, Fergusson MM, Finkel T. Nutrient availabilityregulates SIRT1 through a forkhead-dependent pathway. Science 2004; 306(5704):2105–2108.PubMedCrossRefGoogle Scholar
  116. 116.
    Motta MC, Divecha N, Lemieux M et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 2004; 116(4):551–563.PubMedCrossRefGoogle Scholar
  117. 117.
    Kyoung Kim H, Kyoung Kim Y, Song IH et al. Down-regulation of a forkhead transcription factor, FOX03a, accelerates cellular senescence in human dermal fibroblasts. J Gerontol A Biol Sci Med Sci 2005; 60(1):4–9.PubMedGoogle Scholar
  118. 118.
    Alcendor RR, Gao S, Zhai P et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 2007; 100(10):1512–1521.PubMedCrossRefGoogle Scholar
  119. 119.
    Li M, Chiu JF, Mossman BT et al. Down-regulation of manganese-superoxide dismutase through phosphorylation of FOX03a by Akt in explanted vascular smooth muscle cells from old rats. J Biol Chern 2006; 281(52):40429–40439.CrossRefGoogle Scholar
  120. 120.
    Miyauchi H, Minamino T, Tateno K et al. Akt negatively regulates the in vitro lifespan of human endothelial cells via a p53/p21-dependent pathway. EMBO J 2004; 23(1):212–220.PubMedCrossRefGoogle Scholar
  121. 121.
    Miyamoto K, Araki KY, Naka K et al. Foxo3a Is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 2007; 1:101–112.PubMedCrossRefGoogle Scholar
  122. 122.
    Arcasoy MO. The non-haematopoietic biological effects of erythropoietin. Br J Haematol 2008; 141(1):14–31.PubMedCrossRefGoogle Scholar
  123. 123.
    Cariou A, Claessens YE, Pene F et al. Early high-dose erythropoietin therapy and hypothermia after out-of-hospital cardiac arrest: a matched control study. Resuscitation 2008; 76(3):397–404.PubMedCrossRefGoogle Scholar
  124. 124.
    Maiese K, Chong ZZ, Shang YC. Raves and risks for erythropoietin. Cytokine Growth Factor Rev 2008; 19(2):145–155.PubMedCrossRefGoogle Scholar
  125. 125.
    Chong ZZ, Shang YC, Maiese K. Vascular injury during elevated glucose can be mitigated by erythropoietin and Wnt signaling. Curr Neurovasc Res 2007; 4(3):194–204.PubMedCrossRefGoogle Scholar
  126. 126.
    Bakker WJ, van Dijk TB, Parren-van Amelsvoort M et al. Differential regulation of Foxo3a target genes in erythropoiesis. Mol Cell Biol 2007; 27(10):3839–3854.PubMedCrossRefGoogle Scholar
  127. 127.
    Furukawa-Hibi Y, Yoshida-Araki K, Ohta T et al. FOXO forkhead transcription factors induce G(2)-M checkpoint in response to oxidative stress. J Biol Chem 2002; 277(30):26729–26732.PubMedCrossRefGoogle Scholar
  128. 128.
    Liu L, Rajareddy S, Reddy P et al. Infertility caused by retardation of follicular development in mice with oocyte-specific expression of Foxo3a. Development 2007; 134(1):199–209.PubMedCrossRefGoogle Scholar
  129. 129.
    Watkins WJ, Umbers AJ, Woad KJ et al. Mutational screening of FOXO3a and FOXOlA in women with premature ovarian failure. Fertil Steril 2006; 86(5):1518–1521.PubMedCrossRefGoogle Scholar
  130. 130.
    Hosaka T, Biggs WH, 3rd, Tieu D et al. Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci USA 2004; 101(9):2975–2980.PubMedCrossRefGoogle Scholar
  131. 131.
    Furuyama T, Kitayama K, Shimoda Y et al. Abnormal angiogenesis in Foxo 1 (Fkhr)-deficient mice. J Biol Chem 2004; 279(33):34741–34749.PubMedCrossRefGoogle Scholar
  132. 132.
    Evans-Anderson HJ, Alfieri CM, Yutzey KE er al. Regulation of cardiomyocyte proliferation and myocardial growth during development by FOXO transcription factors. Circ Res 2008; 102(6):686–694.PubMedCrossRefGoogle Scholar
  133. 133.
    Li HH, Willis MS, Lockyer P et al. Atrogin-1 inhibits Akt-dependent cardiac hypertrophy in mice via ubiquitin-dependent coactivation of forkhead proteins. J Clin Invest 2007; 117(11):3211–3223.PubMedCrossRefGoogle Scholar
  134. 134.
    Abid MR, Yano K, Guo S et al. Forkhead transcription factors inhibit vascular smooth muscle cell proliferation and neointimal hyperplasia. J Biol Chem 2005; 280(33):29864–29873.PubMedCrossRefGoogle Scholar
  135. 135.
    Liu ZP, Wang Z, Yanagisawa H et al. Phenotypic modulation of smooth muscle cells through interaction of Fox04 and myocardin. Dev Cell 2005; 9(2):261–270.PubMedCrossRefGoogle Scholar
  136. 136.
    Li H, Liang J, Castrillon DH, DePinho RA et al. Fox04 regulates tumor necrosis factor alpha-directed smooth muscle cell migration by activating matrix metalloproteinase 9 gene transcription. Mol Cell Biol 2007; 27(7):2676–2686.PubMedCrossRefGoogle Scholar
  137. 137.
    Goettsch W, Gryczka C, Korff T et al. Flow-dependent regulation of angiopoietin-2. J Cell Physiol 2008; 214(2):491–503.PubMedCrossRefGoogle Scholar
  138. 138.
    Morris JB, Kenney B, Huynh H et al. Regulation of the proapoptotic factor FOXO1 (FKHR) in cardiomyocytes by growth factors and alphal-adrenergic agonists. Endocrinology 2005; 146(10):4370–4376.PubMedCrossRefGoogle Scholar
  139. 139.
    Sedding DG, Seay U, Fink L et al. Mechanosensitive p27Kip1 regulation and cell cycle entry in vascular smooth muscle cells. Circulation 2003; 108(5):616–622.PubMedCrossRefGoogle Scholar
  140. 140.
    Hannenhalli S, Putt ME, Gilmore JM et al. Transcriptional genomics associates FOX transcription factors with human heart failure. Circulation 2006; 114(12):1269–1276.PubMedCrossRefGoogle Scholar
  141. 141.
    Cools N, Ponsaerts P, Van Tendeloo VF et al. Regulatory T cells and human disease. Clin Dev Immunol 2007; 2007:89195.PubMedGoogle Scholar
  142. 142.
    Ebert LM, Tan BS, Browning J et al. The regulatory T cell-associated transcription factor FoxP3 is expressed by tumor cells. Cancer Res 2008; 68(8):3001–3009.PubMedCrossRefGoogle Scholar
  143. 143.
    Kono K, Kawaida H, Takahashi A et al. CD4(+)CD25 high regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunol Immunother. 2006; 55(9):1064–1071.PubMedCrossRefGoogle Scholar
  144. 144.
    Chong ZZ, Li F, Maiese K. The pro-survival pathways of mTOR and protein kinase B target glycogen synthase kinase-3beta and nuclear factor-kappaB to foster endogenous microglial cell protection. Int J Mol Med 2007; 19(2):263–272.PubMedGoogle Scholar
  145. 145.
    Lin L, Hron JD, Peng SL. Regulation of NF-kappaB, Th activation, and autoinflammation by the forkhead transcription factor Foxo3a. Immunity 2004; 21(2):203–213.PubMedCrossRefGoogle Scholar
  146. 146.
    Jonsson H, Allen P, Peng SL. Inflammatory arthritis requires Foxo3a to prevent Fas ligand-induced neutrophil apoptosis. Nat Med 2005; 11(6):666–671.PubMedCrossRefGoogle Scholar
  147. 147.
    Ludikhuize J, de Launay D, Groot D et al. Inhibition of forkhead box class 0 family member transcription factors in rheumatoid synovial tissue. Arthritis Rheum 2007; 56(7):2180–2191.PubMedCrossRefGoogle Scholar
  148. 148.
    Kuo CC, Lin SC. Altered FOXO1 transcript levels in peripheral blood mononuclear cells of systemic lupus erythematosus and rheumatoid arthritis patients. Mol Med 2007; 13(11–12):561–566.PubMedGoogle Scholar
  149. 149.
    Fabre S, Carrette F, Chen J et al. FOXO1 regulates L-Selectin and a network of human T cell homing molecules downstream of phosphatidylinositol 3-kinase. J Immunol 2008; 181(5):2980–2989.PubMedGoogle Scholar
  150. 150.
    Sela U, Dayan M, Hershkoviz R et al. The negative regulators Foxj1 and Foxo3a are up-regulated by a peptide that inhibits systemic lupus erythematosus-associated T cell responses. Eur J Immunol 2006; 36(11):2971–2980.PubMedCrossRefGoogle Scholar
  151. 151.
    Bosque A, Aguilo JI, Alava MA et al. The induction of Bim expression in human T-cell blasts is dependent on nonapoptotic Fas/CD95 signaling. Blood 2007; 109(4):1627–1635.PubMedCrossRefGoogle Scholar
  152. 152.
    Lynch RL, Konicek BW McNulty AM et al. The progression of LNCaP human prostate cancer cells to androgen independence involves decreased FOXO3a expression and reduced p27KIP1 promoter transactivation. Mol Cancer Res 2005; 3(3):163–169.PubMedCrossRefGoogle Scholar
  153. 153.
    Li Y, Wang Z, Kong D et al. Regulation of FOXO3a/beta-catenin/GSK-3beta signaling by 3,3′-diindoIylmethane contributes to inhibition of cell proliferation and induction of apoptosis in prostate cancer cells. J Biol Chem 2007; 282(29):21542–21550.PubMedCrossRefGoogle Scholar
  154. 154.
    Cornforth AN, Davis JS, Khanifar E et al FOXO3a mediates the androgen-dependent regulation of FLIP and contributes to TRAIL-induced apoptosis of LNCaP cells. Oncogene 2008; 27(32):4422–4433.PubMedCrossRefGoogle Scholar
  155. 155.
    Yang L, Xie S, Jamaluddin MS et al. Induction of androgen receptor expression by phosphatidylinositol 3-kinase/Akt downstream substrate, FOXO3a, and their roles in apoptosis of LNCaP prostate cancer cells. J Biol Chem 2005; 280(39):33558–33565.PubMedCrossRefGoogle Scholar
  156. 156.
    Liu P, Kao TP, Huang H. CDK1 promotes cell proliferation and survival via phosphorylation and inhibition of FOXO1 transcription factor. Oncogene 2008; 27(34):4733–4744.PubMedCrossRefGoogle Scholar
  157. 157.
    Kikuno N, Shiina H, Urakami S et al. Knockdown of astrocyte-elevated gene-1 inhibits prostate cancer progression through upregulation of FOXO3a activity. Oncogene 2007; 26(55):7647–7655.PubMedCrossRefGoogle Scholar
  158. 158.
    Trotman LC, Alimonti A, Scaglioni PP et al. Identification of a tumour suppressor network opposing nuclear Akt function. Nature 2006; 441(7092):523–527.PubMedCrossRefGoogle Scholar
  159. 159.
    Jin GS, Kondo E, Miyake T et al. Expression and intracellular localization of FKHRL1 in mammary gland neoplasms. Acta Med Okayama 2004; 58(4):197–205.PubMedGoogle Scholar
  160. 160.
    Hu MC, Lee DF, Xia W et al. IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 2004; 117(2):225–237.PubMedCrossRefGoogle Scholar
  161. 161.
    Sunters A, Madureira PA, Pomeranz KM et al. Paclitaxel-induced nuclear translocation of FOXO3a in breast cancer cells is mediated by c-Jun NH2-terminal kinase and Akt. Cancer Res 2006; 66(1):212–220.PubMedCrossRefGoogle Scholar
  162. 162.
    Eddy SF, Kane SE, Sonenshein GE. Trastuzurnab-resistant HER2-driven breast cancer cells are sensitive to epigallocatechin-3 gallate. Cancer Res 2007; 67(19):9018–9023.PubMedCrossRefGoogle Scholar
  163. 163.
    Zou Y, Tsai WB, Cheng CJ et al. Forkhead box transcription factor FOXO3a suppresses estrogen-dependent breast cancer cell proliferation and tumorigenesis. Breast Cancer Res 2008; 10(1):R21.PubMedCrossRefGoogle Scholar
  164. 164.
    Paik JH, Kollipara R, Chu G et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 2007; 128(2):309–323.PubMedCrossRefGoogle Scholar
  165. 165.
    Delpuech O, Griffiths B, East P et al. Induction of Mxil-SR{alpha} by FOXO3a Contributes to Repression of Myc-Dependent Gene Expression. Mol Cell Biol 2007; 27(13):4917–4930.PubMedCrossRefGoogle Scholar
  166. 166.
    Ticchioni M, Essafi M, Jeandel PY et al. Homeostatic chemokines increase survival of B-chronic lymphocytic leukemia cells through inactivation of transcription factor FOXO3a. Oncogene 2007; 26(50):7081–7091.PubMedCrossRefGoogle Scholar
  167. 167.
    Munoz-Fontela C, Marcos-Villar L, Gallego P et al. Latent protein LANA2 from kaposi’s sarcoma-associated herpesvirus interacts with 14-3-3 proteins and inhibits FOXO3a transcription factor. J Virol 2007; 81(3):1511–1516.PubMedCrossRefGoogle Scholar
  168. 168.
    Hoekstra AY, Ward EC, Hardt JL et al. Chemosensitization of endometrial cancer cells through AKT inhibition involves FOX01. Gynecol Oncol 2008; 108(3):609–618.PubMedCrossRefGoogle Scholar
  169. 169.
    Zethelius B, Berglund L, Sundstrom J et al. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N Engl J Med 2008; 358:2107–2116.PubMedCrossRefGoogle Scholar
  170. 170.
    Ward EC, Hoekstra AY, Blok LJ et al. The regulation and function of the forkhead transcription factor, Forkhead box O1, is dependent on the progesterone receptor in endometrial carcinoma. Endocrinology 2008; 149(4):1942–1950.PubMedCrossRefGoogle Scholar
  171. 171.
    Hellwinkel OJ, Rogmann JP, Asong LE et al. A comprehensive analysis of transcript signatures of the phosphatidylinositol-3 kinase/protein kinase B signal-transduction pathway in prostate cancer. BJU Int 2008; 101(11):1454–1460.PubMedCrossRefGoogle Scholar
  172. 172.
    Kim JH, Kim MK, Lee HE et al. Constitutive phosphorylation of the FOXOlA transcription factor as a prognostic variable in gastric cancer. Mod Pathol 2007; 20(8):835–842.PubMedCrossRefGoogle Scholar
  173. 173.
    Brunet A, Sweeney LB, Sturgill JF et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004; 303(5666):2011–2015.PubMedCrossRefGoogle Scholar
  174. 174.
    Bakker WJ, Harris IS, Mak TW. FOXO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2. Mol Cell 2007; 28(6):941–953.PubMedCrossRefGoogle Scholar
  175. 175.
    Han CY, Cho KB, Choi HS et al. Role of FoxO1 activation in MDR1 expression in adriamycin-resistant breast cancer cells. Carcinogenesis 2008; 29(9):1837–1844.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer+Business Media 2009

Authors and Affiliations

  • Kenneth Maiese
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    Email author
  • Zhao Zhong Chong
    • 1
  • Jinling Hou
    • 1
  • Yan Chen Shang
    • 1
  1. 1.Division of Cellular and Molecular Cerebral IschemiaWayne State University School of MedicineDetroitUSA
  2. 2.Department of NeurologyWayne State University School of MedicineDetroitUSA
  3. 3.Department of Anatomy and Cell BiologyWayne State University School of MedicineDetroitUSA
  4. 4.Barbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitUSA
  5. 5.Center for Molecular Medicine and GeneticsWayne State University School of MedicineDetroitUSA
  6. 6.Institute of Environmental Health SciencesWayne State University School of MedicineDetroitUSA

Personalised recommendations