Skip to main content

Mechanical and Thermal Properties

  • Chapter
  • First Online:
Dielectric Polymer Nanocomposites

Abstract

In the past decade, significant progress has been made in the area of advanced polymer materials, especially polymer nanocomposites. Future technology trends demand higher performance and lightweight materials in order to meet system level operational and reliability requirements. By combining the specific properties of the polymer matrix and the unique properties of nano-sized particles, a broad spectrum of properties of nanocomposites can be realized. Optimum combinations of mechanical, electrical and thermal properties of polymer materials can be tuned using proper choices of nanoparticles, coatings and processing conditions. In this chapter, recent developments on improving the mechanical and thermal properties of polymer nanocomposites will be summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams D, Doner D (1967) Transverse normal loading of a unidirectional composite. J Comp Mater 1:152–164

    Article  Google Scholar 

  • Agari Y, Ueda A, Nagai E, (1993) Thermal conductivity of a polymer nanocomposite. J Appl Polym Sci 49:1625–1631

    Article  Google Scholar 

  • Anderson TL (1995) Fracture mechanics: fundamentals and applications. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Ash B, Schadler LS, Siegel RW (2002) Glass transition behavior of alumina/polymethylmethacrylate nanocomposites, Mater Lett 55:83–87

    Article  Google Scholar 

  • Ashton JE, Halpin JC, Petit PH (1969) Primer on composite materials: analysis. Technomic Pub. Co., Stamford, CT

    Google Scholar 

  • Avella M, Errico ME, Martuscelli E (2001) Novel PMMA∕CaCO3 Nanocomposites abrasion resistant prepared by an in situ polymerization process. Nano Lett 1:213–217

    Article  Google Scholar 

  • Bansal, A, Yang H, Li C et al (2005) Quantitative equivalence between polymer nanocomposites and thin polymer films, Nat Mater 4:693–698

    Article  Google Scholar 

  • Bansal A, Yang H, Li C et al (2006) Controlling the thermomechanical properties of polymer nanocomposites by tailoring the polymer-particle interface. J Polym Sci B Polym Phys 44:2944–2950

    Article  Google Scholar 

  • Bao G, Suo Z (1992) Remarks on crack bridging concepts. Appl Mech Rev 45:355–366

    Article  Google Scholar 

  • Berber S, Kwon Y-K, Tománek D et al (2000) Unusually high thermal conductivity of carbon nano-tubes. Phys Rev Lett 84:4613–4617

    Article  Google Scholar 

  • Biercuka MJ, Llaguno MC, Radosavljevic M et al (2002), Carbon nanotube composites for thermal management. Appl Phys Lett 80:2767–2769

    Article  Google Scholar 

  • Cai H, Yan F, Xue Q (2004) Investigation of tribological properties of polyimide/carbon nanotubes nanocomposites. Mat Sci Eng A 364:94–100

    Article  Google Scholar 

  • Cao Y, Irwin P, Younsi K, (2004) The future of nanodielectrics in the electrical power industry. Trans IEEE DEI-11:797–807

    Article  Google Scholar 

  • Chen YJ, Zhang HZ, Chen Y (2006), Pure boron nitride nanowires produced from boron triiodide. Nanotechnology 17:786–789

    Article  Google Scholar 

  • Deng S, Ye L, Friedrich K (2007) Fracture behaviours of epoxy nanocomposites with nano-silica at low and elevated temperatures. J Mater Sci 42:2766–2774

    Article  Google Scholar 

  • Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A 241:376

    Article  MathSciNet  MATH  Google Scholar 

  • Evans AG, Williams S, Beaumont PWR (1985) On the toughness of particulate filled polymers. J Mater Sci 20:3668–3674

    Article  Google Scholar 

  • Evans AG (1972), The strength of brittle materials containing second phase dispersions. Philos Mag 26:1327–1344

    Article  Google Scholar 

  • Fan L, Su B, Qu J, Wong C (2004) Electrical and thermal conductivities of polymer composites containing nano-sized particles. Proceedings – 2004 Electronic Components and Technology Conference, pp 148–154

    Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  • Forrest JA, Mattsson J (2000) Reduction of the glass transition temperature in thin polymer films: probing the length scale of cooperative dynamics. Phys Rev E 61:R53–R61

    Article  Google Scholar 

  • Foye RL (1966) An evaluation of various engineering estimates of the transverse properties of unidirectional composites. SAMPE 10:G-31

    Google Scholar 

  • Gam KT, Miyamoto M, Nishuimura R, Sue HJ (2003) Fracture behavior of core-shell rubber-modified clay-epoxy nanocomposites. Polym Eng Sci 43:1635–1645

    Article  Google Scholar 

  • Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A221:163–198

    Google Scholar 

  • Griffith G, Tucker S, Milsom J, Stone, G. (2000) Problems with modern air-cooled generator stator winding insulation. IEEE Electr Insul Mag 16:6–10

    Article  Google Scholar 

  • Guo Z, Pereira T, Choi O et al (2006) Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. J Mater Chem 16:2800–2808

    Article  Google Scholar 

  • Halpin JC, Pagano NJ (1969) The laminate approximation for randomly oriented fibrous composites. J Compos Mater 3:720–724

    Google Scholar 

  • Halpin JC, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16:344–352

    Article  Google Scholar 

  • Han WQ, Zettl A (2002) GaN nanorods coated with pure BN. Appl Phys Lett 81:5051–5053

    Article  Google Scholar 

  • Han Z, Wood J, Herman H et al (2008) Thermal properties of composites filled with different fillers. Conference Record of the 2008 IEEE International Symposium on Electrical Insulation, pp 497–501

    Google Scholar 

  • Huang JW, Wen YL, Kang CC, Yeh MY (2007) Preparation of polyimide-silica nanocomposites from nanoscale colloidal silica. Polym J 39:654–658

    Article  Google Scholar 

  • Hutchinson JW (1989) Theoretical and applied mechanics. Elsevier, North Holland

    Google Scholar 

  • Irwin P, Cao Y, Bansal A, Schadler L (2003) Thermal and mechanical properties of polyimide nanocomposites. 2003 Conf Elect Insul Dielectr Phen: 120–123

    Google Scholar 

  • Johnsen BB, Kinloch AJ, Mohammed RD et al (2007) Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48:530–541

    Article  Google Scholar 

  • Kang S, Hong S, Choe C et al (2001) Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol–gel process. Polymer 42:879–887

    Article  Google Scholar 

  • Kashiwagi T, Morgan AB, Antonucci JM et al (2003) Thermal and flammability properties of a silica-poly(methylmethacrylate) nanocomposites. J Appl Polym Sci 89:2072–2078

    Article  Google Scholar 

  • Kausch HH, Hassell JA, Jaffee RI (1972) Deformation and fracture of high polymers. Plenum, New York

    Google Scholar 

  • Kawaguchi T, Pearson RA (2004) The moisture effect on the fatigue crack growth of glass particle and fiber reinforced epoxies with strong and weak bonding condition: part 2. A microscopic study on toughening mechanism. Compos Sci Technol 64:1991–2007

    Google Scholar 

  • Kim M-S, Kim D-W, Chowdhury SR et al (2006) Melt-compounded butadiene rubber nanocomposites with improved mechanical properties and abrasion resistance. J Appl Polym Sci 102:2062–2066

    Article  Google Scholar 

  • Kinloch AJ, Maxwell DL, Young RJ (1985) The fracture of hybrid-particulate composites. J Mater Sci 20:4169–4184

    Article  Google Scholar 

  • Kochetov R, Andritsch T, Lafont U et al (2009) Thermal behaviour of epoxy resin filled with high thermal conductivity nanopowders. IEEE Electrical Insulation Conference, pp 524–528

    Google Scholar 

  • Koratkar N, Suhr J, Joshi A et al (2005) Characterizing energy dissipation in single-walled carbon nanotube polycarbonate composites. Appl Phys Lett 87:063102

    Article  Google Scholar 

  • Kotsilkova R (ed) (2007) Thermoset nanocomposites for engineering applications, Smithers Rapra. Chapter 6: performance of Thermoset Nanocomposites

    Google Scholar 

  • Lange FF (1970) The interaction of a crack front with a second-phase dispersion. Philos Mag 22:983–992

    Article  Google Scholar 

  • Lewis TJ (1994) Nanometric dielectrics. Trans IEEE DEI-1:812–825

    Article  Google Scholar 

  • Liu H, Brinson LC (2006) A hybrid numerical-analytical method for modeling the viscoelastic properties of polymer nanocomposites. Trans ASME 73:758–768

    Article  MATH  Google Scholar 

  • Liu H, Brinson LC (2008) Reinforcing efficiency of nanoparticles: a simple comparison for polymer nanocomposites. Compos Sci Tech 68:1502–1512

    Article  Google Scholar 

  • Lin Y, Chen H, Chan C-M et al (2008) High impact toughness polypropylene/CaCO3 nanocomposites and the toughening mechanism. Macromolecules 41:9204–9213

    Article  Google Scholar 

  • Liu L, Barber AH, Nuriel S et al (2005) Mechanical properties of functionalized single-walled carbon-nanotubes poly(vinyl alcohol) nanocomposites. Adv Funct Mater 15:975–980

    Article  Google Scholar 

  • Liu W, Hoa SV, Pugh M (2005) Fracture toughness and water uptake of high-performance epoxy/nanoclay nanocomposites. Compos Sci Tech 65:2364–2373

    Article  Google Scholar 

  • Messersmith PB, Giannelis EP (1995) Synthesis and barrier properties of poly(e-caprolactone)-layered silicate nanocomposites. J Polym Sci A Polym Chem 33:1047–1057

    Article  Google Scholar 

  • Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metal 21:571–574

    Article  Google Scholar 

  • Naous W, Yu X-Y, Zhang Q-X et al (2006) Morphology, tensile properties, and fracture toughness of epoxy/Al2O3 nanocomposites. J. Polym Sci B Polym Phys 44:1466–1473

    Article  Google Scholar 

  • Podsiadlo P, Kaushik AK, Arruda EM et al (2007) Ultrastrong and stiff layered polymer nanocomposites. Science 318:80–83

    Article  Google Scholar 

  • Preghenella M, Pegoretti A, Migliaresi C (2005) Thermo-mechanical characterization of fumed silica-epoxy nanocomposites. Polymer 46:12065–12072

    Article  Google Scholar 

  • Ramanathan T, Liu H, Brinson LC (2005) Functionalized SWNT/polymer nanocomposites for dramatic property improvement. J Polym Sci B Polym Phys 43:2269–2279

    Article  Google Scholar 

  • Ragosta G, Abbate M, Musto P et al (2005) Epoxy-silica particulate nanocomposites: chemical interactions, reinforcement and fracture toughness. Polymer 46:10506–10516

    Article  Google Scholar 

  • Rittigstein P, Torkelson J (2006) Polymer-nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging. J Polym Sci B Polym Phys 44:2935–2943

    Article  Google Scholar 

  • Satapathy BK, Weidisch R, Pötschke P et al (2005) Crack toughness behavior of multiwalled carbon nanotubes (MWNT)/polycarbonate nanocomposites. Macromol Rapid Commun 26:1246–1252

    Article  Google Scholar 

  • Sawyer WG, Freudenberg KD, Bhimaraj P et al (2003) A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 254:573–580

    Article  Google Scholar 

  • Schadler LS, Brinson LC, Sawyer WG (2007) Polymer nanocomposites: a small part of the story. J Mater 59(3):53–60

    Google Scholar 

  • Schadler LS, Kumar SK, Benicewicz BC et al (2007), Designed interfaces in polymer nanocomposites: a fundamental viewpoint. MRS Bull 32:335–340

    Article  Google Scholar 

  • Shah D, Maita P, Gunn E et al (2004) Dramatic enhancement in toughness of polyvinylidene fluoride Nanocomposites via nanoclay-directed crystal structure and morphology. Adv Mater 16:1173–1177

    Article  Google Scholar 

  • Shang XY, Zhu ZK, Yin J, Ma XD (2002). Compatibility of soluble polyimide/silica hybrids induced by a coupling agent. Chem Mater 14:71–77

    Article  Google Scholar 

  • Shi H, Lan T, Pinnavaia, TJ (1996) Interfacial effects on the reinforcement properties of polymer-organoclay nanocomposites. Chem Mater 8:1584–1587

    Article  Google Scholar 

  • Spanoudakis J, Young RJ (1984) Crack propagation in a glass particle-filled epoxy resin. Part 1: effect of particle volume fraction and size. J Mater Sci 19:473–486

    Article  Google Scholar 

  • Sun YY, Zhang Z, Moon KS, Wong CP (2004) Glass transition and relaxation behavior of epoxy nanocomposites. J Polym Sci B Polym Phys 42:3849–3858

    Article  Google Scholar 

  • Tandon GP, Weng GJ (1984) The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polym Compos 5:327–333

    Article  Google Scholar 

  • Tanniru M, Yuan Q, Misra RDK (2006) On significant retention of impact strength in clay-reinforced high-density polyethylene (HDPE) Nanocomposites. Polymer 47:2133–2146

    Article  Google Scholar 

  • Tsai TY, Lu ST, Hunag CJ et al (2008) The structure-property relationship of Novolac cured epoxy resin/clay nanocomposites. Polym Eng Sci 48:467–476

    Article  Google Scholar 

  • Vlasveld DPN, Bersee HEN, Picken SJ (2005) Creep and physical aging behavior of PA6 Nanocomposites. Polymer 46:12539–12545

    Article  Google Scholar 

  • Wang H, Dong R, Liu C, Chang H (2007) Effect of clay on properties of polyimide-clay nanocomposites. J Appl Polym Sci 104:318–324

    Article  Google Scholar 

  • Wang K, Chen L, Wu J et al (2005) Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms. Macromolecules 38:788–800

    Article  Google Scholar 

  • Wang Q, Dai J, Li W et al (2008) The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy Nanocomposites. Compos Sci Tech 68:1644–1648

    Article  Google Scholar 

  • Wang Y, Lim S, Luo JL et al (2006) Tribological and corrosion behavior of Al2O3/polymer nanocomposites coatings. Wear 260:976–983

    Article  Google Scholar 

  • Wank JS et al (2004). Nanocoating individual cohesive boron nitride particles in a fluidized bed by ALD. J Powder Technol 142:59–69

    Article  Google Scholar 

  • Wetzel B, Haupeiit F, Friedrich et al (2002) Impact and wear resistance of polymer nanocomposites at low filler content. Polym Eng Sci 42:1919–1927

    Article  Google Scholar 

  • Weon J-I, Sue H-J (2005) Effects of clay orientation and aspect ratio on mechanical behavior of nylon-6 nanocomposites. Polymer 46:6325–6334

    Article  Google Scholar 

  • Werner P, Volker A, Jaskulkac R et al (2004) Tribological behaviour of carbon nanofibre-reinforced poly(ether ether ketone). Wear 257:1006–1014

    Article  Google Scholar 

  • Wu YP, Jia QX, Yu DS et al (2004) Modeling Young’s modulus of rubber-clay nanocomposites using composite theories. Polym Test 23:903–909

    Article  Google Scholar 

  • Xie H, Wang J, Xi T et al (2002) Thermal conductivity enhancements of suspensions containing nanosized alumina particles. J Appl Phys 91:4568–4572

    Article  Google Scholar 

  • Yang J-L, Zhang Z, Schlarb AK et al (2006) On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part I. Experimental results and general discussions. Polym 47:2791–2801

    Google Scholar 

  • Yu N, Zhang ZH, He SY (2008) Fracture toughness and fatigue life of MWCNT/epoxy composites. Mater Sci Eng A 494:380–384

    Article  Google Scholar 

  • Zhang Q-X, Yu Z-Z, Xie X-L et al (2004) Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier. Polymer 45:5985–5994

    Article  Google Scholar 

  • Zhang W, Picu C, Koratkar N (2007) Suppression of fatigue crack growth in carbon nanotubes composites. Appl Phys Lett 91:192109

    Article  Google Scholar 

  • Zhang W, Picu C, Koratkar N (2008) The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites. Nanotechnology 19: 285709

    Article  Google Scholar 

  • Zhang W, Srivastava I, Zhu YF et al (2009) Heterogeneity in epoxy nanocomposites initiates crazing: significant improvements in fatigue resistance and toughening. Small 5:1403–1407

    Article  Google Scholar 

  • Zhang W, Joshi A, Wang Z et al (2007) Creep mitigation in composites using carbon nanotubes additives. Nanotechnology 18:185703–185707

    Article  Google Scholar 

  • Zhang Z, Yang J-L, Friedrich K (2004) Creep resistant polymeric nanocomposites. Polymer 45:3481–3485

    Article  Google Scholar 

  • Zhao S, Schadler LS, Duncan R et al (2008) Mechanisms leading to improved mechanical performance in nanoscale alumina filled epoxy. Compos Sci Technol 68:2965–2975

    Article  Google Scholar 

  • Zhao S, Schadler LS et al (2008) Improvements and mechanisms of fracture and fatigue properties of well-dispersed alumina/epoxy nanocomposites. Compos Sci Tech 68:2976–2982

    Article  Google Scholar 

  • Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Dr. Konrad Weeber, Dr. William Premerlani and Dr. Ryan Mills of GE Global Research for their advice and suggestions. Dr. Donald Buckley and Mr. Gerald Irwin offered technical editing comments on the chapter and their input is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Irwin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Irwin, P., Zhang, W., Cao, Y., Fang, X., Qi Tan, D. (2010). Mechanical and Thermal Properties. In: Nelson, J. (eds) Dielectric Polymer Nanocomposites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1591-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1591-7_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1590-0

  • Online ISBN: 978-1-4419-1591-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics