Skip to main content

A Reproducing Kernel Hilbert Space Framework for ITL

  • Chapter
  • First Online:

Part of the book series: Information Science and Statistics ((ISS))

Abstract

During the last decade, research on Mercer kernel-based learning algorithms has flourished [294, 226, 289]. These algorithms include, for example, the support vector machine (SVM) [63], kernel principal component analysis (KPCA) [289], and kernel Fisher discriminant analysis (KFDA) [219]. The common property of these methods is that they operate linearly, as they are explicitly expressed in terms of inner products in a transformed data space that is a reproducing kernel Hilbert space (RKHS). Most often they correspond to nonlinear operators in the data space, and they are still relatively easy to compute using the so-called “kernel-trick”. The kernel trick is no trick at all; it refers to a property of the RKHS that enables the computation of inner products in a potentially infinite-dimensional feature space, by a simple kernel evaluation in the input space. As we may expect, this is a computational saving step that is one of the big appeals of RKHS. At first glance one may even think that it defeats the “no free lunch theorem” (get something for nothing), but the fact of the matter is that the price of RKHS is the need for regularization and in the memory requirements as they are memory-intensive methods. Kernel-based methods (sometimes also called Mercer kernel methods) have been applied successfully in several applications, such as pattern and object recognition [194], time series prediction [225], and DNA and protein analysis [350], to name just a few.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aronszajn N., The theory of reproducing kernels and their applications, Cambridge Philos. Soc. Proc., vol. 39:133–153, 1943.

    Article  MathSciNet  Google Scholar 

  2. Babich G., Camps O., Weighted Parzen windows for pattern classification. IEEE Trans. Pattern Anal. Mach. Intell., 18(5):567–570, 1996.

    Article  Google Scholar 

  3. Bach F., Jordan M., Kernel independent component analysis, J. Mach. Learn. Res., 3:1–48, 2002.

    MathSciNet  Google Scholar 

  4. Beirlant J., Zuijlen M., The empirical distribution function and strong laws for functions of order statistics of uniform spacings, J. Multiva. Anal., 16:300–317, 1985.

    Article  MATH  Google Scholar 

  5. Carnell, A., Richardson, D., Linear algebra for time series of spikes. In: Proc. European Symp. on Artificial Neural Networks, pp. 363–368. Bruges, Belgium (2005)

    Google Scholar 

  6. Cortez C., Vapnik V., Support vector networks. Mach. Learn., 20:273–297, 1995.

    Google Scholar 

  7. Cover T., Classification and generalization capabilities of linear threshold units, Rome air force technical documentary report RADC-TDR-64-32, Tech. Rep., Feb 1964.

    Google Scholar 

  8. Dayan, P. Abbott L.F. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge, MA, 2001.

    Google Scholar 

  9. Di Marzio M., Taylor C., Kernel density classification and boosting: An L2 analysis. Statist Comput., 15(2):113–123, 2004.

    Article  Google Scholar 

  10. Diggle P., Marron J.S., Equivalence of smoothing parameter selectors in density and intensity estimation. J. Am. Statist. Assoc. 83(403):793–800, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  11. Girolami M., Orthogonal series density estimation and the kernel eigenvalue problem. Neural Comput., 14(3):669–688, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  12. Gretton, A., Herbrich R., Smola A., Bousquet O., Schölkopf B., Kernel Methods for Measuring Independence,” J. Mach. Learn. Res., 6:2075–2129, 2005.

    MATH  MathSciNet  Google Scholar 

  13. Gyorfi L., van der Meulen E., On nonparametric estimation of entropy functionals, in Nonparametric Functional Estimation and Related Topics, (G. Roussas, Ed.), Kluwer Academic, Amsterdam, 1990, pp. 81–95.

    Google Scholar 

  14. Jenssen R., Erdogmus D., Principe J., Eltoft T., Some equivalence between kernel and information theoretic methods, in J. VLSI Signal Process., 45:49–65, 2006.

    Article  Google Scholar 

  15. LeCun Y., Jackel L., Bottou L., Brunot A., Cortes C., Denker J., Drucker H., Guyon I., Muller U., Sackinger E., Simard P., Vapnik V., Learning algorithms for classification: A comparison on handwritten digit reconstruction. Neural Netw., pp. 261–276, 1995.

    Google Scholar 

  16. Mercer J., Functions of positive and negative type, and their connection with the theory of integral equations, Philosoph. Trans. Roy. Soc. Lond., 209:415–446, 1909.

    Article  MATH  Google Scholar 

  17. Mika S., Ratsch G., Weston J., Scholkopf B., Muller K., Fisher discriminant analysis with kernels. In Proceedings of IEEE International Workshop on Neural Networks for Signal Processing, pages 41–48, Madison, USA, August 23–25, 1999.

    Google Scholar 

  18. Moore E., On properly positive Hermitian matrices, Bull. Amer. Math. Soc., 23(59):66–67, 1916.

    MATH  Google Scholar 

  19. Muller K., Smola A., Ratsch G., Scholkopf B., Kohlmorgen J., Vapnik V., Predicting time series with support vector machines. In Proceedings of International Conference on Artificial Neural Networks, Lecture Notes in Computer Science, volume 1327, pages 999–1004, Springer-Verlag, Berlin, 1997.

    Google Scholar 

  20. Muller K., Mika S., Ratsch G., Tsuda K., Scholkopf B., An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw., 12(2):181–201, 2001.

    Article  Google Scholar 

  21. Paiva, A.R.C., Park, I., Principe, J.C. A reproducing kernel Hilbert space framework for spike train signal processing. Neural Comput., 21(2):424–449, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  22. Parzen E., Statistical inference on time series by Hilbert space methods, Tech. Report 23, Stat. Dept., Stanford Univ., 1959.

    Google Scholar 

  23. Ramsay, J., Silverman, B., Functional Data Analysis. Springer-Verlag, New York, 1997.

    Book  MATH  Google Scholar 

  24. Schölkopf B., Smola A., Muller K., Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput., 10:1299–1319, 1998.

    Article  Google Scholar 

  25. Schölkopf, B., Burges, C.J.C., Smola, A.J. (Eds.), Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge, MA, 1999.

    Google Scholar 

  26. Schölkopf B. and Smola A., Learning with Kernels. MIT Press, Cambridge, MA, 2002

    Google Scholar 

  27. Schrauwen, B., Campenhout, J.V., Linking non-binned spike train kernels to several existing spike train distances. Neurocomp. 70(7–8), 1247–1253 (2007).

    Article  Google Scholar 

  28. Shawe-Taylor J. Cristianini N., Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge, UK, 2004.

    Book  Google Scholar 

  29. Snyder, D.L., Random Point Process in Time and Space. John Wiley & Sons, New York, 1975.

    Google Scholar 

  30. Vapnik V., The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995

    Book  MATH  Google Scholar 

  31. Xu J., Pokharel P., Jeong K., Principe J., An explicit construction of a reproducing Gaussian kernel Hilbert space, Proc. IEEE Int. Conf. Acoustics Speech and Signal Processing, Toulouse, France, 2005.

    Google Scholar 

  32. Zien A., Ratsch G., Mika S., Schölkopf B., Lengauer T., Muller K., Engineering support vector machine kernels that recognize translation invariant sites in DNA. Bioinformatics, 16:906–914, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Xu, J., Jenssen, R., Paiva, A., Park, I. (2010). A Reproducing Kernel Hilbert Space Framework for ITL. In: Information Theoretic Learning. Information Science and Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1570-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1570-2_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1569-6

  • Online ISBN: 978-1-4419-1570-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics