Skip to main content

Robust Control of LTI Systems by Means of Structurally Constrained Controllers

  • Chapter
  • First Online:
Structurally Constrained Controllers

Abstract

Numerous real-world systems can be envisaged as interconnected systems consisting of a number of subsystems [1]. Every controller for such a system is often composed of a set of local controllers corresponding to the individual subsystems. In an unconstrained control structure, each local controller has access to the outputs of all the subsystems. This class of controllers is referred to as centralized. However, in many control applications, each local controller can only use the information of a subset of subsystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Lavaei and A. G. Aghdam, “Decentralized control design for interconnected systems based on a centralized reference controller,” in Proceedings of 45th IEEE Conference on Decision and Control, San Diego, CA, 2006.

    Google Scholar 

  2. A. G. Aghdam, E. J. Davison, and R. B. Arreola, “Structural modification of systems using discretization and generalized sampled-data hold functions,” Automatica, vol. 42 , no. 11, pp. 1935–1941, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. S. Smith and F. Y. Hadaegh, “Control topologies for deep space formation flying spacecraft,” in Proceedings of 2002 American Control Conference, Anchorage, AK, 2002.

    Google Scholar 

  4. J. Lavaei and A. G. Aghdam, “Optimal periodic feedback design for continuous-time LTI systems with constrained control structure,” International Journal of Control, vol. 80, no. 2, pp. 220–230, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. J. Davison and T. N. Chang, “Decentralized stabilization and pole assignment for general proper systems,” IEEE Transactions on Automatic Control, vol. 35, no. 6, pp. 652–664, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. H. Wang and E. J. Davison, “On the stabilization of decentralized control systems,” IEEE Transactions on Automatic Control, vol. 18, no. 5, pp. 473–478, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Lavaei and A. G. Aghdam, “Simultaneous LQ control of a set of LTI systems using constrained generalized sampled-data hold functions,” Automatica, vol. 43, no. 2, pp. 274–280, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. D. ˇ Siljak and A. I. Zecevic, “Control of large-scale systems: Beyond decentralized feedback,” Annual Reviews in Control, vol. 29 , no.2, pp. 169–179, 2005.

    Article  Google Scholar 

  9. A. I. Zecevic and D. D. Šiljak, “A new approach to control design with overlapping information structure constraints,” Automatica, vol. 41, no. 2, pp. 265–272, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. S. Stankovic, X. B. Chen and M. R. Matausek and D. D. Šiljak, “Stochastic inclusion principle applied to decentralized automatic generation control,” International Journal of Control, vol. 72, no. 3, pp. 276–288, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Lavaei and A. G. Aghdam, “Elimination of fixed modes by means of high-performance constrained periodic control,” in Proceedings of 45th IEEE Conference on Decision and Control, San Diego, CA, 2006.

    Google Scholar 

  12. Z. Gong and M. Aldeen, “Stabilization of decentralized control systems,” Journal of Mathematical Systems, Estimation, and Control, vol. 7, no. 1, pp. 1–16, 1997.

    MathSciNet  Google Scholar 

  13. J. Lavaei and A. G. Aghdam, “A necessary and sufficient condition for the existence of a LTI stabilizing decentralized overlapping controller,” in Proceedings of 45th IEEE Conference on Decision and Control, San Diego, CA, 2006.

    Google Scholar 

  14. C. T. Lin, “Structural controllability,” IEEE Transactions on Automatic Control, vol. 19, no. 3, pp. 201–208, 1974.

    Article  MATH  Google Scholar 

  15. H. Mayeda, “On structural controllability theorem,” IEEE Transactions on Automatic Control, vol. 26, no. 3, pp. 795–798, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Hosoe and K. Matsumoto, “On the irreducibility condition in the structural controllability theorem,” IEEE Transactions on Automatic Control, vol. 24, no. 6, pp. 963–966, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  17. K. J. Reinschke, F. Svaricek and H. D. Wend, “On strong structural controllability of linear systems,” in Proceedings of 31st IEEE Conference on Decision and Control, 1992.

    Google Scholar 

  18. T. Yamada and D. Luenberger, “Generic controllability theorems for descriptor systems,” IEEE Transactions on Automatic Control, vol. 30, no. 2, pp. 144–152, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. E. Sezer and D. D. Šiljak, “Structurally fixed modes,” Systems & Control Letters, vol. 1, no. 1, pp. 60–64, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  20. K. A. Ossman, “Indirect adaptive control for interconnected systems,” IEEE Transactions on Automatic Control, vol. 34, no. 8, pp. 908–911, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. T. Gavel and D. D. Šiljak, “Decentralized adaptive control: structural conditions for stability,” IEEE Transactions on Automatic Control, vol. 34, no. 4, pp. 413–426, 1989.

    Article  MATH  Google Scholar 

  22. P. Ioannou and J. Sun, Robust adaptive control, Prentice Hall, 1996.

    Google Scholar 

  23. R. C.L.F Oliveira and P. L.D. Peres, “LMI conditions for robust stability analysis based on polynomially parameter-dependent Lyapunov functions,” Systems & Control Letters, vol. 55, no. 1, pp. 52–61, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Lavaei and A. G. Aghdam, “A necessary and sufficient condition for robust stability of LTI discrete-time systems using sum-of-squares matrix polynomials,” in Proceedings of 45th IEEE Conference on Decision and Control, San Diego, CA, 2006.

    Google Scholar 

  25. O. Bachelier, J. Bernussou, M. C. de Oliveira and J. C. Geromel, “Parameter dependant Lyapunov control design: numerical evaluation,” in Proceedings of 38th IEEE Conference on Decision and Control, Phoenix, AZ, 1999.

    Google Scholar 

  26. D. Henrion, M. Sebek and V. Kucera, “Positive polynomials and robust stabilization with fixed-order controllers,” IEEE Transactions on Automatic Control, vol. 48, no. 7, pp. 1178–1186, 2003.

    Article  MathSciNet  Google Scholar 

  27. A. Ghulchak, “Robust stabilizability and low-order controllers: duality principle in case studies,” in Proceedings of 43rd IEEE Conference on Decision and Control, Atlantis, Bahamas, 2004.

    Google Scholar 

  28. M. Nikodem and A. W. Olbrot, “Robust stabilizability with phase perturbations,” in Proceedings of 34th IEEE Conference on Decision and Control, 1995.

    Google Scholar 

  29. K. Benjelloun, E. K. Boukas and P. Shi, “Robust stabilizability of uncertain linear systems with Markovian jumping parameters,” in Proceedings of 1997 American Control Conference, pp. 866–867, Albuquerque, New Mexico, 1997.

    Google Scholar 

  30. K. Wei and R. K. Yedavalli, “Robust stabilizability for linear systems with both parameter variation and unstructured uncertainty,” IEEE Transactions on Automatic Control, vol. 34, no. 2, pp. 149–156, Feb. 1989.

    Article  MathSciNet  MATH  Google Scholar 

  31. H. Kwakernaak, “A condition for robust stabilizability,” Systems & Control Letters, vol. 2, no. 1, Jul. 1982.

    Google Scholar 

  32. J. Harris, Algebraic geometry: a first course (graduate texts in mathematics), Springer-Verlag, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Sojoudi .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer US

About this chapter

Cite this chapter

Sojoudi, S., Lavaei, J., Aghdam, A.G. (2011). Robust Control of LTI Systems by Means of Structurally Constrained Controllers. In: Structurally Constrained Controllers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1549-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1549-8_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1548-1

  • Online ISBN: 978-1-4419-1549-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics