Skip to main content

Atomic-Layer Deposited High-k/III-V Metal-Oxide-Semiconductor Devices and Correlated Empirical Model

  • Chapter
  • First Online:
Fundamentals of III-V Semiconductor MOSFETs

Abstract

Si CMOS scaling is reaching its physical limit at the 15 nm technology node and beyond. III-V compound semiconductor is one of the leading candidates to replace main-stream Si as n-channel material due its much higher electron mobility. Lacking a suitable gate insulator, practical III-V metal-oxide-semiconductor field-effect transistors (MOSFETs) remain all but a dream for more than four decades. The physics and chemistry of III-V compound semiconductor surfaces or interfaces are problems so complex that even after enormous research efforts understanding is still limited. Most of the research is focused on surface pretreatments, oxide formation and dielectric materials. Less attention is given to the III-V substrate itself. In this chapter, the history and present status of III-V MOSFET research is briefly reviewed. An empirical model for high-k/III-V interfaces is proposed based on the experimental works we performed on III-V MOSFETs using ex-situ atomic-layer-deposited high-k dielectrics and also reported works in the literature using in-situ molecular beam expitaxy grown Ga2O3(Gd2O3) as gate dielectric. The results show that physics related to III-V substrates is as important as surface chemistry and gate oxide properties for realizing high-performance III-V MOSFETs. The central concept of this empirical model is that the band alignment between trap neutral level (E0) and conduction band minimum (CBM) or valence band maximum (VBM) and the magnitude of interface trap density governs the device performance of inversion-mode III-V MOSFETs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Becke, R. Hall, and J. White, Solid-State Electron., 8, 813 (1965).

    Google Scholar 

  2. H.W. Becke and J.P. White, Electronics, 40, 82 (1967).

    Google Scholar 

  3. L. Messick, Solid-State Electron., 22, 71 (1979).

    Google Scholar 

  4. K. Kamimura and Y. Sakai, Thin Solid Films, 56, 215 (1979).

    Google Scholar 

  5. T. Mimura and M. Fukuta, IEEE Trans. Electron Devices, 27, 1147 (1980).

    Google Scholar 

  6. B. Bayraktaroglu, W.M. Theis, and F.L. Schuermeyer, in 37th Device Research Conference, Abstracts, p. WP-A3, 1979.

    Google Scholar 

  7. H.C. Casey, Jr., A.Y. Cho, and E.H. Nicollian, Appl. Phys. Lett., 32, 678 (1978).

    Google Scholar 

  8. M.R. Melloch, N. Otsuka, J.M. Woodall, A.C. Warren, and J.L. Freeouf, Appl. Phys. Lett., 57, 1531 (1990).

    Google Scholar 

  9. W.T. Tsang, Appl. Phys. Lett., 33, 429 (1979).

    Google Scholar 

  10. X. Li, Y. Cao, D.C. Hall, P. Fay, B. Han, A. Wibowo, and N. Pan, IEEE Electron Device Lett., 25, 772 (2004).

    Google Scholar 

  11. D.N. Butcher and B.J. Sealy, Electron. Lett., 13, 558 (1977).

    Google Scholar 

  12. H. Hasegawa, K.E. Forward, and H.L. Hartnagel, Appl. Phys. Lett., 26, 567 (1975).

    Google Scholar 

  13. R.A. Logan, B. Schwartz, and W.J. Sundburg, J. Electronchem. Soc., 120, 1385 (1973).

    Google Scholar 

  14. O.A. Weinreich, J. Appl. Phys., 37, 2924 (1966).

    Google Scholar 

  15. K. Yamasaki and T. Sugano, Jap. J. Appl. Phys., 17, 321 (1978).

    Google Scholar 

  16. N. Yokoyama, T. Mimura, K. Odani, and M. Fukuta, Appl. Phys. Lett., 32, 58 (1978).

    Google Scholar 

  17. L.A. Chesler and G.Y. Robinson, Appl. Phys. Lett., 32, 60 (1978).

    Google Scholar 

  18. R.P.H. Chang and A.K. Sinha, Appl.Phys. Lett., 29, 56 (1976).

    Google Scholar 

  19. V.M. Bermudez, J. Appl. Phys., 54, 6795 (1983).

    Google Scholar 

  20. C.F. Yu, M.T. Schmidt, D.V. Podlesnik, E.S. Yang, and R.M. Osgood, Jr., J. Vac. Sci. Technol., A 6, 754 (1988).

    Google Scholar 

  21. S.D. Offsey, J.M. Woodall, A.C. Warren, P.D. Kirchner, T.I. Chappell, and G.D. Pettit, Appl. Phys. Lett., 48, 475 (1986).

    Google Scholar 

  22. C.W. Wilmsen, Physics and Chemistry of III-V Compound Semiconductor Interfaces. New York: Plenum, 1985.

    Book  Google Scholar 

  23. C.L. Hinkle, M. Milojevic, B. Brennan, A.M. Sonnet, F.S. Aguirre-Tostado, G.J. Hughes, E.M. Vogel, and R.M. Wallace, Appl. Phys. Lett., 94, 162101 (2009).

    Google Scholar 

  24. M. Xu, K. Xu, R. Contreras, M. Milojevic, T. Shen, O. Koybasi, Y.Q. Wu, R.M. Wallace, and P.D. Ye, in IEDM Tech. Dig., 2009 (to be published).

    Google Scholar 

  25. A.M. Cowley and S.M. Sze, J. Appl.Phys., 36, 3212 (1965).

    Google Scholar 

  26. V. Heine, Phys. Rev., 138, 1689 (1965).

    Google Scholar 

  27. C. Tejedor and F. Flores, J. Phys. C-Solid State Phys., 11, L19 (1978).

    Google Scholar 

  28. W.E. Spicer, P.W. Chye, P.R. Skeath, C.Y. Su, and I. Lindau, J. Vac. Sci. & Technol., 16, 1422 (1979).

    Google Scholar 

  29. H. Hasegawa and H. Ohno, J. Vac. Sci. & Technol., B 4, 1130 (1986).

    Google Scholar 

  30. J. Tersoff, Phys. Rev. Lett., 52, 465 (1984).

    Google Scholar 

  31. J. Tersoff, Phys. Rev. B, 32, 6968 (1985).

    Google Scholar 

  32. W.E. Spicer, I. Lindau, P. Skeath, C.Y. Su, and P. Chye, Phys. Rev. Lett., 44, 420 (1980).

    Google Scholar 

  33. J. Robertson, Appl. Phys. Lett., 94, 152104 (2009).

    Google Scholar 

  34. P.D. Ye, J. Vac. Sci. Technol., A 26, 697 (2008).

    Google Scholar 

  35. Y. Xuan, P.D. Ye, and T. Shen, Appl. Phys. Lett., 91, 232107 (2007).

    Google Scholar 

  36. M. Xu, Y.Q. Wu, O. Koybasi, T. Shen, and P.D. Ye, Appl. Phys. Lett., 94, 212104 (2009).

    Google Scholar 

  37. W.W. Hooper and W.I. Lehrer, Proceedings of IEEE., 55, 1237 (1967).

    Google Scholar 

  38. R. Dingle, H.L. Stormer, A.C. Gossard, and W. Wiegmann, Appl. Phys. Lett., 33, 665 (1978).

    Google Scholar 

  39. H.L. Stormer, R. Dingle, A.C. Gossard, W. Wiegmann, and M.D. Sturge, Solid State Commun., 29, 705 (1979).

    Google Scholar 

  40. T. Mimura, S. Hiyamizu, T. Fujii, and K. Nanbu, Jpn. J. Appl. Phys., 19, L225 (1980).

    Google Scholar 

  41. D. Delagebeaudeuf, P. Delescluse, P. Etienne, M. Laviron, J. Chaplart, and N.T. Linh, Electron. Lett., 16, 667 (1980).

    Google Scholar 

  42. B.J. Skromme, C.J. Sandroff, E. Yablonovitch, and T. Gmitter, Appl. Phys. Lett., 51, 2022 (1987).

    Google Scholar 

  43. E. Yablonovitch, C.J. Sandroff, R. Bhat, and T. Gmitter, Appl. Phys. Lett., 51, 439 (1987).

    Google Scholar 

  44. A. Callegari, P.D. Hoh, D.A. Buchanan, and D. Lacey, Appl. Phys. Lett., 54, 332 (1989).

    Google Scholar 

  45. H. Hasegawa, M. Akazawa, K.I. Matsuzaki, H. Ishii, and H. Ohno, Jpn. J. Appl. Phys., Part 2 L27, L2265 (1988).

    Google Scholar 

  46. S. Tiwari, S.L. Wright, and J. Batey, IEEE Electron Device Lett., 9, 488 (1988).

    Google Scholar 

  47. G.G. Fountain, S.V. Hattangady, D.J. Vitkavage, R.A. Rudder, and R.J. Markunas, Electron. Lett., 24, 1134 (1988).

    Google Scholar 

  48. G.G. Fountain, R.A. Rudder, S.V. Hattangady, R.J. Markunas, and J.A. Hutchby, in IEDM Tech. Dig., Dec. 1989, pp. 887–889.

    Google Scholar 

  49. M. Akazawa, H. Ishii, and H. Hasegawa, Jpn. J. Appl. Phys., 30, 3744 (1991).

    Google Scholar 

  50. D.S.L. Mui, H. Liaw, A.L. Demirel, S. Strite, and H. Morkoc, Appl. Phys. Lett., 59, 2847 (1991).

    Google Scholar 

  51. A. Callegari, D.K. Sadana, D.A. Buchanan, A. Paccagnella, E.D. Marshall, M.A. Tischler, and M. Norcott, Appl. Phys. Lett., 58, 2540 (1991).

    Google Scholar 

  52. S. Koveshnikov, W. Tsai, I. Ok, J.C. Lee, V. Torkanov, M. Yakimov, and S. Oktyabrsky, Appl. Phys. Lett., 88, 022106 (2006).

    Google Scholar 

  53. I.J. Ok, H.S. Kim, M.H. Zhang, C.Y. Kang, S.J. Rhee, C.W. Choi, S.A. Krishnan, T. Lee, F. Zhu, G. Thareja, and J.C. Lee, IEEE Electron Device Lett., 27, 145 (2006).

    Google Scholar 

  54. S.J. Koester, E.W. Kiewra, Y. Sun, D.A. Neumayer, J.A. Ott, M. Copel, D.K. Sadana, D.J. Webb, J. Fompeyrine, J.-P. Locquet, C. Marchiori, M. Sousa, and R. Germann, Appl. Phys. Lett., 89, 042104 (2006).

    Google Scholar 

  55. D. Shahrjerdi, M.M. Oye, A.L. Holmes, and S.K. Banerjee, Appl. Phys. Lett., 89, 043501 (2006).

    Google Scholar 

  56. J.P. de Souza E. Kiewra, Y. Sun, A. Callegari, D.K. Sadana, G. Shahidi, D.J. Webb, J. Fompeyrine, R. Germann, C. Rossel, and C. Marchiori, Appl. Phys. Lett., 92, 153508 (2008).

    Google Scholar 

  57. H.C. Chin, M. Zhu, C.H. Tung, G.S. Samudra, and Y.C. Yeo, IEEE Electron Device Lett., 29, 553 (2008).

    Google Scholar 

  58. M. Passlack, M. Hong, and J.P. Mannaerts, Appl. Phys. Lett., 68, 1099 (1996).

    Google Scholar 

  59. M. Passlack, M. Hong, J.P. Mannaerts, R.L. Opila, S.N.G. Chu, N. Moriya, F. Ren, and J.R. Kwo, IEEE Electron Device Lett., 44, 214 (1997).

    Google Scholar 

  60. M. Hong, J. Kwo, A.R. Kortan, J.P. Mannaerts, and A.M. Sergent, Science, 283, 1897 (1999).

    Google Scholar 

  61. F. Ren, M. Hong, W.S. Hobson, J.M. Kuo, J.R. Lothian, J.P. Mannaerts, J. Kwo, S.N.G. Chu, Y.K. Chen, and A.Y. Cho, Solid-State Electron., 41, 1751 (1997).

    Google Scholar 

  62. Y.C. Wang, M. Hong, J.M. Kuo, J.P. Mannaerts, J. Kwo, H.S. Tsai, J.J. Krajewski, Y.K. Chen, and A.Y. Cho, IEEE Electron Devices Lett., 20, 457 (1999).

    Google Scholar 

  63. F. Ren, J.M. Kuo, M. Hong, W.S. Hobson, J.R. Lothian, J. Lin, H.S. Tsai, J.P. Mannaerts, J. Kwo, S.N.G. Chu, Y.K. Chen, and A.Y. Cho, IEEE Electron Device Lett., 19, 309 (1998).

    Google Scholar 

  64. M. Hong, J.N. Bailargeon, J. Kwo, J.P. Mannaerts, and A.Y. Cho, in Proceeding of IEEE 27th International Symposium on Compound Semiconductors, pp. 345–350, (2000).

    Google Scholar 

  65. Y.C. Wang, M. Hong, J.M. Kuo, J.P. Mannaerts, H.S. Tsai, J. Kwo, J. J. Krajewski, Y. K. Chen, and A. Y. Cho, Electron. Lett., 35, 667 (1999).

    Google Scholar 

  66. B. Yang, P.D. Ye, J. Kwo, M.R. Frei, H.J.L. Gossmann, J.P. Mannaerts, M. Sergent, M. Hong, and K.N.J. Bude, J. Cryst. Growth., 251, 837 (2003).

    Google Scholar 

  67. T.D. Lin, H.C. Chiu, P. Chang, L.T. Tung, C.P. Chen, M. Hong, J. Kwo, W. Tsai, and Y.C. Wang, Appl. Phys. Lett., 93, 033516 (2008).

    Google Scholar 

  68. M. Passlack, N. Medendorp, R. Gregory, and D. Braddock, Appl. Phys. Lett., 83, 5262 (2003).

    Google Scholar 

  69. K. Rajagopalan, J. Abrokwah, R. Droopad, and M. Passlack, IEEE Electron Device Lett., 27, 959 (2006).

    Google Scholar 

  70. R.J.W. Hill, D.A.J. Moran, X. Li, H. Zhou, D. Macintyre, S. Thoms, A. Asenov, P. Zurcher, K. Rajagopalan, J. Abrokwah, R. Droopad, M. Passlack, and L.G. Thayne, IEEE Electron Device Lett., 28, 1080 (2007).

    Google Scholar 

  71. M.J. Hale, S.I. Yi, J.Z. Sexton, A.C. Kummel, and M. Passlack, J. Chem. Phys., 119, 6719 (2003).

    Google Scholar 

  72. P.D. Ye, G.D. Wilk, J. Kwo, B. Yang, H.-J.L. Gossmann, M. Frei, S.N.G. Chu, J.P. Mannaerts, M. Sergent, M. Hong, K.K. Ng, and J. Bude, IEEE Electron Device Lett., 24, 209 (2003).

    Google Scholar 

  73. P.D. Ye, G.D. Wilk, B. Yang, J. Kwo, S.N.G. Chu, S. Nakahara, H.-J.L. Gossmann, J.P. Mannaerts, M. Hong, K.K. Ng, and J. Bude, Appl. Phys. Lett., 83, 180 (2003).

    Google Scholar 

  74. P.D. Ye, G.D. Wilk, B. Yang, J. Kwo, H.-J.L. Gossmann, M. Hong, K.K. Ng, and J. Bude, Appl. Phys. Lett., 84, 434 (2004).

    Google Scholar 

  75. P. D. Ye, G.D. Wilk, B. Yang, S.N.G. Chu, K.K. Ng, and J. Bude, Solid-State Electron., 49, 790 (2005).

    Google Scholar 

  76. P.D. Ye, B. Yang, K.K. Ng, J. Bude, G.D. Wilk, S. Halder, and J.C.M. Hwang, Appl.Phys. Lett., 86, 063501 (2005).

    Google Scholar 

  77. Y. Xuan, H.C. Lin, P.D. Ye, and G.D. Wilk, Appl. Phys. Lett., 89, 132103 (2006).

    Google Scholar 

  78. Y. Xuan, H.C. Lin, and P.D. Ye, ECS Transactions, 3, 59 (2006).

    Google Scholar 

  79. Y. Xuan, H.C. Lin, and P.D. Ye, IEEE Trans. Electron Devices, 54, 1811 (2007).

    Google Scholar 

  80. Y.Q. Wu, T. Shen, P.D. Ye, and G.D. Wilk, Appl. Phys. Lett., 90, 143504 (2007).

    Google Scholar 

  81. T. Yang, Y. Xuan, D. Zemlyanov, T. Shen, Y.Q. Wu, J.M. Woodall, P.D. Ye, F.S. Aguirre-Tostado, M. Milojevic, S. McDonnell, and R.M. Wallace, Appl. Phys. Lett., 91, 142122 (2007).

    Google Scholar 

  82. T. Yang, Y. Liu, P.D. Ye, Y. Xuan, H. Pal, and M.S. Lundstrom, Appl. Phys. Lett., 92, 252105 (2008).

    Google Scholar 

  83. M.M. Frank, G.D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y.J. Chabal, J. Grazul, and D.A. Muller, Appl. Phys. Lett., 86, 152904 (2005).

    Google Scholar 

  84. M.L. Huang, Y.C. Chang, C.H. Chang, Y.J. Lee and P. Chang, J. Kwo, T.B. Wu, and M. Hong, Appl. Phys. Lett., 87, 252104 (2005).

    Google Scholar 

  85. C.H. Chang, Y.K. Chiou, Y.C. Chang, K.Y. Lee, T.D. Lin, T.B. Wu, M. Hong, and J. Kwo, Appl. Phys. Lett., 89, 242911 (2006).

    Google Scholar 

  86. C.L. Hinkle, A.M. Sonnet, E.M. Vogel, S. McDonnell, G.J. Hughes, M. Milojevic, B. Lee, F.S. Aguirre-Tostado, K.J. Choi, H.C. Kim, J. Kim, and R.M. Wallace, Appl. Phys. Lett., 92, 071901 (2008).

    Google Scholar 

  87. Y. Xuan, Y.Q. Wu, H.C. Lin, T. Shen, and P.D. Ye, in Proceeding of 65th Device Research Conference, Notre Dame, USA, 2007.

    Google Scholar 

  88. Y. Xuan, Y.Q. Wu, H.C. Lin, T. Shen, and P.D. Ye, IEEE Electron Devices Lett., 28, 935 (2007).

    Google Scholar 

  89. Y. Xuan, Y.Q. Wu, T. Shen, T. Yang, and P.D. Ye, in IEDM Tech. Dig., Dec. 2007, pp. 637–640.

    Google Scholar 

  90. Y. Xuan, Y.Q. Wu, and P.D. Ye, IEEE Electron Device Lett., 29, 294 (2008).

    Google Scholar 

  91. Y. Xuan, T. Shen, M. Xu, Y.Q. Wu, and P.D. Ye, in IEDM Tech. Dig., Dec. 2008, pp. 371–374.

    Google Scholar 

  92. Y.Q. Wu, W.K. Wang, O. Koybasi, D.N. Zakharov, E.A. Stach, S. Nakahara, J.C.M. Hwang, and P.D. Ye, IEEE Electron Device Lett., 30, 700 (2009).

    Google Scholar 

  93. Y.Q. Wu, M. Xu, R. Wang, O. Koybasi, and P.D. Ye, in IEDM Tech. Dig., Dec. 2009, to be published.

    Google Scholar 

  94. Y.Q. Wu, R. Wang, T. Shen, J.J. Gu, and P.D. Ye, in IEDM Tech. Dig., Dec. 2009, to be published.

    Google Scholar 

  95. M. Zhu, C. H. Tung, and Y. C. Yeo, Appl. Phys. Lett., 89, 202903 (2006).

    Google Scholar 

  96. H.L. Lu, L. Sun, S.J. Ding, M. Xu, D.W. Zhang, and L.K. Wang, Appl. Phys. Lett., 89, 152910 (2006).

    Google Scholar 

  97. G.K. Dalapati, Y. Tong, W.Y. Loh, H.K. Mun, and B.J. Cho, IEEE Trans. Electron Devices, 54, 1831 (2007).

    Google Scholar 

  98. D. Shahrjerdi, E. Tutuc, and S. Banerjee, Appl. Phys. Lett., 91, 063501 (2007).

    Google Scholar 

  99. A.M. Sonnet, C.L. Hinkle, M.N. Jivani, R.A. Chapman, G.P. Pollack, R.M. Wallace, and E.M. Vogel, Appl. Phys. Lett., 93, 122109 (2008).

    Google Scholar 

  100. U. Singisetti, M.A. Wistey, G.J. Burek, A.K. Baraskar, J. Cagnon, B.J. Thibeault, S. Stemmer, A.C. Gossard, M.J.W. Rodwell, E. Kim, B. Shin, P.C. McIntyre, and Y.J. Lee, in Proceeding of IEEE 67th Devcie Research Conference, 2009, pp. 253–354.

    Google Scholar 

  101. R. Chau, S. Datta, and A. Majumdar, in Proc. IEEE CSIC Dig., 2005, pp. 17–20.

    Google Scholar 

  102. S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin, T.J. Phillips, D. Wallis, P. Wilding, and R. Chau, in IEDM Tech. Dig., 2005, pp. 783–786.

    Google Scholar 

  103. M. Radosvljevic, T. Ashley, A. Andreev, S.D. Coomber, G. Dewey, M.T. Emeny, M. Fearn, D.G. Hayes, K.P. Hilton, M.K. Hudait, R. Jefferies, T. Martin, R. Pillarisetty, W. Rachmady, T. Rakshit, S.J. Smith, M.J. Uren, D.J. Wallis, P.J. Wilding, and R. Chau, in IEDM Tech. Dig., pp. 727–730, Dec. 2008.

    Google Scholar 

  104. D. H. Kim, J. A. del Alamo, J. H. Lee, and K. S. Seo, IEEE Trans. Electron Devices, 54, 2606 (2007).

    Google Scholar 

  105. D. H. Kim, and J. A. del Alamo, IEEE Electron Device Lett., 29, 830 (2008).

    Google Scholar 

  106. G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys., 89, 5243 (2001).

    Google Scholar 

  107. D.D. Nolte, Solid-State Electron., 33, 295 (1990).

    Google Scholar 

  108. H. Hasegawa and M. Akazawa, Appl. Surf. Sci., 254, 8005 (2008).

    Google Scholar 

  109. J. Robertson and B. Falabretti, J. Appl. Phys., 100, 014111 (2006).

    Google Scholar 

  110. A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E.K. Evangelou, Appl. Phys. Lett., 89, 252110 (2006).

    Google Scholar 

  111. W.E. Spicer, P.W. Chye, P.R. Skeath, C.Y. Su, and I. Lindau, J. Vac. Sci. Tech., 16, 1422 (1979).

    Google Scholar 

  112. D. Varghese, Y. Xuan, Y.Q. Wu, T. Shen, P.D. Ye, and M.A. Alam, in IEDM Tech. Dig., 2008, pp. 379–382.

    Google Scholar 

  113. M.V. Fischetti and S.E. Laux, IEEE Trans. Electron Devices, 38, 650 (1991).

    Google Scholar 

  114. D. L. Lile and M.J. Taylor, J. Appl. Phys., 54, 260 (1983).

    Google Scholar 

  115. D. L. Lile, Solid-State Electron., 21, 1199 (1978).

    Google Scholar 

  116. D. L. Lile, D. A. Collins, L. G. Meiners, and L. Messick, Electronics Lett., 14, 657 (1978).

    Google Scholar 

  117. T. Kawakami and M. Okamura, Electronics Lett., 15, 502 (1979).

    Google Scholar 

  118. Y. Shinoda and T. Kobayashi, Solid State Electron., 25, 1119 (1982).

    Google Scholar 

  119. W.F. Tseng, M.L. Bark, H.B. Dietrich, A. Christou, R.L. Henry, W.A. Schmidt, and N.S. Saks, IEEE Electron Device Lett., 2, 299 (1981).

    Google Scholar 

  120. Y.Q. Wu, Y. Xuan, T. Shen, P.D. Ye, Z. Cheng, and A. Lochtefeld, Appl. Phys. Lett., 91, 022108 (2007).

    Google Scholar 

  121. S. Oktyabrsky, V. Tokranov, S. Koveshnikov, M. Yakimov, R. Kambhampati, H. Bakhru, R. Moore, and W. Tsai, J. Cryst. Growth., 311, 1950 (2009).

    Google Scholar 

  122. N. Goel, D. Heh, S. Koveshnikov, I. Ok, S. Oktyabrsky, V. Tokranov, R. Kambhampati, M. Yakimov, Y. Sun, P. Pianetta, C.K. Gaspe, M.B. Santos, J. Lee, S. Datta, P. Majhi, and W. Tsai, in IEDM Tech. Dig., pp. 363–366 (2008).

    Google Scholar 

  123. P.S. Dutta, H.L. Bhat, and V. Kumar, J. Appl. Phys., 81, 5821 (1997).

    Google Scholar 

  124. N. Li, E.S. Harmon, J. Hyland, D.B. Salzman, T.P. Ma, Y. Xuan, and P.D. Ye, Appl. Phys. Lett., 92, 143507 (2008).

    Google Scholar 

  125. T. Yang, Y. Xuan, P.D. Ye, W. Wang, J.C.M. Hwang, D. Lubyshev, J.M. Fastenau, W.K. Liu, T.D. Mishima, and M.B. Santos, in Proceeding of TMS 2007 Electronic Materials Conferences, Notre Dame, USA, 2007.

    Google Scholar 

  126. Y.Q. Wu, T. Shen, P.D. Ye, and G.D. Wilk, Appl. Phys. Lett., 90, 143504 (2007).

    Google Scholar 

  127. Y.C. Chang, W.H. Chang, H.C. Chiu, L.T. Tung, C.H. Lee, K.H. Shiu, M. Hong, J. Kwo, J.M. Hong, and C.C. Tsai, Appl. Phy. Lett., 93, 053504 (2008).

    Google Scholar 

  128. W. Huang, T. Khan, and T.P. Chow, IEEE Electron Devices Lett., 27, 796 (2006).

    Google Scholar 

Download references

Acknowledgments

The authors would thank National Science Foundation, SRC FCRP MSD Focus Center, Army Research Office, and SRC CSR Program for supporting this work. The contributions from T. Shen, O. Koybasi, R. Wang, and H.C. Lin are greatly appreciated. The authors would like also to thank H. Hasegawa, J. Robertson, R.M. Wallace, G.D. Wilk, M. Hong, K.K. Ng, B. Yang, M.M. Frank, J. del Alamo, D.A. Antoniadis, A. Kummel, S. Oktyabrsky, M.S. Lundstrom, J.M. Woodall, M.A. Alam, and J.C.M. Hwang for the valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peide D. Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ye, P., Xuan, Y., Wu, Y., Xu, M. (2010). Atomic-Layer Deposited High-k/III-V Metal-Oxide-Semiconductor Devices and Correlated Empirical Model. In: Oktyabrsky, S., Ye, P. (eds) Fundamentals of III-V Semiconductor MOSFETs. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1547-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1547-4_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1546-7

  • Online ISBN: 978-1-4419-1547-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics