Skip to main content

Density Functional Theory Simulations of High-k Oxides on III-V Semiconductors

  • Chapter
  • First Online:

Abstract

A comprehensive overview of density functional theory simulations of high-k oxide/III-V semiconductor interfaces is presented. The methodologies of realistic amorphous high-k oxide generation by hybrid classical-DFT molecular dynamics are compared. The simulation techniques, oxide/semiconductor model designs and rules for formation of unpinned high-k oxide/semiconductor interfaces are discussed. The density-functional theory molecular dynamics simulations of a-Al2O3/InGaAs and a-Al2O3/InAlAs/InGaAs stacks are presented and analyzed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Schulz, Nature (London) 399, 729 (1999).

    Google Scholar 

  2. D. Muller, T. Sorsch, S. Moccio, F. Baumann, K. Evans-Lutterodt, G. Timp, Nature 399, 758 (1999).

    Google Scholar 

  3. P.W. Peacock and J. Robertson, J. Appl. Phys. 92, 4712 (2002).

    Article  Google Scholar 

  4. R. Puthenkovilakam, E. Carter, J.P. Chang, Phys. Rev. B 69, 155329 (2004).

    Article  Google Scholar 

  5. A. Kawamoto, K.J. Cho, R. Dutton, J. Comput. Aided Mater. Des. 8, 39 (2002).

    Article  Google Scholar 

  6. K.-Y. Tse and J. Robertson, J. Appl. Phys. 100, 093713 (2006).

    Article  Google Scholar 

  7. P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964).

    Article  MathSciNet  Google Scholar 

  8. W. Kohn and L.J. Sham, Phys. Rev. 140, 1133 (1965).

    Article  MathSciNet  Google Scholar 

  9. R.M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, 2004).

    Google Scholar 

  10. G. Lucovsky and J.C. Phillips, Thin Solid Films 486, 200 (2005).

    Article  Google Scholar 

  11. P. Broqvist and A. Pasquarello, Microelectronics Eng. 84, 2022 (2007); A.S. Foster, F.L. Gejo, A.L. Shluger, R.M. Nieminen, Phys. Rev. B 65, 174117 (2002).

    Google Scholar 

  12. M. Houssa, G. Pourtois, M.M. Heyns, A. Stesmans, J. Phys. Condens. Matter 17, S2075 (2005).

    Google Scholar 

  13. P.W. Peacock and J. Robertson, Phys. Rev. Lett. 92, 057601 (2004).

    Article  Google Scholar 

  14. J. Robertson and P.W. Peacock, Physica Status Solidi (b) 241, 2236 (2004).

    Google Scholar 

  15. K. Xiong, P.W. Peacock, J. Robertson, Appl. Phys. Lett. 86, 012904 (2005).

    Article  Google Scholar 

  16. P.W. Peacock, K. Xiong, K. Tse, J. Robertson, Phys. Rev. B 73, 075328 (2006).

    Article  Google Scholar 

  17. J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000).

    Article  Google Scholar 

  18. Y.F. Dong, Y.P. Feng, S.J. Wang, A.C.H. Huan, Phys. Rev. B 72, 045327 (2005).

    Article  Google Scholar 

  19. V. Fiorentini and G. Gulleri, Phys. Rev. Lett. 89, 266101 (2002).

    Article  Google Scholar 

  20. X. Zhang, A.A. Demkov, H. Li, X. Hu, Y. Wei, J. Kulik, Phys. Rev. B 68, 125323 (2003).

    Article  Google Scholar 

  21. F. Sacconi, J.M. Jancu, M. Povolotskyi, A.D. Carlo, IEEE Trans. Electron Devices 54, 3168 (2007).

    Article  Google Scholar 

  22. C.J. Forst, P.E. Blochl, K. Schwarz, Comput. Mater. Sci. 27, 70 (2003).

    Article  Google Scholar 

  23. S. Monaghan, J.C. Greer, S.D. Elliott, Phys. Rev. B 75, 245304 (2007).

    Article  Google Scholar 

  24. M.H. Hakala, A.S. Foster, J.L. Gavartin, P. Havu, M.J. Puska, R.M. Nieminen, J. Appl. Phys. 100, 043708 (2006).

    Google Scholar 

  25. F. Giustino, P. Umari, A. Pasquarello, Microelectronics Eng. 72, 299 (2004).

    Article  Google Scholar 

  26. J.L. Gavartin and A.L. Shluger, Microelectronics Eng. 84, 2412 (2007).

    Article  Google Scholar 

  27. J.-H. Ha, P.C. McIntyre, K.J. Cho, J. Appl. Phys. 101, 033706 (2007).

    Google Scholar 

  28. G. Giorgi, A. Korkin, K. Yamashita, Comput. Mater. Sci. 43, 930 (2008).

    Article  Google Scholar 

  29. A.A. Knizhnik, A.A. Bagaturyants, I.V. Belov, B.V. Potapkin, A.A. Korkin, Comput. Mater. Sci. 24, 128 (2002).

    Article  Google Scholar 

  30. C.J. Forst, C.R. Ashman, K. Schwarz, P.E. Blochl, Microelectronics Eng. 80, 402 (2005).

    Article  Google Scholar 

  31. A. Alkauskas, P. Broqvist, F. Devynck, A. Pasquarello, Phys. Rev. Lett. 101, 106802 (2008).

    Article  Google Scholar 

  32. P. Broqvist, A. Alkauskas, J. Godet, A. Pasquarello, J. Appl. Phys. 105, 061603 (2009).

    Google Scholar 

  33. P. Broqvist, A. Alkauskas, A. Pasquarello, Appl. Phys. Lett. 92, 132911 (2008).

    Article  Google Scholar 

  34. N. Capron, P. Broqvist, A. Pasquarello, Appl. Phys. Lett. 91, 192905 (2007).

    Article  Google Scholar 

  35. A. Alkauskas, P. Broqvist, A. Pasquarello, Phys. Rev. Lett. 101, 046405 (2008).

    Article  Google Scholar 

  36. E. Chagarov and A.C. Kummel, Surf. Sci. 602, L74 (2008).

    Article  Google Scholar 

  37. E. Chagarov and A.C. Kummel, J. Chem. Phys. 130, 124717 (2009).

    Google Scholar 

  38. E. Chagarov and A.C. Kummel, ECS Trans. 16(10), 773 (2008).

    Article  Google Scholar 

  39. W. Young and E. Elcock, Proceedings of the Physical Society of London 89 (565P), 735 (1966).

    Google Scholar 

  40. D.R. Cox and H.D. Miller, The Theory of Stochastic Processes (Methuen, London, 1965).

    MATH  Google Scholar 

  41. A. Bortz, M. Kalos, J. Lebowitz, J. Comput. Phys. 17(1), 10 (1975).

    Google Scholar 

  42. Y. Liang, J. Kulik, Y. Wei, T. Eschrish, J. Curless, B. Craigo, S. Smith, Presented at the MRS Symposium Proceedings, (2004).

    Google Scholar 

  43. S. Pasko, A. Abrutis, L. Hubert-Pfalzgraf, Mater. Lett. 59(2, 3), 261 (2005).

    Article  Google Scholar 

  44. Y. Zhou, N. Kojima, K. Sasaki, J. Phys. D Appl. Phys. 41(17), 175414 (2008).

    Article  Google Scholar 

  45. R. Puthenkovilakam and J.P. Chang, J. Appl. Phys. 96, 2701 (2004).

    Article  Google Scholar 

  46. L. Fonseca, A. Demkov, A. Knizhnik, Physica Status Solidi B 239, 48 (2003).

    Article  Google Scholar 

  47. P. Peacock and J. Robertson, Appl. Phys. Lett. 83, 5497 (2003).

    Article  Google Scholar 

  48. C. Forst, C. Ashman, K. Schwarz, P. Blochl, Nature 427, 53 (2004).

    Article  Google Scholar 

  49. E.A. Chagarov and A.C Kummel, Surf. Sci. 603, 3191 (2009).

    Google Scholar 

  50. E.A. Chagarov and A.C. Kummel, Surf. Sci. (submitted).

    Google Scholar 

  51. K.-O. Ng and D. Vanderbilt, Phys. Rev. B 59, 10132 (1999).

    Article  Google Scholar 

  52. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6(1), 15 (1996).

    Article  Google Scholar 

  53. G. Kresse and J. Furthmuller, Phys. Rev. B 54(16), 11169 (1996).

    Article  Google Scholar 

  54. J. Neugebauer and M. Scheffler, Phys. Rev. B 46(24), 16067 (1992).

    Article  Google Scholar 

  55. A.A. Demkov and A. Navrotsky (editors), Materials Fundamentals of Gate Dielectrics (Springer, New York, 2004), p. 77.

    Google Scholar 

  56. K. Xiong, J. Robertson, M.C. Gibson, S.J. Clark, Appl. Phys. Lett. 87, 183505 (2005).

    Article  Google Scholar 

  57. J.T. Ryan, P.M. Lenahan, J. Robertson, G. Bersuker, Appl. Phys. Lett. 92, 123506 (2008).

    Article  Google Scholar 

  58. K. Xiong, Y. Du, K. Tse, J. Robertson, J. Appl. Phys. 101, 024101 (2007).

    Article  Google Scholar 

  59. K. Tse and J. Robertson, Microelectronics Eng. 84, 663 (2007).

    Article  Google Scholar 

  60. J. Robertson, O. Sharia, A.A. Demkov, Appl. Phys. Lett. 91, 132912 (2007).

    Article  Google Scholar 

  61. J. Robertson, K. Xiong, S.J. Clark, Thin Solid Films 496, 1 (2006).

    Article  Google Scholar 

  62. K. Tse and J. Robertson, Appl. Phys. Lett. 89, 142914 (2006).

    Article  Google Scholar 

  63. K. Xiong, J. Robertson, S.J. Clark, Physica Status Solidi B 243, 2071 (2006).

    Article  Google Scholar 

  64. J. Robertson, K. Xiong, B. Falabretti, IEEE Trans. Device Mater. Reliab. 5, 84 (2005).

    Article  Google Scholar 

  65. P.W. Peacock and J. Robertson, Appl. Phys. Lett. 83, 2025 (2003).

    Article  Google Scholar 

  66. J. Robertson, J. Appl. Phys. 93, 1054 (2003).

    Article  Google Scholar 

  67. G. Gutierrez and B. Johansson, Phys. Rev. B 65, 104202 (2002).

    Article  Google Scholar 

  68. H. Momida, T. Hamada, Y. Takagi, T. Yamamoto, T. Uda, T. Ohno, Phys. Rev. B 73, 054108 (2006).

    Article  Google Scholar 

  69. S. Miyazaki, J. Vac. Sci. Technol. B 19, 2212 (2001).

    Article  Google Scholar 

  70. A.M. Goodman, J. Appl. Phys. 41, 2176 (1970).

    Article  Google Scholar 

  71. R.P. Feynman, Phys. Rev. 56, 340 (1939).

    Article  MATH  Google Scholar 

  72. C.G. Broyden, J. Inst. Math. Appl. 6, 76–90 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  73. R. Fletcher, Comput. J. 13, 317–322 (1970).

    Google Scholar 

  74. P. Pulay, Molec. Phys. 19, 197 (1969).

    Article  Google Scholar 

  75. G.P. Francis and M.C. Payne, J. Phys. Condens. Matter 2, 4395 (1989).

    Google Scholar 

  76. L. Verlet, Phys. Rev. 159, 98 (1967).

    Article  Google Scholar 

  77. L. Verlet, Phys. Rev. 165, 201 (1967).

    Article  Google Scholar 

  78. M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids (Oxford, 1987).

    Google Scholar 

  79. J.M. Haile, Molecular Dynamics Simulation (Wiley, 1992).

    Google Scholar 

  80. D.C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge Univ. Press, 1995).

    Google Scholar 

  81. M. Tuckerman, B. Berne, A. Rossi, J. Chem. Phys. 94, 1465 (1990).

    Article  Google Scholar 

  82. S. Stuart, R. Zhou, B. Berne, J. Chem. Phys. 105, 1426 (1996).

    Article  Google Scholar 

  83. P. Procacci and M. Marchi, J. Chem. Phys. 104, 3003 (1996).

    Article  Google Scholar 

  84. D.A. Muller and G.D. Wilk, Appl. Phys. Lett. 79, 4195 (2001).

    Article  Google Scholar 

  85. C.M. Perkins, B.B. Triplett, P.C. McIntyre, K.C. Saraswat, S. Haukka, M. Tuominen, Appl. Phys. Lett. 78, 2357 (2001).

    Article  Google Scholar 

  86. N. Tit and M.W.C. Dharma-Wardana, J. Appl. Phys. 86, 387 (1999).

    Article  Google Scholar 

  87. A. Pasquarello, M.S. Hybertsen, R. Car, Phys. Rev. B 53, 10942 (1996).

    Article  Google Scholar 

  88. A. Pasquarello, M.S. Hybertsen, R. Car, Appl. Surf. Sci. 104, 317 (1996).

    Article  Google Scholar 

  89. P. Umari and A. Pasquarello, Phys. Rev. Lett. 89, 157602 (2002).

    Article  Google Scholar 

  90. J.M. Knaup, P. Deak, T. Frauenheim, A. Gali, Z. Hajnal, W.J. Choyke, Phys. Rev. B 72, 115323 (2005).

    Article  Google Scholar 

  91. J.L. Gavartin, D. Muñoz Ramo, A.L. Schluger, G. Bersuker, B.H. Lee, Appl. Phys. Lett. 89, 082908 (2006).

    Article  Google Scholar 

  92. S. Ismail-Beigi and S.G. Louie, Phys. Rev. Lett. 95, 156401 (2005).

    Article  Google Scholar 

  93. M. Hedstrom, A. Schindlmayr, G. Schwarz, M. Scheffler, Phys. Rev. Lett. 97, 226401 (2006).

    Article  Google Scholar 

  94. C.G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004).

    Article  Google Scholar 

  95. W.L. Scopel, A.J.R. da Silva, W. Orellana, A. Fazzio, Appl. Phys. Lett. 84, 1492 (2004).

    Article  Google Scholar 

  96. M. Copel and M.C. Reuter, Appl. Phys. Lett. 83, 3398 (2003).

    Article  Google Scholar 

  97. S.J. Wang, P.C. Lim, A.C.H. Huan, C.L. Liu, J.W. Chai, S.Y. Chow, J.S. Pan, Q. Li, C.K. Ong, Appl. Phys. Lett. 82, 2047 (2003).

    Article  Google Scholar 

  98. G. Bersuker, J. Barnett, N. Moumen, B. Foran, C.D. Young, P. Lysaght, J. Peterson, B.H. Lee, P.M. Zeitzoff, H.R. Huff, Jpn. J. Appl. Phys. Part 1 43, 7899 (2004).

    Article  Google Scholar 

  99. D.Y. Cho, S.J. Oh, Y.J. Chang, T.W. Noh, R. Jung, J.C. Lee, Appl. Phys. Lett. 88, 193502 (2006).

    Article  Google Scholar 

  100. B. Kralik, E.K. Chang, S.G. Louie, Phys. Rev. B 57, 7027 (1998).

    Article  Google Scholar 

  101. R.Q. Wu, M. Yang, Y.P. Feng, Y.F. Ouyang, Appl. Phys. Lett. 93, 082107 (2008).

    Article  Google Scholar 

  102. P.J.H. Denteneer, C.G. Van de Walle, S.T. Pantelides, Phys. Rev. Lett. 62, 1884 (1989).

    Article  Google Scholar 

  103. C.G. Van de Walle, P.J.H. Denteneer, Y. Bar-Yam, S.T. Pantelides, Phys. Rev. B 39, 10791 (1989).

    Article  Google Scholar 

  104. C.S. Nichols, D.R. Clarke, C.G. Van de Walle, Phys. Rev. Lett. 63, 1090 (1989).

    Article  Google Scholar 

  105. P.E. Blöchl, C.G. Van de Walle, S.T. Pantelides, Phys. Rev. Lett. 64, 1401 (1990).

    Article  Google Scholar 

  106. C.G. Van de Walle, Physica B 170, 21 (1991).

    Article  Google Scholar 

  107. C.G. Van de Walle and R.A. Street, Phys. Rev. B 49, 14 766 (1994) (RC).

    Article  Google Scholar 

  108. C.G. Van de Walle and R.A. Street, Phys. Rev. B 51, 10 615 (1995).

    Google Scholar 

  109. N.H. Nickel, N.M. Johnson, C.G. Van de Walle, Phys. Rev. Lett. 72, 3393 (1994).

    Article  Google Scholar 

  110. C.G. Van de Walle and N.H. Nickel, Phys. Rev. B 51, 2636 (1995) (RC).

    Article  Google Scholar 

  111. J. Neugebauer and C.G. Van de Walle, Phys. Rev. Lett. 75, 4452 (1995).

    Article  Google Scholar 

  112. C.G. Van de Walle and J. Neugebauer, Phys. Rev. B 52, R14 320 (1995) (RC).

    Google Scholar 

  113. J. Neugebauer and C.G. Van de Walle, Appl. Phys. Lett. 68, 1829 (1996).

    Article  Google Scholar 

  114. C.G. Van de Walle, Phys. Rev. B 56, R10 020 (1997).

    Google Scholar 

  115. C.G. Van de Walle, J. Non Cryst. Solids 227–230, 111 (1998).

    Google Scholar 

  116. C.G. Van de Walle, Phys. Rev. Lett. 80, 2177 (1998).

    Article  Google Scholar 

  117. C.G. Van de Walle, C. Stampfl, J. Neugebauer, J. Cryst. Growth 189/190, 505 (1998).

    Article  Google Scholar 

  118. C.G. Van de Walle, J. Vac. Sci. Technol. A 16, 1767 (1998).

    Article  Google Scholar 

  119. B. Tuttle, C.G. Van de Walle, J.B. Adams, Phys. Rev. B 59, 5493 (1999).

    Article  Google Scholar 

  120. C.G. Van de Walle and J. Goss, Mater. Sci. Eng. B 58, 17 (1999).

    Article  Google Scholar 

  121. B. Tuttle and C.G. Van de Walle, Phys. Rev. B. 59, 12884 (1999).

    Article  Google Scholar 

  122. C.G. Van de Walle and B. Tuttle, IEEE Trans. Electron Devices 47, 1779 (2000).

    Article  Google Scholar 

  123. C. Herring, N.M. Johnson, C.G. Van de Walle, Phys. Rev. B 64, 125209 (2001).

    Article  Google Scholar 

  124. C.G. Van de Walle and J. Neugebauer, Phys. Rev. Lett. 88, 066103 (2002).

    Article  Google Scholar 

  125. S. Limpijumnong and C.G. Van de Walle, Physica Status Solidi B 228, 303 (2001).

    Article  Google Scholar 

  126. C.G. Van de Walle, Physica Status Solidi B 235, 89 (2003).

    Article  Google Scholar 

  127. B. Szûcs, A. Gali, Z. Hajnal, P. Deák, C.G. Van de Walle, Phys. Rev. B 68, 085202 (2003).

    Article  Google Scholar 

  128. C.G. Van de Walle and J. Neugebauer, Nature 423, 626 (2003).

    Google Scholar 

  129. C.G. Van de Walle, J. Vac. Sci. Technol. A 21, S182 (2003).

    Article  Google Scholar 

  130. C.G. Van de Walle, Physica B 376–377, 1 (2006).

    Google Scholar 

  131. J. Weber, A. Janotti, P. Rinke, C.G. Van de Walle, Appl. Phys. Lett. 91, 142101 (2007).

    Google Scholar 

  132. C.G. Van de Walle, J. Alloys Compd. 446–448, 48 (2007).

    Google Scholar 

  133. G. Gutierrez and B. Johansson, Phys. Rev. B 65, 104202 (2002).

    Article  Google Scholar 

  134. S.P. Adiga, P. Zapol, L.A. Curtiss, Phys. Rev. B 74, 064204 (2006).

    Article  Google Scholar 

  135. H. Momida, T. Hamada, Y. Takagi, T. Yamamoto, T. Uda, Phys. Rev. B 73, 054108 (2006).

    Article  Google Scholar 

  136. V.V. Hoang, Phys. Rev. B 70, 134204 (2004).

    Article  Google Scholar 

  137. V.V. Hoang and N.H. Hung, Physica Status Solidi B 243, 416 (2006).

    Article  Google Scholar 

  138. V.V. Hoang and S.K. Oh, Phys. Rev. B 72, 054209 (2005).

    Article  Google Scholar 

  139. X. Zhao, D. Ceresoli, D. Vanderbilt, Phys. Rev. B 71, 085107 (2005).

    Article  Google Scholar 

  140. D. Vanderbilt, X. Zhao, D. Ceresoli, Thin Solid Films 486, 125 (2005).

    Article  Google Scholar 

  141. D. Ceresoli and D. Vanderbilt, Phys. Rev. B 74, 125108 (2006).

    Article  Google Scholar 

  142. J. Sarnthein, A. Pasquarello, R. Car, Phys. Rev. Lett. 74, 4682 (1995).

    Article  Google Scholar 

  143. P. Broqvist and A. Pasquarello, Appl. Phys. Lett. 90, 082907 (2007).

    Article  Google Scholar 

  144. J. Godet, P. Broqvist, A. Pasquarello, Appl. Phys. Lett. 91, 262901 (2007).

    Article  Google Scholar 

  145. E. Chagarov, J.B. Adams, J. Kieffer, Model. Simul. Mater. Sci. Eng. 12, 337 (2004).

    Article  Google Scholar 

  146. I.N. Remediakis and E. Kaxiras, Phys. Rev. B 59, 5536 (1999).

    Article  Google Scholar 

  147. S. Li and C. Ouyang, Phys. Lett. A 336, 145 (2005).

    Article  Google Scholar 

  148. A.H. Reshak, Eur. Phys. J. B 47, 503 (2005).

    Article  Google Scholar 

  149. D.C. Gupta and S. Kulshrestha, J. Phys. Condens. Matter 20, 255204 (2008).

    Article  Google Scholar 

  150. Q.Y. Chen, M. Xu, H.P. Zhou, M.Y. Duan, W.J. Zhu, H.L. He, Physica B 403, 1666 (2008).

    Google Scholar 

  151. A. Palma, E. Semprini, A. Talamo, N. Tomassini, J. Cryst. Growth 150, 180 (1995).

    Article  Google Scholar 

  152. K. Seino, A. Ishii, T. Aisaka, Prog. Theor. Phys. Suppl. 138, 164 (2000).

    Article  Google Scholar 

  153. K. Seino, A. Ishii, T. Kawamura, Jpn. J. Appl. Phys. 39, 4285 (2000).

    Article  Google Scholar 

  154. P. Kratzer, E. Penev, M. Scheffler, Appl. Phys. A 75, 79 (2002).

    Article  Google Scholar 

  155. A. Ishii, K. Fujiwara, T. Aisaka, Appl. Surf. Sci. 216, 478 (2003).

    Article  Google Scholar 

  156. P. Kratzer, C.G. Morgan, M. Scheffler, Prog. Surf. Sci. 59, 135 (1998).

    Article  Google Scholar 

  157. P. Kratzer, E. Penev, M. Scheffler, Appl. Surf. Sci. 216, 436 (2003).

    Article  Google Scholar 

  158. P. Kempisty and S. Krukowski, J. Cryst. Growth 303, 37 (2007).

    Article  Google Scholar 

  159. G-X Qian, R.M. Martin, D.J. Chadi, J. Vac. Sci. Technol. B 5, 933 (1987).

    Article  Google Scholar 

  160. J. Northrup and C.G.V. der Walle, Appl. Phys. Lett. 84, 4322 (2004).

    Article  Google Scholar 

  161. S. Wang, Y. Song, X. Zhao, J. Li, J. Liu, Y. Jia, Mod. Phys. Lett. B 20, 1275 (2006).

    Article  Google Scholar 

  162. B. Szucs, Z. Hajnal, Th. Frauenheim, C. Gonzalez, J. Ortega, R. Perez, F. Flores, Appl. Surf. Sci. 212, 861 (2003).

    Article  Google Scholar 

  163. A.L. Rosa and J. Neugebauer, Phys. Rev. B 73, 205346 (2006).

    Article  Google Scholar 

  164. A. Gulans, R.A. Evarestov, I. Tale, C.C. Yang, Physica Status Solidi C 2, 507 (2005).

    Article  Google Scholar 

  165. A. Janotti, S.B. Zhang, S.-H. Wei, C.G. Van de Walle, Opt. Mater. 25, 261 (2004).

    Article  Google Scholar 

  166. H. Williams, W.A. Hofer, E. Cavar, A. Mikkelsen, E. Lungren, Phys. Rev. B 78, 205309 (2008).

    Article  Google Scholar 

  167. R.G. Dandrea and C.B. Duke, J. Vac. Sci. Technol. A 11, 848 (1993).

    Article  Google Scholar 

  168. A. Kley and J. Neugebauer, Phys. Rev. B 50, 8616 (1994).

    Article  Google Scholar 

  169. S.-F. Ren and J. Shen, J. Appl. Phys. 81, 1169 (1996).

    Article  Google Scholar 

  170. C.-F. Shih, N.-C. Chen, P.-H. Chang, K.-S. Liu, Jpn. J. Appl. Phys. 44, 7892 (2005).

    Article  Google Scholar 

  171. R. Choudhury, D.R. Bowler, M.J. Gillan, J. Phys. Condens. Matter 20, 235227 (2008).

    Article  Google Scholar 

  172. B.K. Agrawal, S. Agrawal, R. Srivastava, Physica E 33, 17 (2006).

    Article  Google Scholar 

  173. P. Lamparter and R. Kniep, Physica B 234,  405–406 (1997).

    Article  Google Scholar 

  174. K. Shiraishi, J. Phys. Soc. Jpn. 59, 3455–3458 (1990).

    Article  Google Scholar 

  175. D. Winn, M. Hale, T. Grassman, J. Sexton, A. Kummel, J. Chem. Phys. 127, 134705 (2007).

    Article  Google Scholar 

  176. A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, H. Dai, Nat. Mater. 1, 241 (2002).

    Article  Google Scholar 

  177. J. Ayubi-Moak, B. Benbakhti, G.W. Paterson, R. Hill, M. Passlack, I. Thayne, A. Senov, Microelectronic Eng. 86, 1564 (2009).

    Article  Google Scholar 

  178. G. Henkelman, A. Arnaldsson, H. Jonsson, Comput. Mater. Sci. 36, 354–360 (2006).

    Article  Google Scholar 

  179. E. Sanville, S. Kenny, R. Smith, G. Henkelman, J. Comput. Chem. 28, 899–908 (2007).

    Google Scholar 

  180. T. Yasuda, N. Miyata, H. Ishii, T. Itatani, O. Ichikawa, N. Fukuhara, M. Hata, A. Ohtake, T. Haimoto, T. Hoshii, M. Takenaka, S. Takagi, SISC 2008 (San Diego, IEEE, 2008), p. 41.

    Google Scholar 

  181. S. Oktyabrsky, V. Tokranov, S. Koveshnikov, M. Yakimov, R. Kambhampati, H. Bakhru, R. Moore, W. Tsai, J. Cryst. Growth 311, 1950 (2009).

    Article  Google Scholar 

  182. M. Milojevic, F.S. Aguirre-Tostado, C.L. Hinkle, H.C. Kim, E.M. Vogel, J. Kim, R.M. Wallace, Appl. Phy. Lett. 93, 202902 (2008).

    Article  Google Scholar 

  183. D. Shahrjerdi, D.I. Garcia-Gutierrez, E. Tutuc, S.K. Banerjee, Appl. Phys. Lett. 92, 223501 (2008).

    Article  Google Scholar 

  184. F.S. Aguirre-Tostado, M. Milojevic, B. Lee, J. Kim, R.M. Wallace, Appl. Phy. Lett. 93, 172907 (2008).

    Article  Google Scholar 

  185. E. Kim, E.A. Chagarov, J. Cagnon, Y. Yuan, A.C. Kummel, P.M. Asbeck, S. Stemmer, K.C. Saraswat, P.C. McIntyre, J. Appl. Phys. (in press).

    Google Scholar 

  186. P.C. McIntyre, Y. Oshima, E. Kim, E. Chagarov, J. Cagnon, K.C. Saraswat, S. Stemmer, A.C. Kummel, SISC 2008 (San Diego, IEEE, 2008).

    Google Scholar 

  187. C.-W. Cheng and E.A. Fitzgerald, Appl. Phy. Lett. 93, 031902 (2008).

    Google Scholar 

  188. L. Hong-Liang, L. Yan-Bo, X. Min, D. Shi-Jin, S. Liang, Z. Wei, W. Li-Kang, Chin. Phys. Lett. 23, 1929 (2006).

    Article  Google Scholar 

  189. Y. Xuan, Y.Q. Wu, P.D. Ye, Electron Device Lett. 29, 294 (2008).

    Article  Google Scholar 

  190. Y. Xuan, T. Shen, M. Xu, Y.Q. Wu, P.D. Ye, IEDM 2008 (San Fransisco, 2008), 371.

    Google Scholar 

  191. R.J.W. Hill et al., IEEE Electron Device Lett. 28, 1080 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgueni A. Chagarov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chagarov, E., Kummel, A. (2010). Density Functional Theory Simulations of High-k Oxides on III-V Semiconductors. In: Oktyabrsky, S., Ye, P. (eds) Fundamentals of III-V Semiconductor MOSFETs. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1547-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1547-4_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1546-7

  • Online ISBN: 978-1-4419-1547-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics