Skip to main content

Theory of HfO2-Based High-k Dielectric Gate Stacks

  • Chapter
  • First Online:

Abstract

Continuous scaling in semiconductor technology, associatsed with Moore’s law, brought new materials in every functional element of Si-based metal-oxide-semiconductor (MOS) field effect transistors (FET). In particular, for a gate dielectric instead of traditional SiO2 new HfO2-based oxides with higher dielectric constants are now used. The introduction of these so-called high-k dielectrics opened the possibility of using high mobility semiconductors instead of Si in MOS technology. In this chapter we discuss density functional calculations of high-k oxides hafnia and zironia. After briefly describing theoretical methods used in our calculations we discuss the bulk properties, surfaces and interfaces of hafnia and zirconia relevant to advanced gate stack engineering.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Passlack, N. Medendorp, R. Gregory and D. Braddock, Appl. Phys. Lett. 83, 5262 (2003).

    Google Scholar 

  2. P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964).

    Google Scholar 

  3. W. Kohn and L. J. Sham, Phys. Rev. 140, 1133 (1965).

    Google Scholar 

  4. J. R. Chelikowsky, N. Troullier and Y. Saad, Phys. Rev. Lett. 72, 1240 (1994).

    Google Scholar 

  5. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

    Google Scholar 

  6. J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).

    Google Scholar 

  7. D. R. Hamann, M. Schlüter and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).

    Google Scholar 

  8. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

    Google Scholar 

  9. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    Google Scholar 

  10. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids. (Clarendon Press, New York, 1988).

    Google Scholar 

  11. R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).

    Google Scholar 

  12. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Google Scholar 

  13. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Google Scholar 

  14. D. M. Bylander and L. Kleinman, Phys. Rev. B 36, 3229 (1987).

    Google Scholar 

  15. C. G. Van deWalle, Phys. Rev. B 39, 1871 (1989).

    Google Scholar 

  16. J. Wang, H. P. Li and R. Stevens, J. Mater. Sci. 27, 5397 (1992).

    Google Scholar 

  17. R. Ruh, H. J. Garrett, R. R. Domagala and N. M. Tallen, J. Am. Ceram. Soc. 51, 23 (1968).

    Google Scholar 

  18. X. Luo, W. Zhou, S. Ushakov, A. Navrotsky and A. A. Demkov, Phys. Rev. B 80, 134119 (2009).

    Google Scholar 

  19. J. Adam and M. D. Rodgers, Acta Crystallogr. 12, 951 (1959).

    Google Scholar 

  20. R. Ruh and W. R. Corfield, J. Am. Ceram. Soc. 53, 126 (1970).

    Google Scholar 

  21. R. Ruh and V. A. Patel, J. Am. Ceram. Soc. 56, 606 (1973).

    Google Scholar 

  22. X. Y. Zhao and D. Vanderbilt, Phys. Rev. B 65, 233106 (2002).

    Google Scholar 

  23. R. Stevens, An Introduction to Zirconia, 2nd ed. (Magnesium Electron, Twickenham, UK, 1986).

    Google Scholar 

  24. R. E. Hann, V. A. Suitch and J. L. Pentecost, J. Am. Ceram. Soc. C 285 (1985).

    Google Scholar 

  25. X. Y. Zhao, D. Ceresoli and D. Vanderbilt, Phys. Rev. B 71 (2005).

    Google Scholar 

  26. C. E. Curtis, L. M. Doney and J. R. Johnson, J. Am. Ceram. Soc. 37, 458 (1954).

    Google Scholar 

  27. D. Taylor, Br. Ceram. Trans. 83, 32 (1984).

    Google Scholar 

  28. V. B. Glushkova and M. V. Kravchinskaya, Ceram. Int. 11, 56 (1985).

    Google Scholar 

  29. R. C. Weast, CRC Handbook for Chemistry and Physics, 65 ed. (CRC Press, 1985).

    Google Scholar 

  30. E. J. Little and M. M. Jones, J. Chem. Educ. 37, 231 (1960).

    Google Scholar 

  31. P. E. Quintard, P. Barberis, A. P. Mirgorodsky and T. Merle-Mejean, J. Am. Ceram. Soc. 85, 1745 (2002).

    Google Scholar 

  32. A. P. Mirgorodsky and P. E. Quintard, J. Am. Ceram. Soc. 82, 3121 (1999).

    Google Scholar 

  33. G. K. Horton and A. A. Maradudin, Dynamical Properties of Solids, (American Elsevier Publishing Co., New York, 1974).

    Google Scholar 

  34. N. W. Ashcroft and N. D. Mermin, Solid State Physics. (Thomson Learning, 1975).

    Google Scholar 

  35. Y. Moriya and A. Navrotsky, J. Chem. Thermodyn. 38, 211 (2006).

    Google Scholar 

  36. T. Tojo, T. Atake, T. Mori and H. Yamamura, J. Chem. Thermodyn. 31, 831 (1999).

    Google Scholar 

  37. S. S. Todd, J. Am. Chem. Soc. 75, 3035 (1953).

    Google Scholar 

  38. T. Tojo, T. Atake, T. Mori and H. Yamamura, J. Therm. Anal. Calorim. 57, 447 (1999).

    Google Scholar 

  39. J. E. Bailey, Proc. R. Soc. A 27, 359 (1964).

    Google Scholar 

  40. G. M. Wolten, Acta Crystallogr. 17, 763 (1964).

    Google Scholar 

  41. R. N. Patil and E. C. Subbarao, Acta Crystallogr. 26, 535 (1970).

    Google Scholar 

  42. M. Sternik and K. Parlinski, J. Chem. Phys. 122, 064707 (2005).

    Google Scholar 

  43. J. Padilla and D. Vanderbilt, Surf. Sci. 418, 64 (1998).

    Google Scholar 

  44. E. Chagarov, A. A. Demkov and J. B. Adams, Phys. Rev. B 71, 075417 (2005).

    Google Scholar 

  45. M. Y. Ho, H. Gong, G. D. Wilk, B. W. Busch, M. L. Green, P. M. Voyles, D. A. Muller, M. Bude, W. H. Lin, A. See, M. E. Loomans, S. K. Lahiri and P. I. Raisanen, J. Appl. Phys. 93, 1477 (2003).

    Google Scholar 

  46. J. Aarik, A. Aidla, H. Mandar, V. Sammelselg and T. Uustare, J. Cryst. Growth 220, 105 (2000).

    Google Scholar 

  47. A. B. Mukhopadhyay, J. F. Sanz and C. B. Musgrave, Phys. Rev. B 73 (2006).

    Google Scholar 

  48. X. Luo, A. A. Demkov, D. Triyoso, P. Fejes, R. Gregory and S. Zollner, Phys. Rev. B 78, 245314 (2008).

    Google Scholar 

  49. V. I. Anisimov, P. Kuiper and J. Nordgren, Phys. Rev. B 50, 8257 (1994).

    Google Scholar 

  50. A. A. Demkov, Physica Status Solidi B 226, 57 (2001).

    Google Scholar 

  51. A. A. Demkov, L. R. C. Fonseca, E. Verret, J. Tomfohr and O. F. Sankey, Phys. Rev. B 71, 195306 (2005).

    Google Scholar 

  52. R. Q. Long, Y. P. Huang and H. L. Wan, J. Raman Spectrosc. 28, 29 (1997).

    Google Scholar 

  53. V. V. Pushkarev, V. I. Kovalchuk and J. L. d'Itri, J. Phys. Chem. B 108, 5341 (2004).

    Google Scholar 

  54. C. Li, Y. Sakata, T. Arai, K. Domen, K. I. Maruya and T. Onishi, J. Chem. Soc. Faraday Trans. I 85, 1451 (1989).

    Google Scholar 

  55. A. Christensen and E. A. Carter, Phys. Rev. B 58, 8050 (1998).

    Google Scholar 

  56. O. Sharia, Theoretical Study of HfO 2 as a Gate Material for CMOS Devices, Ph.D. thesis (University of Texas, Austin, 2008).

    Google Scholar 

  57. E. Bersch, S. Rangan, R. A. Bartynski, E. Garfunkel and E. Vescovo, Phys. Rev. B 78, 085114 (2008).

    Google Scholar 

  58. G. Cerrato, S. Bordiga, S. Barbera and C. Morterra, Surf. Sci. 377, 50 (1997).

    Google Scholar 

  59. S. V. Ushakov, A. Navrotsky, Y. Yang, S. Stemmer, K. Kukli, M. Ritala, M. A. Leskela, P. Fejes, A. Demkov, C. Wang, B. Y. Nguyen, D. Triyoso and P. Tobin, Physica Status Solidi B 241, 2268 (2004).

    Google Scholar 

  60. A. Callegari, D. K. Sadana, D. A. Buchanan, A. Paccagnella, E. D. Marshall, M. A. Tischler and M. Norcott, Appl. Phys. Lett. 58, 2540 (1991).

    Google Scholar 

  61. Y. Nakano, N. Negoro and H. Hasegawa, Jpn. J. Appl. Phys., Part 1 41, 2542.

    Google Scholar 

  62. S. J. Koester, E. W. Kiewra, Y. N. Sun, D. A. Neumayer, J. A. Ott, M. Copel, D. K. Sadana, D. J. Webb, J. Fompeyrine, J. P. Locquet, C. Marchiori, M. Sousa and R. Germann, Appl. Phys. Lett. 89, 042104 (2006).

    Google Scholar 

  63. M. Ritala, M. Leskela, L. Niinisto, T. Prohaska, G. Friedbacher and M. Grasserbauer, Thin Solid Films 250, 72 (1994).

    Google Scholar 

  64. R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros and M. Metz, IEEE Electron Device Lett. 25, 408 (2004).

    Google Scholar 

  65. J. Robertson and C. W. Chen, Appl. Phys. Lett. 74, 1168 (1999).

    Google Scholar 

  66. W. Schottky, Zeit. Phys. 118, 539 (1942).

    Google Scholar 

  67. J. Bardeen, Phys. Rev. 71, 717 (1947).

    Google Scholar 

  68. J. Tersoff, Phys. Rev. B 30, 4874 (1984).

    Google Scholar 

  69. O. Sharia, A. A. Demkov, G. Bersuker and B. H. Lee, Phys. Rev. B 75, 035306 (2007).

    Google Scholar 

  70. A. A. Demkov, R. Liu, X. D. Zhang and H. Loechelt, J. Vac. Sci. Technol. B 18, 2388 (2000).

    Google Scholar 

  71. O. Sharia, A. A. Demkov, G. Bersuker and B. H. Lee, Phys. Rev. B 77, 085326 (2008).

    Google Scholar 

  72. L. Q. Zhu, N. Barrett, P. Jegou, F. Martin, C. Leroux, E. Martinez, H. Grampeix, O. Renault and A. Chabli, J. Appl. Phys. 105, 024102 (2009).

    Google Scholar 

  73. H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977).

    Google Scholar 

  74. A. A. Demkov, Phys. Rev. B 74, 085310 (2006).

    Google Scholar 

  75. O. Sharia, K. Tse, J. Robertson and A. A. Demkov, Phys. Rev. B 79, 125305 (2009).

    Google Scholar 

  76. C. Berthod, N. Binggeli and A. Baldereschi, Phys. Rev. B 68, 085323 (2003).

    Google Scholar 

Download references

Acknowledgements

We wish to thank Jaekwang Lee, Gennady Bersuker, John Robertson, John Ekerdt, Alex Navrotsky and many others for insightful conversations we have had over the years. This work in part is supported by the National Science Foundation under grants DMR-0548182 and DMR-0606464, and by the Office of Naval Research under grant N000 14-06-1-0362. All calculations are performed at the Texas Advanced Computing Center (TACC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Demkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Demkov, A., Luo, X., Sharia, O. (2010). Theory of HfO2-Based High-k Dielectric Gate Stacks. In: Oktyabrsky, S., Ye, P. (eds) Fundamentals of III-V Semiconductor MOSFETs. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1547-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1547-4_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1546-7

  • Online ISBN: 978-1-4419-1547-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics