Skip to main content

Device Physics and Performance Potential of III-V Field-Effect Transistors

  • Chapter
  • First Online:
Fundamentals of III-V Semiconductor MOSFETs

Abstract

The device physics and technology issues for III-V transistors are examined from a simulation perspective. To examine device physics, an InGaAs HEMT structure similar to those being explored experimentally is analyzed. The physics of this device is explored using detailed, quantum mechanical simulations based on the non-equilibrium Green’s function formalism. In this chapter, we: (1) elucidate the essential physics of III-V HEMTs, (2) identify key technology challenges that need to be addressed, and (3) estimate the expected performance advantage for III-V transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. A. Antoniadis and A. Khakifirooz, “MOSFET performance scaling: Limitations and future options,” IEEE International Electron Devices Meeting 2008, Technical Digest, pp. 253–256, 2008.

    Google Scholar 

  2. K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C. H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hatttendorf, J. He, J. Hicks, R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. McIntyre, P. Moon, J. Neirynck, S. Pei, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Schifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Williams, and K. Zawadzki, “A 45 nm logic technology with high-k plus metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging,” 2007 IEEE International Electron Devices Meeting, vol. 1 and 2, pp. 247–250, 2007.

    Article  Google Scholar 

  3. S. Natarajan, M. Armstrong, M. Bost, R. Brain, M. Brazier, C.-H. Chang, V. Chikarmane, and M. Childs, “A 32 nm logic technology featuring 2nd-generation High-k+Metal-Gate transistors, enhanced channel strain and 0.171 um2 SRAM cell size in a 291 Mb array,” 2008 IEEE International Electron Devices Meeting, pp. 941–943, 2008.

    Google Scholar 

  4. M. Passlack, P. Zurcher, K. Rajagopalan, R. Droopad, J. Abrokwah, M. Tutt, Y. B. Park, E. Johnson, O. Hartin, A. Zlotnicka, P. Fejes, R. J. W. Hill, D. A. J. Moran, X. Li, H. Zhou, D. Macintyre, S. Thoms, A. Asenov, K. Kalna, and I. G. Thayne, “High mobility III-V MOSFETs for RF and digital applications,” 2007 IEEE International Electron Devices Meeting, vol. 1 and 2, pp. 621–624, 2007.

    Google Scholar 

  5. Y. Sun, E. W. Kiewra, J. P. de Souza, J. J. Bucchignano, and K. E. Fogel, “Scaling of In_{0.7}Ga_{0.3}As buried-channel MOSFETs,” 2008 IEEE International Electron Devices Meeting, pp. 367–370, 2008.

    Google Scholar 

  6. Y. Xuan, T. Shen, M. Xu, Y. Q. Wu, and P. D. Ye, “High-performance surface channel in-rich In_{0.75}Ga_{0.25}As MOSFETs with ALD High-k as gate dielectric,” 2008 IEEE International Electron Devices Meeting, pp. 371–374, 2008.

    Google Scholar 

  7. D. H. Kim and J. A. del Alamo, “Scaling behavior of In0.7Ga0.3AsHEMTs for logic,” 2006 IEEE International Electron Devices Meeting, vol. 1 and 2, pp. 587–590, 2006.

    Google Scholar 

  8. D. H. Kim and J. A. del Alamo, “Logic performance of 40 nm InAsHEMTs,” 2007 IEEE International Electron Devices Meeting, vol. 1 and 2, pp. 629–632, 2007.

    Google Scholar 

  9. D. H. Kim and J. A. del Alamo, “30 nm E-mode InAs PHEMTs for THz and future logic applications,” 2008 IEEE International Electron Devices Meeting, pp. 719–722, 2008.

    Google Scholar 

  10. G. Dewey, M. K. Hudait, K. Lee, R. Pillarisetty, W. Rachmady, M. Radosavljevic, T. Rakshit, and R. Chau, “Carrier transport in high-mobility III-V quantum-well transistors and performance impact for high-speed low-power logic applications,” IEEE Electron Device Letters, vol. 29, pp. 1094–1097, Oct 2008.

    Article  Google Scholar 

  11. M. Radosavljevic, T. Ashley, A. Andreev, S. D. Coomber, G. Dewey, and M. T. Emeny, “High-performance 40 nm gate length InSb P-Channel compressively strained quantum well field effect transistors for low-power (Vcc = 0.5 V) logic applications,” 2008 IEEE International Electron Devices Meeting, pp. 727–730, 2008.

    Google Scholar 

  12. A. Pethe, T. Krishnamohan, D. Kim, S. Oh, H.-S. P. Wong, Y. Nishi, and K. C. Saraswat, “Investigation of the performance limits of III-V double-gate n-MOSFETs,” IEEE IEDM Technical Digest, pp. 605–608, 2005.

    Google Scholar 

  13. K. D. Cantley, Y. Liu, H. S. Pal, T. Low, S. S. Ahmed, and M. S. Lundstrom, “Performance analysis of III-V materials in a double-gate nano-MOSFET,” 2007 IEEE International Electron Devices Meeting, vol. 1 and 2, pp. 113–116, 2007.

    Google Scholar 

  14. M. V. Fischetti, L. Wang, B. Yu, C. Sachs, P. M. Asbeck, Y. Taur, and M. Rodwell, “Simulation of electron transport in high-mobility MOSFETs: Density of states bottleneck and source starvation,” 2007 IEEE International Electron Devices Meeting, vol. 1 and 2, pp. 109–112, 2007.

    Google Scholar 

  15. M. Luisier, N. Neophytou, N. Kharche, and G. Klimeck, “Full-band and atomistic simulation of realistic 40 nm InAs HEMT,” 2008 IEEE International Electron Devices Meeting, pp. 887–890, 2008.

    Google Scholar 

  16. M. V. Fischetti and S. E. Laux, “Monte-Carlo simulation of transport in technologically significant semiconductors of the diamond and zincblende structures. II. Submicrometer MOSFETs,” IEEE Transactions on Electron Devices, vol. 38, pp. 650–660, Mar 1991.

    Article  Google Scholar 

  17. P. M. Solomon and S. E. Laux, “The ballistic FET: Design, capacitance and speed limit,” 2001 IEEE International Electron Devices Meeting, pp. 5.1.1–5.1.4, 2001.

    Google Scholar 

  18. S. E. Laux, “A simulation study of the switching times of 22-and 17-nm gate-length SOI nFETs on high mobility substrates and Si,” IEEE Transactions on Electron Devices, vol. 54, pp. 2304–2320, Sep 2007.

    Article  Google Scholar 

  19. M. V. Fischetti, T. P. O'Regan, S. Narayanan, C. Sachs, S. Jin, J. Kim, and Y. Zhang, “Theoretical study of some physical aspects of electronic transport in nMOSFETs at the 10-nm gate-length,” IEEE Transactions on Electron Devices, vol. 54, pp. 2116–2136, Sep 2007.

    Article  Google Scholar 

  20. N. Neophytou, T. Rakshit, and M. Lundstrom, “Performance analysis of 60-nm gate-length III-V InGaAs HEMTs: Simulations versus experiments,” IEEE Transactions on Electron Devices, vol. 56, pp. 1377–1387, 2009.

    Article  Google Scholar 

  21. H. S. Pal, T. Low, and M. S. Lundstrom, “NEGF analysis of InGaAs Schottky barrier double gate MOSFETs,” IEEE International Electron Devices Meeting 2008, Technical Digest, pp. 891–894, 2008.

    Google Scholar 

  22. D. H. Kim and J. A. del Alamo, “Lateral and vertical scaling of In0.7Ga0.3As HEMTs for Post-Si-CMOS logic applications,” IEEE Transactions on Electron Devices, vol. 55, pp. 2546–2553, Oct 2008.

    Article  Google Scholar 

  23. S. Datta, “Nanoscale device modeling: The Green's function method,” Superlattices and Microstructures, vol. 28, pp. 253–278, Oct 2000.

    Article  Google Scholar 

  24. R. Venugopal, S. Goasguen, S. Datta, and M. S. Lundstrom, “Quantum mechanical analysis of channel access geometry and series resistance in nanoscale transistors,” Journal of Applied Physics, vol. 95, pp. 292–305, Jan 2004.

    Article  Google Scholar 

  25. Z. B. Ren, R. Venugopal, S. Goasguen, S. Datta, and M. S. Lundstrom, “nanoMOS 2.5: A two-dimensional simulator for quantum transport in double-gate MOSFETs,” IEEE Transactions on Electron Devices, vol. 50, pp. 1914–1925, Sep 2003.

    Article  Google Scholar 

  26. Y. Liu and M. Lundstrom, “Simulation of III-V HEMTs for high-speed low-power logic applications,” ECS Transactions, vol. 19, pp. 331–342, 2009.

    Article  Google Scholar 

  27. Y. Liu, N. Neophytou, G. Klimeck, and M. S. Lundstrom, “Band-structure effects on the performance of III-V ultrathin-body SOI MOSFETs,” IEEE Transactions on Electron Devices, vol. 55, pp. 1116–1122, May 2008.

    Article  Google Scholar 

  28. G. Klimeck, S. S. Ahmed, H. Bae, N. Kharche, R. Rahman, S. Clark, B. Haley, S. H. Lee, M. Naumov, H. Ryu, F. Saied, M. Prada, M. Korkusinski, and T. B. Boykin, “Atomistic simulation of realistically sized nanodevices using NEMO 3-D—Part I: Models and benchmarks,” IEEE Transactions on Electron Devices, vol. 54, pp. 2079–2089, Sep 2007.

    Article  Google Scholar 

  29. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” Journal of Applied Physics, vol. 89, pp. 5815–5875, Jun 2001.

    Article  Google Scholar 

  30. D. F. Welch, G. W. Wicks, and L. F. Eastman, “Calculation of the conduction-band discontinuity for Ga0.47In0.53As-Al0.48In0.52As heterojunction,” Journal of Applied Physics, vol. 55, pp. 3176–3179, 1984.

    Article  Google Scholar 

  31. C. K. Peng, A. Ketterson, H. Morkoc, and P. M. Solomon, “Determination of the conduction-band discontinuity between In0.53Ga0.47As,” Journal of Applied Physics, vol. 60, pp. 1709–1712, Sep 1986.

    Article  Google Scholar 

  32. D. H. Kim and J. A. del Alamo, “Scalability of sub-100 nm thin-channel InAs PHEMTs,” IEEE International Conference on Indium Phosphide & Related Materials, pp. 132–135, 2009.

    Google Scholar 

  33. D. A. Antoniadis and D. H. Kim, Private Communication, 2009.

    Google Scholar 

  34. D. H. Kim and J. A. del Alamo, “30 nm InAs pseudomorphic HEMTs on an InP substrate with a current-gain cutoff frequency of 628 GHz,” IEEE Electron Device Letters, vol. 29, pp. 830–833, Aug 2008.

    Article  Google Scholar 

  35. W. Y. Quan, D. M. Kim, and H. D. Lee, “Quantum C–V modeling in depletion and inversion: Accurate extraction of electrical thickness of gate oxide in deep submicron MOSFETs,” IEEE Transactions on Electron Devices, vol. 49, pp. 889–894, May 2002.

    Article  Google Scholar 

  36. A. Rahman, J. Guo, S. Datta, and M. S. Lundstrom, “Theory of ballistic nanotransistors,” IEEE Transactions on Electron Devices, vol. 50, pp. 1853–1864, Sep 2003.

    Article  Google Scholar 

  37. K. Natori, “Ballistic metal-oxide-semiconductor field-effect transistor,” Journal of Applied Physics, vol. 76, pp. 4879–4890, Oct 1994.

    Article  Google Scholar 

  38. A. Lochtefeld and D. A. Antoniadis, “On experimental determination of carrier velocity in deeply scaled NMOS: How close to the thermal limit?,” IEEE Electron Device Letters, vol. 22, pp. 95–97, Feb 2001.

    Article  Google Scholar 

  39. A. Lochtefeld, I. J. Djomehri, G. Samudra, and D. A. Antoniadis, “New insights into carrier transport in n-MOSFETs,” IBM Journal of Research and Development, vol. 46, pp. 347–357, Mar–May 2002.

    Article  Google Scholar 

  40. J. A. del Alamo, FCRP e-Workshop, Apr 2009.

    Google Scholar 

  41. M. S. Shur, “Low ballistic mobility in submicron HEMTs,” IEEE Electron Device Letters, vol. 23, pp. 511–513, Sep 2002.

    Article  Google Scholar 

  42. J. Wang and M. Lundstrom, “Ballistic transport in high electron mobility transistors,” IEEE Transactions on Electron Devices, vol. 50, pp. 2185, Oct 2003.

    Article  Google Scholar 

  43. M. Zilli, D. Esseni, P. Palestri, and L. Selmi, “On the apparent mobility in nanometric n-MOSFETs,” IEEE Electron Device Letters, vol. 28, pp. 1036–1039, Nov 2007.

    Article  Google Scholar 

  44. E. O. Johnson, “Insulated-gate field-effect transistor—Bipolar transistor in disguise,” Rca Review, vol. 34, pp. 80–94, 1973.

    Google Scholar 

  45. M. Lundstrom and Z. B. Ren, “Essential physics of carrier transport in nanoscale MOSFETs,” IEEE Transactions on Electron Devices, vol. 49, pp. 133–141, Jan 2002.

    Article  Google Scholar 

  46. T. J. Walls, V. A. Sverdlov, and K. K. Likharev, “MOSFETs below 10 nm: Quantum theory,” Physica E-Low-Dimensional Systems & Nanostructures, vol. 19, pp. 23–27, Jul 2003.

    Article  Google Scholar 

  47. Y. Naveh and K. K. Likharev, “Modeling of 10-nm-scale ballistic MOSFET's,” IEEE Electron Device Letters, vol. 21, pp. 242–244, May 2000.

    Article  Google Scholar 

  48. M. Lundstrom and J. Guo, “Nanoscale transistors: Device physics, modeling and simulation,” Springer, New York, 2005.

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Focus Center Research Program (FCRP) through the center for Materials, Structures, and Devices (MSD). Computational support was provided by the Network for Computational Nanotechnology which is supported by the National Science Foundation under Grant No. EEC—0634750. One of the authors (MSL) acknowledges illuminating discussions with M.V. Fischetti at the University of Massachusetts and T. Rakshit at Intel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liu, Y., Pal, H., Lundstrom, M., Kim, DH., Alamo, J., Antoniadis, D. (2010). Device Physics and Performance Potential of III-V Field-Effect Transistors. In: Oktyabrsky, S., Ye, P. (eds) Fundamentals of III-V Semiconductor MOSFETs. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1547-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1547-4_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1546-7

  • Online ISBN: 978-1-4419-1547-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics