p-type Channel Field-Effect Transistors

  • Serge Oktyabrsky


Development of p-type MOSFETs using new materials is an important goal to provide a further scaling of CMOS circuits. Although bulk transport properties of Ge make it the main candidate for p-channel, strained III-As and, in particular, III-Sb are good competitors in particular for deeply scaled devices due to lower hole effective mass in strained InSb heterostructures, simplicity of band engineering with variety of material choices to create high barriers, reduce leakage, improve ohmic contacts, etc. The chapter begins with physics of scattering in bulk semiconductors, describes how the MOSFETs figures-of-merit change with scaling, reviews physics of strain effects in quantum wells with the emphasis on effective mass, density of states and mobility. Technologies and results on p-channel heterojunction field-effect transistors and MOSFETs are reviewed.


Effective Mass Quantum Well Hole Mobility Biaxial Strain Hole Effective Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was supported by the Focus Center Research Program (FCRP) through the center for Materials, Structures, and Devices (MSD).


  1. 1.
    D. E. Grider, P. P. Ruden, J. C. Nohava, I. R. Mactaggart, J. J. Stronczer, and R. H. Tran, “0.7 micron gate length complementary Al0.75Ga0.25 As/In0.25Ga0.75 As/GaAs HIGFET technology for high speed/low power digital circuits,” IEDM Technical Digest, pp. 331–334 (1992).Google Scholar
  2. 2.
    A. Leuther, A. Thiede, K. Kohler, T. Jakobus, G. Weimann, K. H. Ploog, G. Trankle, and G. Weimann, “Complementary HFETs on GaAs with 0.2 mm gate length,” Compound Semiconductors 1999. Proc. 26th International Symposium on Compound Semiconductors, Bristol, UK, pp. 313–316 (2000).Google Scholar
  3. 3.
    J. D. Wiley, “Mobility of holes in III-V semiconductors,” in Semiconductors and Semimetals, vol.10 Transport Phenomena (Academic Press, New York, NY, 1975), pp. 91–174.Google Scholar
  4. 4.
    J. D. Wiley, “Polar mobility of holes in III-V compounds,” Phys. Rev. B, 4(8), 2485–2493 (1971).CrossRefGoogle Scholar
  5. 5.
    M. Costato, C. Jacoboni, and L. Reggiani, “Hole transport in polar semiconductors,” Phys. Stat. Sol. B, 52(2), 461–473 (1972).CrossRefGoogle Scholar
  6. 6.
    H. J. Lee and D. C. Look, “Hole transport in pure and doped GaAs,” J. Appl. Phys., 54(8), 4446–4452 (1983).CrossRefGoogle Scholar
  7. 7.
    A. S. Filipchenko and L. P. Bolshakov, “Mobility of holes in p-InSb crystals,” Phys. Stat. Sol. B, 77(1), 53–58 (1976).CrossRefGoogle Scholar
  8. 8.
    M. Zimpel, M. Oszwaldowski, and J. Goc, “Mobility of holes in InSb,” Acta Physica Polonica A, A75(2), 297–300 (1989).Google Scholar
  9. 9.
    J. D. Wiley and M. DiDomenico, Jr., “Lattice mobility of holes in III-V compounds,” Phys. Rev. B, 2(2), 427–433 (1970).CrossRefGoogle Scholar
  10. 10.
    O. Madelung, Data in science and technology (Springer-Verlag, Berlin, 1991).Google Scholar
  11. 11.
    S. Takagi, T. Mizuno, T. Tezuka, N. Sugiyama, S. Nakaharai, T. Numata, J. Koga, and K. Uchida, “Sub-band structure engineering for advanced CMOS channels,” Solid State Electron., 49(5), 684–694 (2005).CrossRefGoogle Scholar
  12. 12.
    R. Chau, S. Datta, and A. Majumdar, “Opportunities and challenges of III-V nanoelectronics for future high-speed, low-power logic applications,” IEEE Compound Semiconductor Integrated Circuit Symposium (IEEE, Piscataway, NJ, 2005).Google Scholar
  13. 13.
    E. O. Kane, “Theory of tunneling,” J. Appl. Phys., 32(1), 83–91 (1961).MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Y. Sun, S. E. Thompson, and T. Nishida, “Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors,” J. Appl. Phys., 101(10), 104503-1-22 (2007).CrossRefGoogle Scholar
  15. 15.
    T. Krishnamohan, D. Kim, C. D. Nguyen, C. Jungemann, Y. Nishi, and K. C. Saraswat, “High-mobility low band-to-band-tunneling strained-Germanium double-gate heterostructure FETs: Simulations,” IEEE Trans. Electron Device, 53(5), 1000–1009 (2006).CrossRefGoogle Scholar
  16. 16.
    D. Kim, T. Krishnamohan, L. Smith, H.-S. P. Wong, and K. C. Saraswat, “Band to band tunneling study in high mobility materials: III-V, Si, Ge and strained SiGe,” 65th DRC Technical Digest, pp. 57–58 (2007).Google Scholar
  17. 17.
    P. Y. Yu, and M. Cardona, Fundamentals of Semiconductors (Springer, New York, NY, 2005).CrossRefGoogle Scholar
  18. 18.
    J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures (Cambidge University Press, Cambridge, UK, 2003).CrossRefGoogle Scholar
  19. 19.
    J. Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation (Academic Press, London, UK, 2003).Google Scholar
  20. 20.
    S. L. Chuang, Physics of Optoelectronic Devices (John Wiley & Sons, New York, NY, 1995).Google Scholar
  21. 21.
    G. C. Osbourn, “InxGa1–xAs-InyGa1–yAs strained-layer superlattices: A proposal for useful, new electronic materials,” Phys. Rev. B, 27(8), 5126–5128 (1983).CrossRefGoogle Scholar
  22. 22.
    B. K. Ridley, “The in-plane effective mass in strained-layer quantum wells,” J. Appl. Phys., 68(9), 4667–4673 (1990).CrossRefGoogle Scholar
  23. 23.
    I. Suemune, “Band-edge hole mass in strained-quantum-well structures,” Phys. l Rev. B, 43(17), 14099–14106 (1991).CrossRefGoogle Scholar
  24. 24.
    J. Bohrer, A. Krost, T. Wolf, and D. Bimberg, “Band offsets and transitivity of In1–xGaxAs/In1–yAlyAs/InP heterostructures,” Phys. l Rev. B, 47(11), 6439–6443 (1993).CrossRefGoogle Scholar
  25. 25.
    R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1–x/Si strained-layer heterostructures,” Appl. Phys. Lett., 47(3), 322–324 (1985).CrossRefGoogle Scholar
  26. 26.
    J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers. I. Misfit dislocations,” J. Cryst. Growth, 27(1), 118–125 (1974).Google Scholar
  27. 27.
    X. Wallart, B. Pinsard, and F. Mollot, “High In content pseudomorphic InGaAs layers for high-mobility heterostructures on InP (001),” J. Cryst. Growth, 278(1), 516–520 (2005).CrossRefGoogle Scholar
  28. 28.
    H. Toyoshima, T. Niwa, J. Yamazaki, and A. Okamoto, “In surface segregation and growth-mode transition during InGaAs growth by molecular-beam epitaxy,” Appl. Phys. Lett., 63(6), 821–823 (1993).CrossRefGoogle Scholar
  29. 29.
    H. Toyoshima, T. Niwa, J. Yamazaki, and A. Okamoto, “Suppression of In surface segregation and growth of modulation-doped N-AlGaAs/InGaAs/GaAs structures with a high In composition by molecular-beam epitaxy,” J. Appl. Phys., 75(8), 3908–3913 (1994).CrossRefGoogle Scholar
  30. 30.
    M. Yakimov, V. Tokranov, G. Agnello, J. van Eisden, and S. Oktyabrsky, “In situ monitoring of formation of InAs quantum dots and overgrowth by GaAs or AlAs,” J. Vac. Sci. Tech. B, 23(3), 1221–1225 (2005).CrossRefGoogle Scholar
  31. 31.
    S. S. Nedorezov, “Size quantization in semiconducting films,” Fizika Tverdogo Tela, 12(8), 2269–2276 (1970).Google Scholar
  32. 32.
    M. Alttarelli, “Heterojunctions and semiconductor superlattices,” in Heterojunctions and Semiconductor Superlattices, Eds.: G. Allan, G. Bastard, N. Boccora, and M. Voos (Springer, Berlin, 1986).Google Scholar
  33. 33.
    G. Bastard and J. A. Brum, “Electronic states in semiconductor heterostructures,” IEEE J. Quantum Electron., QE-22(9), 1625–1644 (1986).CrossRefGoogle Scholar
  34. 34.
    L. C. Andreani, A. Pasquarello, and F. Bassani, “Hole subbands in strained GaAs-Ga1–xAlxAs quantum wells: exact solution of the effective-mass equation,” Phys. Rev. B, 36(11), 5887–5894 (1987).CrossRefGoogle Scholar
  35. 35.
    S. L. Chuang, “Efficient band-structure calculations of strained quantum wells,” Phys. Rev. B, 43(12), 9649–9661 (1991).CrossRefGoogle Scholar
  36. 36.
    D. A. Broido and L. J. Sham, “Effective masses of holes at GaAs-AlGaAs heterojunctions,” Phys. Rev. B, 31(2), 888–892 (1985).CrossRefGoogle Scholar
  37. 37.
    M. Jaffe, Y. Sekiguchi, and J. Singh, “Theoretical formalism to understand the role of strain in the tailoring of hole masses in p-type InxGa1–xAs (on GaAs substrates) and In0.53+xGa0.47–xAs (on InP substrates) modulation-doped field-effect transistors,” Appl. Phys. Lett., 51(23), 1943–1945 (1987).CrossRefGoogle Scholar
  38. 38.
    B. Laikhtman, R. A. Kiehl, and D. J. Frank, “Strained quantum well valence-band structure and optimal parameters for AlGaAs-InGaAs-AlGaAs p-channel field-effect transistors,” J. Appl. Phys., 70(3), 1531–1538 (1991).CrossRefGoogle Scholar
  39. 39.
    T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems,” Rev. Mod. Phys., 54(2), 437–672 (1982).CrossRefGoogle Scholar
  40. 40.
    M. V. Fischetti, Z. Ren, P. M. Solomon, M. Yang, and K. Rim, “Six-band k·p calculation of the hole mobility in silicon inversion layers: dependence on surface orientation, strain, and silicon thickness,” J. Appl. Phys., 94(2), 1079–1095 (2003).CrossRefGoogle Scholar
  41. 41.
    B. K. Ridley, “Electron scattering by confined LO polar phonons in a quantum well,” Phys. Rev. B, 39(8), 5282–5286 (1989).CrossRefGoogle Scholar
  42. 42.
    M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, “Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-k insulator: The role of remote phonon scattering,” J. Appl. Phys., 90(9), 4587–4608 (2001).CrossRefGoogle Scholar
  43. 43.
    I. J. Fritz, T. J. Drummond, G. C. Osbourn, J. E. Schirber, and E. D. Jones, “Electrical transport of holes in GaAs/InGaAs/GaAs single strained quantum wells,” Appl. Phys. Lett., 48(24), 1678–1680 (1986).CrossRefGoogle Scholar
  44. 44.
    D. Lancefield, A. R. Adams, A. T. Meney, W. Knap, E. Litwin-Staszewska, C. Skierbiszewski, and J. L. Robert, “The light-hole mass in a strained InGaAs/GaAs single quantum well and its pressure dependence,” J. Phys. Chem. Solids, 56(3), 469–473 (1995).CrossRefGoogle Scholar
  45. 45.
    M. Myronov, T. Irisawa, S. Koh, O. A. Mironov, T. E. Whall, E. H. C. Parker, and Y. Shiraki, “Temperature dependence of transport properties of high mobility holes in Ge quantum wells,” J. Appl. Phys., 97(8), 83701-1-6 (2005).CrossRefGoogle Scholar
  46. 46.
    H. von Kanel, M. Kummer, G. Isella, E. Muller, and T. Hackbarth, “Very high hole mobilities in modulation-doped Ge quantum wells grown by low-energy plasma enhanced chemical vapor deposition,” Appl. Phys. Lett., 80(16), 2922–2924 (2002).CrossRefGoogle Scholar
  47. 47.
    R. J. H. Morris, T. J. Grasby, R. Hammond, M. Myronov, O. A. Mironov, D. R. Leadley, T. E. Whall, E. H. C. Parker, M. T. Currie, C. W. Leitz, and E. A. Fitzgerald, “High conductance Ge p-channel heterostructures realized by hybrid epitaxial growth,” Semicond. Sci. Tech., 19(10) (2004).Google Scholar
  48. 48.
    M. Myronov, T. Irisawa, O. A. Mironov, S. Koh, Y. Shiraki, T. E. Whall, and E. H. C. Parker, “Extremely high room-temperature two-dimensional hole gas mobility in Ge/Si0.33Ge0.67/Si(001) p-type modulation-doped heterostructures,” Appl. Phys. Lett., 80(17), 3117–3119 (2002).CrossRefGoogle Scholar
  49. 49.
    M. Myronov, K. Sawano, Y. Shiraki, T. Mouri, and K. M. Itoh, “Observation of two-dimensional hole gas with mobility and carrier density exceeding those of two-dimensional electron gas at room temperature in the SiGe heterostructures,” Appl. Phys. Lett., 91(8), 082108-1-3 (2007).CrossRefGoogle Scholar
  50. 50.
    M. Kudo, H. Matsumoto, T. Tanimoto, T. Mishima, and I. Ohbu, “Improved hole transport properties of highly strained In0.35Ga0.65As channel double-modulation-doped structures grown by MBE on GaAs,” J. Cryst. Growth, 175–176, 910–914 (1997).Google Scholar
  51. 51.
    T. J. Drummond, T. E. Zipperian, I. J. Fritz, J. E. Schirber, and T. A. Plut, “p-channel strained quantum well, field-effect transistor,” Appl. Phys. Lett., 49(8), 461–463 (1986).CrossRefGoogle Scholar
  52. 52.
    P. P. Ruden, M. Shur, D. K. Arch, R. R. Daniels, D. E. Grider, and T. E. Nohava, “Quantum-well p-channel AlGaAs/InGaAs/GaAs heterostructure insulated-gate field-effect transistors,” IEEE Trans. Electron Device, 36(11), 2371–2379 (1989).CrossRefGoogle Scholar
  53. 53.
    N. Kudo, T. Mishima, H. Matsumoto, I. Ohbu, and T. Tanimoto, “Highly strained In0.35Ga0.65As/GaAs layers grown by molecular beam epitaxy for high hole mobility transistors,” J. Electron. Mater., 25(6), 944–947 (1996).CrossRefGoogle Scholar
  54. 54.
    H. J. Kim, D. M. Kim, D. H. Woo, S.-I. Kim, S. H. Kim, J. I. Lee, K. N. Kang, and K. Cho, “High photoresponsivity of a p-channel InGaP/GaAs/InGaAs double heterojunction pseudomorphic modulation-doped field effect transistor,” Appl. Phys. Lett., 72(5), 584–586 (1998).CrossRefGoogle Scholar
  55. 55.
    R. T. Hsu, W. C. Hsu, M. J. Kao, and J. S. Wang, “Characteristics of a δ-doped GaAs/InGaAs p-channel heterostructure field-effect transistor,” Appl. Phys. Lett., 66(21), 2864–2866 (1995).CrossRefGoogle Scholar
  56. 56.
    R. T. Hsu, Y. S. Lin, J. S. Su, W. C. Hsu, Y. H. Wu, and M. J. Kao, “Study of two-dimensional hole gas concentration and hole mobility in zinc delta-doped GaAs and pseudomorphic GaAs/In0.2Ga0.8As heterostructures,” Superlattices and Microstructures, 24(2), 175–180 (1998).CrossRefGoogle Scholar
  57. 57.
    P. Nagaiah, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Strained quantum wells for p-channel InGaAs CMOS,” MRS Proc., 1108, A12–01 (2009).Google Scholar
  58. 58.
    K. Yoh, K. Kiyomi, H. Taniguchi, M. Yano, M. Inoue, and G. B. Stringfellow, “A p-channel GaSb heterojunction field-effect transistor based on a vertically integrated complementary circuit structure,” Gallium Arsenide and Related Compounds 1991. Proc. 18th International Symposium (Bristol, UK) pp. 173–178 (1992).Google Scholar
  59. 59.
    L. F. Luo, K. F. Longenbach, and W. I. Wang, “p-channel modulation-doped field-effect transistors based on AlSb0.9As0.1/GaSb,” IEEE Electron Device. Lett., 11(12), 567–569 (1990).CrossRefGoogle Scholar
  60. 60.
    B. R. Bennett, M. G. Ancona, J. B. Boos, C. B. Canedy, and S. A. Khan, “Strained GaSb/AlAsSb quantum wells for p-channel field-effect transistors,” J. Cryst. Growth, 311(1), 47–53 (2008).CrossRefGoogle Scholar
  61. 61.
    J. F. Klem, J. A. Lott, J. E. Schirber, S. R. Kurtz, and S. Y. Lin, “Strained quantum well modulation-doped InGaSb/AlGaSb structures grown by molecular beam epitaxy,” J. Electron. Mater., 22(3), 315–318 (1993).CrossRefGoogle Scholar
  62. 62.
    B. R. Bennett, M. G. Ancona, J. B. Boos, and B. V. Shanabrook, “Mobility enhancement in strained p-InGaSb quantum wells,” Appl. Phys. Lett., 91(4), 042104-1-3 (2007).CrossRefGoogle Scholar
  63. 63.
    J. B. Boos, B. R. Bennett, N. A. Papanicolaou, M. G. Ancona, J. G. Champlain, R. Bass, and B. V. Shanabrook, “High mobility p-channel HFETs using strained Sb-based materials,” Electron. Lett., 43(15), 834–835 (2007).CrossRefGoogle Scholar
  64. 64.
    B. R. Bennett, M. G. Ancona, and J. B. Boos, “Compound semiconductors for low-power p-channel field-effect transistors,” MRS Bulletin, 34, 530–536 (2009).CrossRefGoogle Scholar
  65. 65.
    M. Radosavljevic, T. Ashley, A. Andreev, S. D. Coomber, G. Dewey, M. T. Emeny, M. Fearn, D. G. Hayes, K. P. Hilton, M. K. Hudait, R. Jefferies, T. Martin, R. Pillarisetty, W. Rachmady, T. Rakshit, S. J. Smith, M. J. Uren, D. J. Wallis, P. J. Wilding, and R. Chau, “High-performance 40 nm gate length InSb p-channel compressively strained quantum well field effect transistors for low-power (VCC = 0.5 V) logic applications,” IEDM Technical Digest, 2008.Google Scholar
  66. 66.
    M. Edirisooriya, T. D. Mishima, C. K. Gaspe, K. Bottoms, R. J. Hauenstein, and M. B. Santos, “InSb quantum-well structures for electronic device applications,” J. Cryst. Growth, 311(7), 1972–1975 (2009).CrossRefGoogle Scholar
  67. 67.
    B. R. Bennett, M. G. Ancona, J. B. Boos, and B. V. Shanabrook, “Mobility enhancement in strained p-InGaSb quantum wells,” Appl. Phys. Lett., 91(4), 042104-421 (2007).CrossRefGoogle Scholar
  68. 68.
    A. Nainani, T. Krishnamohan, D. Kim, and K. Saraswat, “Hole mobility and its enhancement with strain for technologically relevant III-V semiconductors,” 2009 SISPAD, September 9–11, 2009, San Diego, CA, 2006.Google Scholar
  69. 69.
    Y. Zhang and M. V. Fischetti, “Calculation of hole mobility in Ge and III-V p-channels,” 13th International Workshop on Computational Electronics (IWCE 2009), Beijing, China, 2009.Google Scholar
  70. 70.
    S. Takagi, T. Tezuka, T. Irisawa, S. Nakaharai, T. Numata, K. Usuda, N. Sugiyama, M. Shichijo, R. Nakane, and S. Sugahara, “Device structures and carrier transport properties of advanced CMOS using high mobility channels,” Solid State Electron., 51(4), 526–536 (2007).CrossRefGoogle Scholar
  71. 71.
    T. Irisawa, M. Myronov, O. A. Mironov, E. H. C. Parker, K. Nakagawa, M. Murata, S. Koh, and Y. Shiraki, “Hole density dependence of effective mass, mobility and transport time in strained Ge channel modulation-doped heterostructures,” Appl. Phys. Lett., 82(9), 1425–1427 (2003).CrossRefGoogle Scholar
  72. 72.
    M. Jaffe, J. E. Oh, J. Pamulapati, J. Singh, and P. Bhattacharya, “In-plane hole effective masses in InxGa1–xAs/Al0.15Ga0.85As modulation-doped heterostructures,” Appl. Phys. Lett., 54(23), 2345–2346 (1989).CrossRefGoogle Scholar
  73. 73.
    J. E. Schirber, I. J. Fritz, and L. R. Dawson, “Light-hole conduction in InGaAs/GaAs strained-layer superlattices,” Appl. Phys. Lett., 46(2), 187–189 (1985).CrossRefGoogle Scholar
  74. 74.
    D. Lancefield, W. Batty, C. G. Crookes, E. P. O'Reilly, A. R. Adams, K. P. Homewood, G. Sundaram, R. J. Nicholas, M. Emeny, and C. R. Whitehouse, “Pressure dependence of light-hole transport in strained InGaAs/GaAs,” Surf. Sci., 229(1), 122–125 (1990).CrossRefGoogle Scholar
  75. 75.
    E. D. Jones, R. M. Biefeld, J. F. Klem, S. K. Lyo, T. Ikoma, and H. Watanabe, “Strain and density dependent valence-band masses in InGaAs and GaAs/GaAsP strained-layer structures,” Gallium Arsenide and Related Compounds 1989. Proc. 16th International Symposium, Karuizawa, Japan, pp. 435–440 (1990).Google Scholar
  76. 76.
    S. Rapp, V. Harle, H. Bolay, A. Hangleiter, F. Scholz, W. Limmer, E. Vasiliadou, P. Grambow, and D. Weiss, “Evaluation of the effective hole masses in pseudomorphic compressively strained GaxIn1–xAs/InP quantum wells,” Appl. Phys. Lett., 67(1), 67–69 (1995).CrossRefGoogle Scholar
  77. 77.
    J. E. Schirber, C. P. Tigges, L. R. Dawson, H. P. Hjalmarson, and I. J. Fritz, “Effective masses and g factors for 2D light holes in InSb,” Semicond. Sci. Technol., 5(3), pp. 192–194 (1990).CrossRefGoogle Scholar
  78. 78.
    C. K. Gaspe, M. Edirisooriya, T. D. Mishima, A. R. Dedigama, S. Q. Murphy, R. E. Doezema, M. B. Santos, L. C. Tung, and Y.-J. Wang, “InSb and InxGa1–xAs quantum wells remotely doped with Be,” J. Vac. Sci. Technol. B, (May 2010, in press).Google Scholar
  79. 79.
    P. P. Ruden, A. I. Akinwande, D. Narum, D. E. Grider, and J. Nohava, “High performance complementary logic based on GaAs/InGaAs/AlGaAs HIGFETs,” IEDM Technical Digest, pp. 117–120 (1989).Google Scholar
  80. 80.
    D. E. Grider, I. R. Mactaggart, J. C. Nohava, J. J. Stronczer, P. P. Ruden, T. E. Nohava, D. Fulkerson, and D. E. Tetzlaff, “A 4 kbit synchronous static random access memory based upon delta-doped complementary heterostructure insulated gate field effect transistor technology,” 13th Annual GaAs IC Symp. Technical Digest, pp. 71–74 (1991).Google Scholar
  81. 81.
    D. E. Grider, P. P. Ruden, J. C. Nohava, I. R. Mactaggart, J. J. Stronczer, and R. H. Tran, “0.7 micron gate length complementary Al0.75Ga0.25As/In0.25Ga0.75As/GaAs HIGFET technology for high speed/low power digital circuits,” IEDM Technical Digest, pp. 331–334 (1992).Google Scholar
  82. 82.
    M. D. Feuer, Y. He, D. M. Tennant, S. C. Shunk, K. F. Brown-Goebeler, R. E. Behringer, and T. Y. Chang, “InP-based HIGFETs for complementary circuits,” IEEE Trans. Electron Device., 36(11), 2616 (1989).CrossRefGoogle Scholar
  83. 83.
    S. Swirhun, T. Nohava, J. Huber, S. Bounnak, and P. Joslyn, “P- and n-channel InAlAs/InGaAs heterojunction insulated gate FETs (HIGFETs) on InP,” Indium Phosphide and Related Materials. 3rd International Conference (IEEE, Cardiff, UK) pp. 235–238 (1991).Google Scholar
  84. 84.
    J. K. Abrokwah, J. H. Huang, W. Ooms, and J. A. Hallmark, “Anisotype-gate self-aligned p-channel heterostructure field-effect transistors,” IEDM Technical Digest, pp. 315–318 (1992).Google Scholar
  85. 85.
    D. E. Grider, R. D. Horning, D. K. Arch, P. P. Ruden, T. E. Nohava, D. N. Narum, and R. R. Daniels, “Study of strain in pseudomorphic InGaAs heterostructures related to the enhanced performance of p-channel heterostructure field effect transistor devices,” J. Vac. Sci. Technol. B, 7(2), 371–375 (1989).CrossRefGoogle Scholar
  86. 86.
    R. R. Daniels, P. P. Ruden, M. Shur, D. Grider, T. E. Nohava, and D. K. Arch, “Quantum-well p-channel AlGaAs/InGaAs/GaAs heterostructure insulated-gate field-effect transistors with very high transconductance,” IEEE Electron Device Lett., 9(7), 355–357 (1988).CrossRefGoogle Scholar
  87. 87.
    C.-P. Lee, H. T. Wang, G. J. Sullivan, N. H. Sheng, and D. L. Miller, “High-transconductance p-channel InGaAs/AlGaAs modulation-doped field effect transistors,” IEEE Electron Device Lett., EDL-8(3), 85–87 (1987).CrossRefGoogle Scholar
  88. 88.
    J. K. Abrokwah, R. Lucero, J. A. Hallmark, and B. Bernhardt, “Submicron p-channel (Al,Ga)As/(In,Ga)As HIGFETs,” IEEE Trans. Electron Device, 44(7), 1040–1045 (1997).CrossRefGoogle Scholar
  89. 89.
    J.-H. Tsai, C.-M. Li, W.-C. Liu, D.-F. Guo, S.-Y. Chiu, and W.-S. Lour, “Integration of n- and p-channel InGaP/InGaAs doped-channel pseudomorphic HFETs,” Electron. Lett., 43(13), 732–734 (2007).CrossRefGoogle Scholar
  90. 90.
    J.-H. Tsai, T.-Y. Weng, and K.-P. Zhu, “Investigation of InGaP/InGaAs n- and p-channel pseudomorphic modulation-doped field effect transistors with high gate turn-on voltages,” Superlattices and Microstructures, 43(2), 73–80 (2008).CrossRefGoogle Scholar
  91. 91.
    K. F. Longenbach, X. Li, Y. Wang, and W. I. Wang, “Polytype InAs/AlSb/GaSb for field-effect transistor applications,” Proc. IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits, Ithaca, NY, pp. 270–279 (1991).Google Scholar
  92. 92.
    L. F. Luo, K. F. Longenbach, and W. I. Wang, “p-channel modulation-doped GaSb field-effect transistors,” Electron. Lett., 27(5), 472–474 (1991).CrossRefGoogle Scholar
  93. 93.
    J.-H. Tsai, K.-P. Zhu, Y.-C. Chu, and S.-Y. Chiu, “InGaP/InGaAs/GaAs camel-gate p-channel pseudomorphic modulation-doped field effect transistor,” Electron. Lett., 39(22), 1611–1612 (2003).CrossRefGoogle Scholar
  94. 94.
    J.-H. Tsai, K.-P. Zhu, Y.-C. Chu, and S.-Y. Chiu, “High gate turn-on voltages of InGaP/InGaAs camel-gate n- and p-channel pseudomorphic modulation-doped field effect transistors prepared by low-pressure MOCVD,” IVESC 2004. The 5th International Vacuum Electron Sources Conference Proceedings, Beijing, China. pp. 368–370 (2004).Google Scholar
  95. 95.
    J.-H. Tsai, W.-S. Lour, and W.-C. Liu, “InGaP/GaAs/InGaAs δ-doped p-channel field-effect transistor with p+/n+/p camel-like gate structure,” Electron. Lett., 45(11), 572–573 (2009).CrossRefGoogle Scholar
  96. 96.
    K. F. Longenbach, R. Beresford, and W. I. Wang, “A complementary heterostructure field effect transistor technology based on InAs/AlSb/GaSb,” IEEE Trans. Electron Device, 37(10), 2265–2267 (1990).CrossRefGoogle Scholar
  97. 97.
    J. B. Boos, B. R. Bennett, N. A. Papanicolaou, M. G. Ancona, J. G. Champlain, D. Park, W. Kruppa, B. D. Weaver, R. Bass, and B. V. Shanabrook, “Sb-based n- and p-channel HFETs for high-speed, low-power applications,” DRC Technical Digest, PA, 2009.Google Scholar
  98. 98.
    H. Park, P. Mandeville, R. Saito, P. J. Tasker, W. J. Schaff, and L. F. Eastman,“ RF and DC characterization of P-channel Al0.5Ga0.5As/GaAs MODFETs with gate lengths as small as 0.25 mm,” Proc. IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits Ithaca, NY, pp. 101–110 (1989).Google Scholar
  99. 99.
    J. Shappir, S. Margalit, and I. Kidron, “p-channel MOS transistor in indium antimonide,” IEEE Trans. Electron Device, ED-22(10), 960–961 (1975).CrossRefGoogle Scholar
  100. 100.
    E. E. Barrowcliff, L. O. Bubulac, D. T. Cheung, W. E. Tennant, and A. M. Andrews, “GaSb metal-insulator-semiconductor field-effect-transistors,” 1977 IEDM Technical Digest, pp. 559–562 (1977).Google Scholar
  101. 101.
    T. Takahashi, O. Sugiura, I. Watanabe, and M. Matsumura, “SiO2/native-oxide double-gate InSb MOSFETs,” Electron. Lett., 21(12), 545–547 (1985).Google Scholar
  102. 102.
    S. L. Tu, W. H. Lan, T. S. Chiou, S. J. Yang, and K. F. Huang, “High breakdown p-channel InSb MOSFET,” Jpn. J. Appl. Phys., 29(3), L398–L400 (1990).CrossRefGoogle Scholar
  103. 103.
    B.-D. Liu, S.-C. Lee, K.-C. Liu, T.-P. Sun, and S.-J. Yang, “High breakdown voltage InSb p-channel metal-oxide-semiconductor field effect transistor prepared by photo-enhanced chemical vapor deposition,” Proc. SPIE, 2225, 215–226 (1994).CrossRefGoogle Scholar
  104. 104.
    B.-D. Liu, S.-C. Lee, T.-P. Sun, and S.-J. Yang, “Detailed investigation of InSb p-channel metal-oxide-semiconductor field effect transistor prepared by photo-enhanced chemical vapor deposition,” IEEE Trans. Electron Device., 42(5), 795–803 (1995).CrossRefGoogle Scholar
  105. 105.
    M. Okamura and T. Kobayashi, “Reduction of interface states and fabrication of p-channel inversion-type InP-MISFET,” Jpn. J. Appl. Phys., 19(10), L599–L602 (1980).CrossRefGoogle Scholar
  106. 106.
    F. Ren, M. W. Hong, W. S. Hobson, J. M. Kuo, J. R. Lothian, J. P. Mannaerts, J. Kwo, Y. K. Chen, and A. Y. Cho, “Enhancement-mode p-channel GaAs MOSFETs on semi-insulating substrates,” IEDM Technical Digest, pp. 943–945 (1996).Google Scholar
  107. 107.
    M. Passlack, J. K. Abrokwah, R. Droopad, Z. Yu, C. Overgaard, S. I. Yi, M. Hale, J. Sexton, and A. C. Kummel, “Self-aligned GaAs p-channel enhancement mode MOS heterostructure field-effect transistor,” IEEE Electron. Device Lett., 23(9), 508–510 (2002).CrossRefGoogle Scholar
  108. 108.
    M. Tametou, M. Takebe, N. C. Paul, K. Iiyama, and S. Takamiya, “N-channel p-channel enhancement/inversion mode GaAs-MISFETs with gate insulating layers formed by dry oxi-nitridation,” Electronics and Communications in Japan, Part 2 (Electronics), 89(10), 18–26 (2006).CrossRefGoogle Scholar
  109. 109.
    H.-S. Kim, I. Ok, F. Zhu, M. Zhang, S. Park, J. Yum, H. Zhao, and J. C. Lee, “n- and p-channel TaN/HfO2 MOSFETs on GaAs substrate using a germanium interfacial passivation layer,” 65th DRC Technical Digest, pp. 99–100 (2007).Google Scholar
  110. 110.
    I. Ok, H. Kim, M. Zhang, T. Lee, F. Zhu, L. Yu, S. Koveshnikov, W. Tsai, V. Tokranov, M. Yakimov, S. Oktyabrsky, and J. C. Lee, “Self-aligned n- and p-channel GaAs MOSFETs on undoped and p-type substrates using HfO2 and silicon interface passivation layer,” IEDM Technical Digest (2006).Google Scholar
  111. 111.
    K. Kajiyama, Y. Mizushima, and S. Sakata, “Schottky barrier height of n-lnxGa1–xAs diodes,” Appl. Phys. Lett., 23(8), 458–459 (1973).CrossRefGoogle Scholar
  112. 112.
    N. Li, E. S. Harmon, J. Hyland, D. B. Salzman, T. P. Ma, and P. D. Ye, “Properties of InAs metal-oxide-semiconductor structures with atomic-layer-deposited Al2O3 dielectric,” Appl. Phys. Lett., 92(14), 143507-1-3(2008).CrossRefGoogle Scholar
  113. 113.
    D. Varghese, Y. Xuan, Y. Q. Wu, T. Shen, P. D. Ye, and M. A. Alam, “Multi-probe interface characterization of In0.65Ga0.35As/Al2O3 MOSFET,” IEDM Technical Digest, pp. 379–382 (2008).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.College of Nanoscale Science and EngineeringUniversity at Albany—SUNYAlbanyUSA

Personalised recommendations