Skip to main content
Book cover

Wavelets pp 125–147Cite as

Wavelet Packet-Transform for Defect Severity Classification

  • Chapter
  • First Online:
  • 3073 Accesses

Abstract

Once a defect is detected, the next question that comes up naturally is how severe the defect is. Since machine downtime is physically rooted in the progressive degradation of defects within the machine’s components, accurate assessment of the severity of defect is critically important in terms of providing input to adjusting the maintenance schedule and minimizing machine downtime. This chapter describes how wavelet packet transform (WPT)-based techniques can classify machine defect severity, with specific application to rolling bearings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Altmann J, Mathew J (2001) Multiple band-pass autoregressive demodulation for rolling-element bearing fault diagnosis. Mech Syst Signal Process 15:963–977

    Article  Google Scholar 

  • Baydar N, Chen Q, Ball A, Kruger U (2001) Detection of incipient tooth defect in helical gears using multivariate statistics. Mech Syst Signal Process 15:303–321

    Article  Google Scholar 

  • De Boe P, Golinval JC (2003) Principal component analysis of a piezo-sensor array for damage localization. Int J Struct Health Monit 2(2):137–144

    Article  Google Scholar 

  • Duda R, Hart P, Stork D (2000) Pattern classification. Wiley-Interscience, New York.

    MATH  Google Scholar 

  • Fan X, Zuo MJ (2006) Gearbox fault detection using Hilbert and wavelet packet transform. Mech Syst Signal Process 20:966–982

    Article  Google Scholar 

  • Fukunaga K (1990) Introduction to statistical pattern recognition, 2nd edn. Academic, New York

    MATH  Google Scholar 

  • Gao R, Yan R (2007) Wavelet packet transform-based hybrid signal processing for machine health monitoring and diagnosis. In: The 6th international workshop on structural health monitoring, Stanford, CA, pp 598–605

    Google Scholar 

  • Goumas SK, Zervakis ME, Stavrakakis GS (2002) Classification of washing machine vibration signals using discrete wavelet analysis for feature extraction. IEEE Trans Instrum Meas 51(3):497–508

    Article  Google Scholar 

  • Haykin, S (1994) Neural networks. Macmillan Publishing Company, New York

    MATH  Google Scholar 

  • He Q, Yan R, Kong F, Du R (2008) Machine condition monitoring using principle component representation. Mech Syst Signal Process. 23(2):446–466

    Article  Google Scholar 

  • Jack LB, Nandi AK (2001) Support vector machines for detection and characterization of rolling element bearing faults. Proc Inst Mech Eng 215:1065–1074

    Article  Google Scholar 

  • Jolliffe IT (1986) Principal component analysis. Springer-Verlag New York Inc, New York

    Google Scholar 

  • Kano M, Hasebe S, Hashimoto I (2001) A new multivariate statistical process monitoring method using principal component analysis. Comput Chem Eng 25:1103–1113

    Article  Google Scholar 

  • Kittler J (1975) Mathematical methods of feature selection in pattern recognition. Int J Man Mach Stud 7(5):609–637

    Article  MathSciNet  MATH  Google Scholar 

  • Lee BY, Tang YS (1999) Application of the discrete wavelet transform to the monitoring of tool failure in end milling using the spindle motor current. Int J Adv Manuf Technol 15(4):238–243

    Article  Google Scholar 

  • Li B, Chow M, Tipsuwan Y, Hung JC (2000a) Neural-network-based motor rolling bearing fault diagnosis. IEEE Trans Ind Electron 47(5):1060–1069

    Article  Google Scholar 

  • Li XL, Tso SK, Wang J (2000b) Real-time tool condition monitoring using wavelet transforms and fuzzy techniques. IEEE Trans Syst Man Cybern C Appl Rev 30(3):352–357

    Article  Google Scholar 

  • Liu B, Ling SF, Meng Q (1997) Machinery diagnosis based on wavelet packets. J Vib Control 3:5–17

    Article  Google Scholar 

  • Maki Y, Loparo KA (1997) A neural-network approach to fault detection and diagnosis in industrial processes. IEEE Trans Control Syst Technol 5(6):529–541

    Article  Google Scholar 

  • Malhi A, Gao R. (2004) PCA-based feature selection scheme for machine defect classification. IEEE Trans Instrum Meas 53(6):1517–1525

    Article  Google Scholar 

  • McCormick AC, Nandi AK (1997) Classification of the rotating machine condition using artificial neural networks. Proc Inst Mech Eng C 211:439–450

    Article  Google Scholar 

  • Mori K, Kasashima N, Yoshioka T, Ueno Y (1996) Prediction of spalling on a ball bearing by applying the discrete wavelet transform to vibration signals. Wear 195:162–168

    Article  Google Scholar 

  • Paya BA, Esat II, Badi MNM (1997) Artificial neural network based fault diagnosis of rotating machinery using wavelet transforms as a preprocessor. Mech Syst Signal Process 11(5):751–765

    Article  Google Scholar 

  • Prabhakar S, Mohanty AR, Sekhar AS (2002) Application of discrete wavelet transform for detection of ball bearing race faults. Tribol Int 35(12):793–800

    Article  Google Scholar 

  • Yan R, Gao R (2004) Harmonic wavelet packet transform for on-line system health diagnosis. SPIE international symposium on sensors and smart structures technologies for civil, mechanical and aerospace systems, San Diego, CA, pp 512–522

    Google Scholar 

  • Yen G, Lin K (2000) Wavelet packet feature extraction for vibration monitoring. IEEE Trans Ind Electron 47(3):650–667

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert X. Gao .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gao, R.X., Yan, R. (2011). Wavelet Packet-Transform for Defect Severity Classification. In: Wavelets. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1545-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1545-0_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1544-3

  • Online ISBN: 978-1-4419-1545-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics