Skip to main content

Discrete Wavelet Transform

  • Chapter
  • First Online:
Wavelets

Abstract

According to the definition of the continuous wavelet transform (CWT) given in (3.7), Chap. 3, the scale parameter s and translation parameter \(\tau\) can be varied continuously. As a result, performing the CWT on a signal will lead to the generation of redundant information. Although the redundancy is useful in some applications, such as signal denoising and feature extraction where desired performance is achieved at the cost of increased computational time and memory size, other applications may need to emphasize reduced computational time and data size, for example, in image compression and numerical computation. Such requirements illustrate the need for reducing redundancy in the wavelet coefficients among different scales as much as possible, while at the same time, avoiding sacrificing the information contained in the original signal. This can be achieved by parameter discretization, as described in the following section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasion S, Rafsanjani A, Farshidianfar A, Irani N (2007) Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine. Mech Syst Signal Process 21:2933–2945

    Article  Google Scholar 

  • Addison N (2002) The illustrated wavelet transform handbook. Taylor & Francis, New York

    Book  MATH  Google Scholar 

  • Burt P, Adelson E (1983) The Laplacian pyramid as a compact image code. IEEE Trans Commun 31:482–540

    Article  Google Scholar 

  • Cohen A, Daubechies I, Feauveau, JC (1992) Biorthogonal bases of compactly supported wavelets. Commun Pure Appl Math 45:485–560

    Article  MathSciNet  MATH  Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans Inform Theory, 41(3): 613–627

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho DL; Johnstone IM (1995) Adapting to unknown smoothness via wavelet shrinkage. J Am Stat Assoc 90(432):1200–1244

    Article  MathSciNet  MATH  Google Scholar 

  • Fu S, Muralikrishnan, Raja J (2003) Engineering surface analysis with different wavelet bases. ASME J Manuf Sci Eng 125(6):844–852

    Article  Google Scholar 

  • Gao R, Yan R (2006) Non-stationary signal processing for bearing health monitoring. Int J Manuf Res 1(1):18–40

    Article  Google Scholar 

  • Haar A (1910) Zur theorie der orthgonalen funktionensysteme. Math Annalen 69:331–371

    Article  MathSciNet  MATH  Google Scholar 

  • Kim JS, Lee JH, Kim JH, Baek J, Kim SS (2010) Fault detection of cycle-based signals using wavelet transform in FAB processes. Int J Precision Eng Manuf 11(2):237–246

    Article  Google Scholar 

  • Lou X, Loparo KA (2004) Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mech Syst Signal Process 18:1077–1095

    Article  Google Scholar 

  • Mallat SG (1989a) A theory of multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Machine Intell 11(7) 674–693

    Article  MATH  Google Scholar 

  • Mallat SG (1989b) Multiresolution approximations and wavelet orthonormal bases of L2(R). Trans Am Math Soc 315:69–87

    MathSciNet  MATH  Google Scholar 

  • Mallat SG (1998) A wavelet tour of signal processing. Academic, San Diego, CA

    MATH  Google Scholar 

  • Nikolaou NG, Antoniadis IA (2002) Rolling element bearing fault diagnosis using wavelet packets. NDT&E Int 35:197–205

    Article  Google Scholar 

  • Rafiee J, Rafiee MA, Tse PW (2010) Application of mother wavelet functions for automatic gear and bearing fault diagnosis. Expert Syst Appl 37:4568–4579

    Article  Google Scholar 

  • Shakher C, Ishtiaque SM, Singh SK, Zaidi HN (2004) Application of wavelet transform in characterization of fabric texture. J Text Inst 95(1–6):107–120

    Article  Google Scholar 

  • Sugumaran V, Ramachandran KI (2009) Wavelet selection using decision tree for fault diagnosis of roller bearings. Int J Appl Eng Res 4(2):201–225

    Google Scholar 

  • Witkin A (1983) Scale space filtering. In: Proceedings of international joint conference on artificial intelligence, Karlsruhe, Germany, pp 1019–1023

    Google Scholar 

  • Zhou SY, Sun BC, Shi JJ (2006) An SPC monitoring system for cycle-based waveform signals using haar transform. IEEE Trans Automat Sci Eng 3(1):60–72

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert X. Gao .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gao, R.X., Yan, R. (2011). Discrete Wavelet Transform. In: Wavelets. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1545-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1545-0_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1544-3

  • Online ISBN: 978-1-4419-1545-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics