Skip to main content

Beyond Wavelets

  • Chapter
  • First Online:
Wavelets

Abstract

In previous chapters, we have introduced the theoretical foundation and practical applications related to the wavelet transform. The ability of wavelet transform in adaptive time-scale representation and decomposition of a signal into different subfrequency band presents an efficient signal analysis method without introducing calculation burden (Sweldens 1998). Consequently, it has become a prevailing tool for nonstationary signal processing (e.g., transient pattern identification and location). Given, however, the great variety of signals that appear in real-world applications, there remains plenty of room for continued advancement in the theory of the classical wavelet transform. For example, one of the limitations of the wavelet transform is to modify the base wavelet function to better analyze signals of finite length or duration, instead of infinite or periodic signals (Sweldens 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Candes EJ (1998) Ridgelets: theory and applications. Ph.D. Dissertation, Stanford University

    Google Scholar 

  • Candes EJ, Donoho DL (1999) Ridgelets: a key to higher-dimensional intermittency. Philos Trans R Soc Math, Phys Eng Sci 357:2495–2509

    Article  MathSciNet  MATH  Google Scholar 

  • Candes EJ, Donoho DL (2000) Curvelets – a surprisingly effective nonadaptive representation for objects with edges. In: Rabut C, Cohen A, Schumaker LL (eds) Curves and surfaces. Vanderbilt University Press, Nashville, TN

    Google Scholar 

  • Candes EJ, Donoho DL (2005a) Continuous curvelet transform: 1. resolution of the wavefront set. Appl Comput Harmon Anal 19:162–197

    Article  MathSciNet  MATH  Google Scholar 

  • Candes EJ, Donoho DL (2005b) Continuous curvelet transform: 2. discretization and frames. Appl Comput Harmon Anal 19:198–222

    Article  MathSciNet  MATH  Google Scholar 

  • Candes EJ, Demanet L, Donoho DL, Ying L (2006) Fast discrete curvelet transforms. SIAM Multiscale Model Simul 5:861–899

    Article  MathSciNet  MATH  Google Scholar 

  • Claypoole R (1999) Adaptive wavelet transforms via lifting. Thesis: computer engineering, Rice University

    Google Scholar 

  • Claypoole R, Davis G, Sweldens W (2003) Nonlinear wavelet transform for image coding via lifting. IEEE Trans Image Process 12(12):1449–1459

    Article  MathSciNet  Google Scholar 

  • Cotronei M, Montefusco LB, Puccio L (1998) Multiwavelet analysis and signal processing. IEEE Trans Circuits Syst II Analog Digital Signal Process 45(8): 970–987

    Article  MATH  Google Scholar 

  • Dettori L, Semler L (2007) A comparison of wavelet, ridgelet and curvelet based texture classification algorithms in computed tomography. Comput Biol Med 37:486–498

    Article  Google Scholar 

  • Do MN, Vetterli M (2003) The finite ridgelet transform for image representation. IEEE Trans Image Process 12:16–28

    Article  MathSciNet  Google Scholar 

  • Do MN, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 14(12):2091–2106

    Article  MathSciNet  Google Scholar 

  • Donoho DL, Duncan MR (2000) Digital curvelet transform: strategy, implementation and experiments. Proc SPIE 4056:12–29

    Article  Google Scholar 

  • Jiang HK, Wang ZS, He ZJ (2006) Wavelet design for extracting weak fault feature based on lifting scheme. Front Mech Eng China 1(2):199–203

    Article  Google Scholar 

  • Jiang X, Blunt L, Stout KJ (2001a) Application of the lifting wavelet to rough surfaces. J Int Soc Precision Eng Nanotechnol 25:83–89

    Google Scholar 

  • Jiang X, Blunt L, Stout KJ (2001b) Lifting wavelet for three-dimensional surface analysis. Int J Mach Tools Manuf 41:2163–2169

    Article  Google Scholar 

  • Jiang X, Scott P, Whitehouse D (2008) Wavelets and their application in surface metrology. CIRP Ann Manuf Technol 57:555–558

    Article  Google Scholar 

  • Li Z, He ZJ, Zi YY, Jiang HK (2008) Rotating machinery fault diagnosis using signal-adapted lifting scheme. Mech Syst Signal Process 22(3):542–556

    Article  Google Scholar 

  • Logan BF, Shepp LA (1975) Optimal reconstruction of a function from its projections. Duke Math J 42:645–659

    Article  MathSciNet  MATH  Google Scholar 

  • Ma J, Jiang X, Scott P (2005) Complex ridgelets for shift invariant characterization of surface topography with line singularities. Phys Lett A 344:423–431

    Article  MATH  Google Scholar 

  • Ma J (2007) Curvelets for surface characterization. Appl Phys Lett 90: 054109-1-3

    Google Scholar 

  • Selesnick IW, Baraniuk RG, Kingsbury NG (2005) The dual-tree complex wavelet transform. IEEE Signal Process Mag 22(6): 123–151

    Article  Google Scholar 

  • Starck JL, Donoho DL, Candes EJ (2003) Astronomical image representation by the curvelet transform. Astron Astrophys 398:785–800

    Article  Google Scholar 

  • Starck JL, Moudden Y, Abrial P, Nguyen M (2006) Wavelets, ridgelets and curvelets on the sphere. Astron Astrophys 446:1191–1204

    Article  Google Scholar 

  • Sweldens W (1996) The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl Comput Harmon Anal 3:186–200

    Article  MathSciNet  MATH  Google Scholar 

  • Sweldens W (1997) Second generation wavelets: theory and application. http://www.ima.umn.edu/industrial/97_98/sweldens/fourth.html. Accessed 30 June 2009

  • Sweldens W (1998) The lifting scheme: a construction of second generation wavelets. SIAM J Math Anal 29(2):511–546

    Article  MathSciNet  MATH  Google Scholar 

  • Uytterhoeven G, Dirk R, Adhemar B (1997) Wavelet transforms using the lifting scheme. Department of Computer Science, Katholieke Universiteit Leuven, Belgium

    Google Scholar 

  • Zhou R, Bao W, Li N, Huang X, Yu DR (2010) Mechanical equipment fault diagnosis based on redundant second generation wavelet packet transform. Digit Signal Process 20(1):276–288

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert X. Gao .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gao, R.X., Yan, R. (2011). Beyond Wavelets. In: Wavelets. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1545-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1545-0_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1544-3

  • Online ISBN: 978-1-4419-1545-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics