Molecular Simulation: Can it Help in the Development of Micro and Nano Devices?



Molecular modeling and simulations is gaining popularity as a mean to investigate equilibrium and non-equilibrium properties of fluids near solid and polymeric surfaces, and under confinement in nano- and meso-pores. In this chapter, we focus on advanced Monte Carlo and molecular dynamics techniques to study thermodynamics and transport phenomena of fluids near surfaces.

The state of the art in the field is demonstrated by reviewing selected results of our recent computer simulations. We present Monte Carlo studies of phase equilibria of geometrically restricted fluids, wetting and prewetting transitions of fluids on a substrate. Further, we demonstrate molecular dynamics techniques to investigate the wettability of fluids on surfaces and fluid flow in nano-pores.


Monte carlo Molecular dynamics Free-energy Contact angle Confined fluid 



This work is supported by the Department of Science and Technology and Department of Atomic Energy of India.


  1. 1.
    Ou J, Perot B, and Rothstein JP (2004) Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys. Fluids. 16:4635.CrossRefGoogle Scholar
  2. 2.
    Min TG and Kim J (2004) Effects of hydrophobic surface on skin-friction drag. Phys. Fluids. 16:L55.CrossRefGoogle Scholar
  3. 3.
    Cramer JC (2002) Essentials of Computational Chemistry, John Wiley & Sons, NewYork.Google Scholar
  4. 4.
    Leach AR (2001) Molecular Modelling: Principles and Applications, Prentice Hall, USA.Google Scholar
  5. 5.
    Cohen NC (1996) Guidebook on Molecular Modeling in Drug Design Academic Press, NewYork.Google Scholar
  6. 6.
    Allen MP and Tildesley DJ (1987) Computer Simulation of Liquids. Clarendon Press, Oxford.MATHGoogle Scholar
  7. 7.
    Frenkel D and Smit B (2002) Understanding Molecular Simulation: From Algorithms to Applications, Academic Press, NewYork.Google Scholar
  8. 8.
    Chatterjee A and Vlachos DG (2007) An overview of spatial microscopic and accelerated kinetic Monte Carlo methods. J. Computer-Aided Mater. Des. 14:253.CrossRefGoogle Scholar
  9. 9.
    McQuarrie DA (1976) Statistical Mechanics. Harper & Row, New York.Google Scholar
  10. 10.
    Metropolis N,Rosenbluth AW,Rosenbluth MN,Teller AH, and Teller E (1953) Equation of state calculations by fast computing machines. J. Chem. Phys. 21:1087–1092.CrossRefGoogle Scholar
  11. 11.
    Singh JK, Kofke DA, and Errington JR (2003) Surface tension and vapor–liquid phase coexistence of the square-well fluid. J. Chem. Phys. 119:3405.CrossRefGoogle Scholar
  12. 12.
    Panagiotopoulos AZ (1987) Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Mol. Phys. 61:813.CrossRefGoogle Scholar
  13. 13.
    Panagiotopoulos AZ, Quirke N, Stapleton M, and Tildesley DJ (1988) Phase equilibria by simulation in the Gibbs ensemble: Alternative derivation, generalization and application to mixture and membrane equilibria. Mol. Phys. 63:527–545.Google Scholar
  14. 14.
    Smit B, Karaborni S, and Siepmann JI (1995) Computer simulation of vapor–liquid phase equilibria of n-alkanes. J. Chem. Phys. 102:2126.CrossRefGoogle Scholar
  15. 15.
    Siepmann JI, Karaborni S, and Smit B (1993). Simulating the critical behavior of complex fluids. Nature. 365:330–332.CrossRefGoogle Scholar
  16. 16.
    Escobedo F and de Pablo J (1996) Expanded grand-canonical and Gibbs ensemble Monte Carlo simulations of polymers. J. Chem. Phys. 105:4391.CrossRefGoogle Scholar
  17. 17.
    Kofke DA (1993) Gibbs-Duhem integration: A new method for direct evaluation of phase coexistence by molecular simulation. Molec. Phys. 78: 1331–1336.CrossRefGoogle Scholar
  18. 18.
    Kofke DA (1993) Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line. J. Chem. Phys. 98: 4149–4162.CrossRefGoogle Scholar
  19. 19.
    Denbigh K (1971) Principles of Chemical Equilibrium. Cambridge University, Cambridge.Google Scholar
  20. 20.
    Frenkel D and Smit B (1996) Understanding Molecular Simulation: From Algorithms to Applications, Academic Press, Cambridge.MATHGoogle Scholar
  21. 21.
    Mehta M and Kofke DA (1994) Coexistence diagrams of mixtures by molecular simulation. Chem. Eng. Sci. 49:2633–2645.CrossRefGoogle Scholar
  22. 22.
    Fitzgerald M, Picard RR, and Silver RN (1999) Canonical transition probabilities for adaptive Metropolis simulation. Europhys. Lett. 46:282–287.CrossRefGoogle Scholar
  23. 23.
    Errington JR (2003) Evaluating Surface Tension using grand-canonical transition-matrix Monte Carlo simulation and finite-size scaling. Phys. Rev. E. 67:012102.CrossRefGoogle Scholar
  24. 24.
    Ferrenberg AM and Swendsen RH (1988) New Monte Carlo technique for studying phase transitions. Phys. Rev. Lett. 61:2635–2638.CrossRefGoogle Scholar
  25. 25.
    Errington JR (2003) Direct calculation of liquid–vapor phase equilibria from transition matrix Monte Carlo simulation. J. Chem. Phys. 118:9915.CrossRefGoogle Scholar
  26. 26.
    Singh JK (2009) Surface tension and vapour-liquid phase coexistence of variablerange hard-core attractive Yukawa fluids. Mol. Sim. 35:880.Google Scholar
  27. 27.
    Singh JK and Kofke DA (2004) Effect of Molecular Association on Interfacial Properties: A Monte Carlo Study. J. Chem. Phys. 121:9574.CrossRefGoogle Scholar
  28. 28.
    Singh JK, Adhikari J, and Kwak SK (2006) Vapor–liquid phase coexistence curves for Morse fluids. Fluid. Phase. Equil. 248:1–6.CrossRefGoogle Scholar
  29. 29.
    Singh JK and Errington JR (2006) Calculation of phase coexistence properties and surface tensions of n-alkanes with grand-canonical transition Monte Carlo simulation and finite-size scaling. J. Phys. Chem. B 116:1369.CrossRefGoogle Scholar
  30. 30.
    Gelb LD, Gubbins KE,Radhakrishnan R, and Bartkowiak MS (1999) Phase separation in confined systems. Rep. Prog. Phys. 62:1573–1659.CrossRefGoogle Scholar
  31. 31.
    Cahn JW (1977) J. Chem. Phys. 66:3667.CrossRefGoogle Scholar
  32. 32.
    Cassie ABD and Baxter S (1944) Wettability of porous surfaces. Trans. Faraday Soc. 40:546–551.CrossRefGoogle Scholar
  33. 33.
    Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. Res. 28:988–994.CrossRefGoogle Scholar
  34. 34.
    Lafuma A and Quere D (2003) Nat. Mat. 2:457–460.CrossRefGoogle Scholar
  35. 35.
    Barthlott W and Neinhuis C (1997) Planta 2002:1–8.CrossRefGoogle Scholar
  36. 36.
    Yoshimitsu Z, Nakajima A, Watanabe T, and Hashimoto K (2002). Langmuir 18:5818.CrossRefGoogle Scholar
  37. 37.
    Lau KKS, Bico J, Teo KBK, Chhowalla M, Amaratunga GAJ, Milne WI, McKinley GH, and Gleason KK (2003) Nano Lett. 3:1701.CrossRefGoogle Scholar
  38. 38.
    Shirtcliffe NJ, McHale G, Newton MI, and Perry CC (2005) Langmuir. 21:937.CrossRefGoogle Scholar
  39. 39.
    Halverson JD, Maldarelli C, Couzis A, and Koplik J (2008) A molecular dynamics study of the motion of a nanodroplet of pure liquid on a wetting gradient. J. Chem. Phys. 129:164708.CrossRefGoogle Scholar
  40. 40.
    Shen Y, Couzis A, Koplik J, Maldarelli C, and Tomassone MS (2005) Molecular dynamics study of the influence of surfactant structure on surfactant-facilitated spreading of droplets on solid surfaces. Langmuir 21:12160.CrossRefGoogle Scholar
  41. 41.
    Werder T, Walther JH, Jaffe RL, Halicioglu T, and Koumoutsakos P (2003) On the water–carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J. Phys. Chem. B. 107:1345.CrossRefGoogle Scholar
  42. 42.
    Smith W, Forester TR, and Todorov IT (2009) The DLPOLY 2 user manual.Google Scholar
  43. 43.
    de Ruijter MJ, Blake TD, and De Coninck J (1999) Langmuir 15:7836–7847.CrossRefGoogle Scholar
  44. 44.
    Ingebrigtsen T and Toxvaerd S (2007) Contact angles of Lennard-Jones liquids and droplets on planer surfaces. J. phys. Chem. C 111:8518–8523.CrossRefGoogle Scholar
  45. 45.
    Hautman J and Klein ML (1991) Microscopic wetting phenomena. Phys. Rev. Lett. 67: 1763–1766.CrossRefGoogle Scholar
  46. 46.
    Srivastava P, Chapman WG, and Laibinis PE (2005) Odd–even variations in the wettability of n-alkanethiolate monolayers on gold by water and hexadecane: a molecular dynamics simulation study. Langmuir. 21:12171–12178.CrossRefGoogle Scholar
  47. 47.
    Rowlinson JS and Widom B (1982) Molecular Theory of Capillarity. Oxford, Oxford.Google Scholar
  48. 48.
    Wang JY, Betelu S, and Law BM (1999) Line tension effects near first-order wetting transitions. Phys. Rev. Lett. 83:3677–3680.CrossRefGoogle Scholar
  49. 49.
    Wang JY, Betelu S, and Law BM (2001) Line tension approaching a first-order wetting transition: Experimental results from contact angle measurements. Phys. Rev. E 63:031601-1–031601-11.Google Scholar
  50. 50.
    Hirvi JT and Pakkanen TA (2006) Molecular dynamics simulations of water droplets on polymer surfaces. J. Chem. Phys. 144712:144712-1–144712-11.Google Scholar
  51. 51.
    Grzelak EM and Errington JR (2008) Computation of interfacial properties via grand canonical transition matrix Monte Carlo simulation. J. Chem. Phys. 128:014710.Google Scholar
  52. 52.
    Ebner C and Saam WF (1977) Physical Review Letters 38:1486.CrossRefGoogle Scholar
  53. 53.
    Rutledge JE and Taborek P (1992) Prewetting phase diagram of 4He on Cesium. Phys. Rev. Lett. 69:937.CrossRefGoogle Scholar
  54. 54.
    Hallock RB (1995) Review of some of the experimental evidence for the novel wetting of helium on alkali metals. J. Low. Temp. Phys. 101:31.Google Scholar
  55. 55.
    Phillips JA, Ross D, Taborek P, and Rutledge JE (1998) Superfluid onset and prewetting of 4He on rubidium. Phys. Rev. B. 58:3361.CrossRefGoogle Scholar
  56. 56.
    Cheng GME, Lee HC, Chan MHW, Cole MW, Carraro C, Saam WF, and Toigo F (1993) Wetting transitions of liquid hydrogen films Phys. Rev. Lett. 70:1854–1857CrossRefGoogle Scholar
  57. 57.
    Kruchten F and Knorr K (2003) Multilayer Adsorption and Wetting of Acetone on Graphite. Phys. Rev. Lett. 91:085502.CrossRefGoogle Scholar
  58. 58.
    Sokolowski S and Fischer J (1990) Wetting transitions at the argon-solid-Co2 interface: Molecular-dynamics studies. J. Phys. Rev. A. 41:6866.CrossRefGoogle Scholar
  59. 59.
    Evans R and Tarazona P (1983) Wetting and thick-thin film transitions in a model of argon at a solid CO2 substrate. Phys. Rev. A. 28:1864.CrossRefGoogle Scholar
  60. 60.
    Shi W, Zhao X, and Johnson J (2002) Phase transitions of adsorbed fluids computed from multiple-histogram reweighting. Mol. Phys. 100:2139.CrossRefGoogle Scholar
  61. 61.
    Malo BM, Huerta A, Pizio O, and Sokolowski S (2000) Phase behavior of associating two- and four-bonding sites lennard-jones fluid in contact with solid surfaces. J. Phys. Chem. B. 104:7756–7763.CrossRefGoogle Scholar
  62. 62.
    Gatica SM, Johnson JK, Zhao XC, and Cole MW (2004) Wetting transition of water on graphite and other surfaces. J. Phys. Chem. B. 108:11704.CrossRefGoogle Scholar
  63. 63.
    Zhao X (2007) Wetting transition of water on graphite: Monte Carlo simulations. Phys. Rev. B. 76:041402.CrossRefGoogle Scholar
  64. 64.
    Sacquin S and Schoen M (2003) Fluid phase transitions at chemically heterogeous, nonplanar solid substrates: Surface versus confinement effects. J. Chem. Phys. 118:1453.CrossRefGoogle Scholar
  65. 65.
    Finn JE and Monson PA (1989) Prewetting at a fluid-solid interface via Monte Carlo Simulation. Phys. Rev. A. 39:6402.CrossRefGoogle Scholar
  66. 66.
    Finn JE and Monson PA (1993) Further studies of prewetting transitions via Monte Carlo simulations. J. Chem. Phys. 99:6897.CrossRefGoogle Scholar
  67. 67.
    Bojan MJ, Stan G, Curtarolo S, Steele WA, and Cole MW (1999) Wetting transitions of Ne. Physical Rev. E. 59:864.CrossRefGoogle Scholar
  68. 68.
    Curtarolo S, Stan G, Cole MW, Bojan MJ, and Steele WA (1999) Computer simulations of the wetting properties of neon on heterogeneous surfaces. Physical Rev. E. 59:4402.CrossRefGoogle Scholar
  69. 69.
    Curtarolo S, Stan G, Bojan MJ, Cole MW, and Steele WA (2000) Threshold criterion for wetting at the triple point. Physical Rev. E 61:1670.CrossRefGoogle Scholar
  70. 70.
    Curtarolo S, Cole MW, and Diehl RD (2004) Wetting transition behaviour of Xe on Cs and Cs/graphite. Phys. Rev. B. 70:115403.CrossRefGoogle Scholar
  71. 71.
    Omata K and Yonezawa F (1998) Prewetting and density fluctuations in the prewetting supercritical phase. J. Phys.: Condens. Matter. 10:9431.CrossRefGoogle Scholar
  72. 72.
    Bohlen H and Schoen M (2004) Aspects of prewtting at nonplanar surfaces. J. Chem. Phys. 120:6691.CrossRefGoogle Scholar
  73. 73.
    Kwak SK, Singh JK, and Adhikari J (2007) Molecular simulation study of vapor-liquid equilibrium of morse fluids. Chemical Product and Process Model. 2, part, no. 8Google Scholar
  74. 74.
    Errington JR (2004) Prewetting transitions for a model argon on solid carbon dioxide system. Langmuir. 20:3798.CrossRefGoogle Scholar
  75. 75.
    Errington JR and Wilbert DW (2005) Prewetting boundary tensions from Monte Carlo simulation. Phys. Rev. Lett. 95:226107.CrossRefGoogle Scholar
  76. 76.
    Singh JK Sarma G, and Kwak SK (2008) Thin-thick surface phase coexistence and boundary tension of the square-well fluid on a weak attractive surface. J. Chem. Phys. 128:044708.CrossRefGoogle Scholar
  77. 77.
    Sellers MS and Errington JR (2008) Influence of Substrate Strength on Wetting Behavior. J. Phys. Chem. C. 112:12905.CrossRefGoogle Scholar
  78. 78.
    Bojan MJ and WA. Steele (1998) Computer simulation in pores with rectangular cross-sections. Carbon. 36:1417.CrossRefGoogle Scholar
  79. 79.
    Davies GM and Seaton NA (1998) The effect of the choice of pore model on the characterization of the internal structure of microporous carbons using pore size distributions. Carbon 36:1473.CrossRefGoogle Scholar
  80. 80.
    Singh SK, Sinha A, Deo G, and Singh JK (2009) Vapor-liquid phase coexistence, critical properties and surface tension of confined alkanes. J. Phys. Chem. C. 113:7170.Google Scholar
  81. 81.
    Fisher ME and Nakanishi H (1981) Scaling theory for the criticality of fluids between plates. J. Chem. Phys. 75:5857.CrossRefGoogle Scholar
  82. 82.
    Nakanishi H and Fisher ME (1983) Critical point shifts in films. J. Chem. Phys. 78:3279.CrossRefGoogle Scholar
  83. 83.
    Thommes M and Findenegg GH (1994) Pore condensation and critical-point shift of a fluid in controlled-pore glass. Langmuir 10:4270.CrossRefGoogle Scholar
  84. 84.
    Morishige K and Shikimi M (1998) Capillary critical point of argon, nitrogen, oxygen, ethylene, and carbon dioxide in MCM-41. J. Chem. Phys. 108:7821.CrossRefGoogle Scholar
  85. 85.
    Evans R (1990) Fluids adsorbed in narrow pores: phase equilibria and structure. J. Phys.: Condens. Matter. 2:8989.CrossRefGoogle Scholar
  86. 86.
    Vishnyakov A, Piotrovskaya EM, Brodskaya EN, Votyakov EV, and Tovbin YK (2001) Critical propertiees of Lennard-Jones fluids in narrow slit-shaped pores. Langmuir 17:4451.CrossRefGoogle Scholar
  87. 87.
    Vortler HL (2008) Simulation of fluid phase equilibria in square-well fluids: From three to two dimensions Collect. Czech. Chem. Commun. 73:518.CrossRefGoogle Scholar
  88. 88.
    Zhang X and Wang W (2006) Square-well fluids in confined space with discretely attractive wall-fluid potentials: Critical point shift. Phys. Rev. E 74:062601.CrossRefGoogle Scholar
  89. 89.
    Singh JK and Kwak SK (2007) Surface tension and vapor liquid phase coexistence of confined square well fluid. J. Chem. Phys. 126:024702.CrossRefGoogle Scholar
  90. 90.
    Piner RD, Zhu J, Xu F, Hong S, and Mirkin CA (1999) Dip-pen nano lithography. Science. 283:661.CrossRefGoogle Scholar
  91. 91.
    Klein J and Kumacheva E (1995) Confinement-induced phase transitions in simple liquids. Science 269:816.CrossRefGoogle Scholar
  92. 92.
    Alawa M, Dube M, and Rost M (2004) Imbibition in disordered media. Adv. Phys. 53:83.CrossRefGoogle Scholar
  93. 93.
    Zimmermann U, Schneider H, Wegner LH, Wagner HJ, Szimtenings M, Haase A, and Bentrup FW (2002) What are the driving forces for water lifting in xylem conduit. Physiol. Plant. 114:372.CrossRefGoogle Scholar
  94. 94.
    Zimmermann U, Schneider H, Wegner LH, and Haase A (2004) Water ascent in tall trees: Does evolution of land plants rely on a highly metastable state? New Phytol. 162:575.CrossRefGoogle Scholar
  95. 95.
    Gummer G, Rasaiah JC, and Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature. 414:188.CrossRefGoogle Scholar
  96. 96.
    Warshburn EW (1921) The dynamics of capillary flow. phys. Rev XVII:273.CrossRefGoogle Scholar
  97. 97.
    Supple S and Quirke N (2003) Rapid imbibition of fluids in carbon nanotubes. Phys. Rev. Lett. 90:214501.CrossRefGoogle Scholar
  98. 98.
    Sokhan VP, Nicholson D, and Quirke N (2004) Transport properties of nitrogen in single walled carbon nanotubes. J. Chem. Phys. 120:3855.CrossRefGoogle Scholar
  99. 99.
    Martic G, Gentner F, Seveno D, Coulon D, De Coninck J, and Blake TD (2002) A molecular dynamics simulation of capillary imbibition. Langmuir. 18:7971.CrossRefGoogle Scholar
  100. 100.
    Supple S and Quirke N (2004) Molecular dynamics of transient oil flows in nanopores I: Imbibition speeds for single wall carbon nanotubes. J. Chem. Phys. 121:8571.CrossRefGoogle Scholar
  101. 101.
    Dimitrov DI, Milchev A, and Binder K (2007) Capillary rise in nanopores: Molecular dynamics evidence for the Lucas-Washburn equation. Phys. Rev. Lett. 99:054501.CrossRefGoogle Scholar
  102. 102.
    Pernodet N, Samuilov V, Shin K, Sokolov J, Rafailovich MH, Gersappe D, and Chu B (2000) DNA Electrophoresis on a Flat Surface. Phys. Rev. Lett. 85:5651.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Chemical EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations