Skip to main content

Molecular Simulation: Can it Help in the Development of Micro and Nano Devices?

  • Chapter
  • First Online:
Microfluidics and Microfabrication

Abstract

Molecular modeling and simulations is gaining popularity as a mean to investigate equilibrium and non-equilibrium properties of fluids near solid and polymeric surfaces, and under confinement in nano- and meso-pores. In this chapter, we focus on advanced Monte Carlo and molecular dynamics techniques to study thermodynamics and transport phenomena of fluids near surfaces.

The state of the art in the field is demonstrated by reviewing selected results of our recent computer simulations. We present Monte Carlo studies of phase equilibria of geometrically restricted fluids, wetting and prewetting transitions of fluids on a substrate. Further, we demonstrate molecular dynamics techniques to investigate the wettability of fluids on surfaces and fluid flow in nano-pores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ou J, Perot B, and Rothstein JP (2004) Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys. Fluids. 16:4635.

    Article  Google Scholar 

  2. Min TG and Kim J (2004) Effects of hydrophobic surface on skin-friction drag. Phys. Fluids. 16:L55.

    Article  Google Scholar 

  3. Cramer JC (2002) Essentials of Computational Chemistry, John Wiley & Sons, NewYork.

    Google Scholar 

  4. Leach AR (2001) Molecular Modelling: Principles and Applications, Prentice Hall, USA.

    Google Scholar 

  5. Cohen NC (1996) Guidebook on Molecular Modeling in Drug Design Academic Press, NewYork.

    Google Scholar 

  6. Allen MP and Tildesley DJ (1987) Computer Simulation of Liquids. Clarendon Press, Oxford.

    MATH  Google Scholar 

  7. Frenkel D and Smit B (2002) Understanding Molecular Simulation: From Algorithms to Applications, Academic Press, NewYork.

    Google Scholar 

  8. Chatterjee A and Vlachos DG (2007) An overview of spatial microscopic and accelerated kinetic Monte Carlo methods. J. Computer-Aided Mater. Des. 14:253.

    Article  Google Scholar 

  9. McQuarrie DA (1976) Statistical Mechanics. Harper & Row, New York.

    Google Scholar 

  10. Metropolis N,Rosenbluth AW,Rosenbluth MN,Teller AH, and Teller E (1953) Equation of state calculations by fast computing machines. J. Chem. Phys. 21:1087–1092.

    Article  Google Scholar 

  11. Singh JK, Kofke DA, and Errington JR (2003) Surface tension and vapor–liquid phase coexistence of the square-well fluid. J. Chem. Phys. 119:3405.

    Article  Google Scholar 

  12. Panagiotopoulos AZ (1987) Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Mol. Phys. 61:813.

    Article  Google Scholar 

  13. Panagiotopoulos AZ, Quirke N, Stapleton M, and Tildesley DJ (1988) Phase equilibria by simulation in the Gibbs ensemble: Alternative derivation, generalization and application to mixture and membrane equilibria. Mol. Phys. 63:527–545.

    Google Scholar 

  14. Smit B, Karaborni S, and Siepmann JI (1995) Computer simulation of vapor–liquid phase equilibria of n-alkanes. J. Chem. Phys. 102:2126.

    Article  Google Scholar 

  15. Siepmann JI, Karaborni S, and Smit B (1993). Simulating the critical behavior of complex fluids. Nature. 365:330–332.

    Article  Google Scholar 

  16. Escobedo F and de Pablo J (1996) Expanded grand-canonical and Gibbs ensemble Monte Carlo simulations of polymers. J. Chem. Phys. 105:4391.

    Article  Google Scholar 

  17. Kofke DA (1993) Gibbs-Duhem integration: A new method for direct evaluation of phase coexistence by molecular simulation. Molec. Phys. 78: 1331–1336.

    Article  Google Scholar 

  18. Kofke DA (1993) Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line. J. Chem. Phys. 98: 4149–4162.

    Article  Google Scholar 

  19. Denbigh K (1971) Principles of Chemical Equilibrium. Cambridge University, Cambridge.

    Google Scholar 

  20. Frenkel D and Smit B (1996) Understanding Molecular Simulation: From Algorithms to Applications, Academic Press, Cambridge.

    MATH  Google Scholar 

  21. Mehta M and Kofke DA (1994) Coexistence diagrams of mixtures by molecular simulation. Chem. Eng. Sci. 49:2633–2645.

    Article  Google Scholar 

  22. Fitzgerald M, Picard RR, and Silver RN (1999) Canonical transition probabilities for adaptive Metropolis simulation. Europhys. Lett. 46:282–287.

    Article  Google Scholar 

  23. Errington JR (2003) Evaluating Surface Tension using grand-canonical transition-matrix Monte Carlo simulation and finite-size scaling. Phys. Rev. E. 67:012102.

    Article  Google Scholar 

  24. Ferrenberg AM and Swendsen RH (1988) New Monte Carlo technique for studying phase transitions. Phys. Rev. Lett. 61:2635–2638.

    Article  Google Scholar 

  25. Errington JR (2003) Direct calculation of liquid–vapor phase equilibria from transition matrix Monte Carlo simulation. J. Chem. Phys. 118:9915.

    Article  Google Scholar 

  26. Singh JK (2009) Surface tension and vapour-liquid phase coexistence of variablerange hard-core attractive Yukawa fluids. Mol. Sim. 35:880.

    Google Scholar 

  27. Singh JK and Kofke DA (2004) Effect of Molecular Association on Interfacial Properties: A Monte Carlo Study. J. Chem. Phys. 121:9574.

    Article  Google Scholar 

  28. Singh JK, Adhikari J, and Kwak SK (2006) Vapor–liquid phase coexistence curves for Morse fluids. Fluid. Phase. Equil. 248:1–6.

    Article  Google Scholar 

  29. Singh JK and Errington JR (2006) Calculation of phase coexistence properties and surface tensions of n-alkanes with grand-canonical transition Monte Carlo simulation and finite-size scaling. J. Phys. Chem. B 116:1369.

    Article  Google Scholar 

  30. Gelb LD, Gubbins KE,Radhakrishnan R, and Bartkowiak MS (1999) Phase separation in confined systems. Rep. Prog. Phys. 62:1573–1659.

    Article  Google Scholar 

  31. Cahn JW (1977) J. Chem. Phys. 66:3667.

    Article  Google Scholar 

  32. Cassie ABD and Baxter S (1944) Wettability of porous surfaces. Trans. Faraday Soc. 40:546–551.

    Article  Google Scholar 

  33. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. Res. 28:988–994.

    Article  Google Scholar 

  34. Lafuma A and Quere D (2003) Nat. Mat. 2:457–460.

    Article  Google Scholar 

  35. Barthlott W and Neinhuis C (1997) Planta 2002:1–8.

    Article  Google Scholar 

  36. Yoshimitsu Z, Nakajima A, Watanabe T, and Hashimoto K (2002). Langmuir 18:5818.

    Article  Google Scholar 

  37. Lau KKS, Bico J, Teo KBK, Chhowalla M, Amaratunga GAJ, Milne WI, McKinley GH, and Gleason KK (2003) Nano Lett. 3:1701.

    Article  Google Scholar 

  38. Shirtcliffe NJ, McHale G, Newton MI, and Perry CC (2005) Langmuir. 21:937.

    Article  Google Scholar 

  39. Halverson JD, Maldarelli C, Couzis A, and Koplik J (2008) A molecular dynamics study of the motion of a nanodroplet of pure liquid on a wetting gradient. J. Chem. Phys. 129:164708.

    Article  Google Scholar 

  40. Shen Y, Couzis A, Koplik J, Maldarelli C, and Tomassone MS (2005) Molecular dynamics study of the influence of surfactant structure on surfactant-facilitated spreading of droplets on solid surfaces. Langmuir 21:12160.

    Article  Google Scholar 

  41. Werder T, Walther JH, Jaffe RL, Halicioglu T, and Koumoutsakos P (2003) On the water–carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J. Phys. Chem. B. 107:1345.

    Article  Google Scholar 

  42. Smith W, Forester TR, and Todorov IT (2009) The DLPOLY 2 user manual.

    Google Scholar 

  43. de Ruijter MJ, Blake TD, and De Coninck J (1999) Langmuir 15:7836–7847.

    Article  Google Scholar 

  44. Ingebrigtsen T and Toxvaerd S (2007) Contact angles of Lennard-Jones liquids and droplets on planer surfaces. J. phys. Chem. C 111:8518–8523.

    Article  Google Scholar 

  45. Hautman J and Klein ML (1991) Microscopic wetting phenomena. Phys. Rev. Lett. 67: 1763–1766.

    Article  Google Scholar 

  46. Srivastava P, Chapman WG, and Laibinis PE (2005) Odd–even variations in the wettability of n-alkanethiolate monolayers on gold by water and hexadecane: a molecular dynamics simulation study. Langmuir. 21:12171–12178.

    Article  Google Scholar 

  47. Rowlinson JS and Widom B (1982) Molecular Theory of Capillarity. Oxford, Oxford.

    Google Scholar 

  48. Wang JY, Betelu S, and Law BM (1999) Line tension effects near first-order wetting transitions. Phys. Rev. Lett. 83:3677–3680.

    Article  Google Scholar 

  49. Wang JY, Betelu S, and Law BM (2001) Line tension approaching a first-order wetting transition: Experimental results from contact angle measurements. Phys. Rev. E 63:031601-1–031601-11.

    Google Scholar 

  50. Hirvi JT and Pakkanen TA (2006) Molecular dynamics simulations of water droplets on polymer surfaces. J. Chem. Phys. 144712:144712-1–144712-11.

    Google Scholar 

  51. Grzelak EM and Errington JR (2008) Computation of interfacial properties via grand canonical transition matrix Monte Carlo simulation. J. Chem. Phys. 128:014710.

    Google Scholar 

  52. Ebner C and Saam WF (1977) Physical Review Letters 38:1486.

    Article  Google Scholar 

  53. Rutledge JE and Taborek P (1992) Prewetting phase diagram of 4He on Cesium. Phys. Rev. Lett. 69:937.

    Article  Google Scholar 

  54. Hallock RB (1995) Review of some of the experimental evidence for the novel wetting of helium on alkali metals. J. Low. Temp. Phys. 101:31.

    Google Scholar 

  55. Phillips JA, Ross D, Taborek P, and Rutledge JE (1998) Superfluid onset and prewetting of 4He on rubidium. Phys. Rev. B. 58:3361.

    Article  Google Scholar 

  56. Cheng GME, Lee HC, Chan MHW, Cole MW, Carraro C, Saam WF, and Toigo F (1993) Wetting transitions of liquid hydrogen films Phys. Rev. Lett. 70:1854–1857

    Article  Google Scholar 

  57. Kruchten F and Knorr K (2003) Multilayer Adsorption and Wetting of Acetone on Graphite. Phys. Rev. Lett. 91:085502.

    Article  Google Scholar 

  58. Sokolowski S and Fischer J (1990) Wetting transitions at the argon-solid-Co2 interface: Molecular-dynamics studies. J. Phys. Rev. A. 41:6866.

    Article  Google Scholar 

  59. Evans R and Tarazona P (1983) Wetting and thick-thin film transitions in a model of argon at a solid CO2 substrate. Phys. Rev. A. 28:1864.

    Article  Google Scholar 

  60. Shi W, Zhao X, and Johnson J (2002) Phase transitions of adsorbed fluids computed from multiple-histogram reweighting. Mol. Phys. 100:2139.

    Article  Google Scholar 

  61. Malo BM, Huerta A, Pizio O, and Sokolowski S (2000) Phase behavior of associating two- and four-bonding sites lennard-jones fluid in contact with solid surfaces. J. Phys. Chem. B. 104:7756–7763.

    Article  Google Scholar 

  62. Gatica SM, Johnson JK, Zhao XC, and Cole MW (2004) Wetting transition of water on graphite and other surfaces. J. Phys. Chem. B. 108:11704.

    Article  Google Scholar 

  63. Zhao X (2007) Wetting transition of water on graphite: Monte Carlo simulations. Phys. Rev. B. 76:041402.

    Article  Google Scholar 

  64. Sacquin S and Schoen M (2003) Fluid phase transitions at chemically heterogeous, nonplanar solid substrates: Surface versus confinement effects. J. Chem. Phys. 118:1453.

    Article  Google Scholar 

  65. Finn JE and Monson PA (1989) Prewetting at a fluid-solid interface via Monte Carlo Simulation. Phys. Rev. A. 39:6402.

    Article  Google Scholar 

  66. Finn JE and Monson PA (1993) Further studies of prewetting transitions via Monte Carlo simulations. J. Chem. Phys. 99:6897.

    Article  Google Scholar 

  67. Bojan MJ, Stan G, Curtarolo S, Steele WA, and Cole MW (1999) Wetting transitions of Ne. Physical Rev. E. 59:864.

    Article  Google Scholar 

  68. Curtarolo S, Stan G, Cole MW, Bojan MJ, and Steele WA (1999) Computer simulations of the wetting properties of neon on heterogeneous surfaces. Physical Rev. E. 59:4402.

    Article  Google Scholar 

  69. Curtarolo S, Stan G, Bojan MJ, Cole MW, and Steele WA (2000) Threshold criterion for wetting at the triple point. Physical Rev. E 61:1670.

    Article  Google Scholar 

  70. Curtarolo S, Cole MW, and Diehl RD (2004) Wetting transition behaviour of Xe on Cs and Cs/graphite. Phys. Rev. B. 70:115403.

    Article  Google Scholar 

  71. Omata K and Yonezawa F (1998) Prewetting and density fluctuations in the prewetting supercritical phase. J. Phys.: Condens. Matter. 10:9431.

    Article  Google Scholar 

  72. Bohlen H and Schoen M (2004) Aspects of prewtting at nonplanar surfaces. J. Chem. Phys. 120:6691.

    Article  Google Scholar 

  73. Kwak SK, Singh JK, and Adhikari J (2007) Molecular simulation study of vapor-liquid equilibrium of morse fluids. Chemical Product and Process Model. 2, part, no. 8

    Google Scholar 

  74. Errington JR (2004) Prewetting transitions for a model argon on solid carbon dioxide system. Langmuir. 20:3798.

    Article  Google Scholar 

  75. Errington JR and Wilbert DW (2005) Prewetting boundary tensions from Monte Carlo simulation. Phys. Rev. Lett. 95:226107.

    Article  Google Scholar 

  76. Singh JK Sarma G, and Kwak SK (2008) Thin-thick surface phase coexistence and boundary tension of the square-well fluid on a weak attractive surface. J. Chem. Phys. 128:044708.

    Article  Google Scholar 

  77. Sellers MS and Errington JR (2008) Influence of Substrate Strength on Wetting Behavior. J. Phys. Chem. C. 112:12905.

    Article  Google Scholar 

  78. Bojan MJ and WA. Steele (1998) Computer simulation in pores with rectangular cross-sections. Carbon. 36:1417.

    Article  Google Scholar 

  79. Davies GM and Seaton NA (1998) The effect of the choice of pore model on the characterization of the internal structure of microporous carbons using pore size distributions. Carbon 36:1473.

    Article  Google Scholar 

  80. Singh SK, Sinha A, Deo G, and Singh JK (2009) Vapor-liquid phase coexistence, critical properties and surface tension of confined alkanes. J. Phys. Chem. C. 113:7170.

    Google Scholar 

  81. Fisher ME and Nakanishi H (1981) Scaling theory for the criticality of fluids between plates. J. Chem. Phys. 75:5857.

    Article  Google Scholar 

  82. Nakanishi H and Fisher ME (1983) Critical point shifts in films. J. Chem. Phys. 78:3279.

    Article  Google Scholar 

  83. Thommes M and Findenegg GH (1994) Pore condensation and critical-point shift of a fluid in controlled-pore glass. Langmuir 10:4270.

    Article  Google Scholar 

  84. Morishige K and Shikimi M (1998) Capillary critical point of argon, nitrogen, oxygen, ethylene, and carbon dioxide in MCM-41. J. Chem. Phys. 108:7821.

    Article  Google Scholar 

  85. Evans R (1990) Fluids adsorbed in narrow pores: phase equilibria and structure. J. Phys.: Condens. Matter. 2:8989.

    Article  Google Scholar 

  86. Vishnyakov A, Piotrovskaya EM, Brodskaya EN, Votyakov EV, and Tovbin YK (2001) Critical propertiees of Lennard-Jones fluids in narrow slit-shaped pores. Langmuir 17:4451.

    Article  Google Scholar 

  87. Vortler HL (2008) Simulation of fluid phase equilibria in square-well fluids: From three to two dimensions Collect. Czech. Chem. Commun. 73:518.

    Article  Google Scholar 

  88. Zhang X and Wang W (2006) Square-well fluids in confined space with discretely attractive wall-fluid potentials: Critical point shift. Phys. Rev. E 74:062601.

    Article  Google Scholar 

  89. Singh JK and Kwak SK (2007) Surface tension and vapor liquid phase coexistence of confined square well fluid. J. Chem. Phys. 126:024702.

    Article  Google Scholar 

  90. Piner RD, Zhu J, Xu F, Hong S, and Mirkin CA (1999) Dip-pen nano lithography. Science. 283:661.

    Article  Google Scholar 

  91. Klein J and Kumacheva E (1995) Confinement-induced phase transitions in simple liquids. Science 269:816.

    Article  Google Scholar 

  92. Alawa M, Dube M, and Rost M (2004) Imbibition in disordered media. Adv. Phys. 53:83.

    Article  Google Scholar 

  93. Zimmermann U, Schneider H, Wegner LH, Wagner HJ, Szimtenings M, Haase A, and Bentrup FW (2002) What are the driving forces for water lifting in xylem conduit. Physiol. Plant. 114:372.

    Article  Google Scholar 

  94. Zimmermann U, Schneider H, Wegner LH, and Haase A (2004) Water ascent in tall trees: Does evolution of land plants rely on a highly metastable state? New Phytol. 162:575.

    Article  Google Scholar 

  95. Gummer G, Rasaiah JC, and Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature. 414:188.

    Article  Google Scholar 

  96. Warshburn EW (1921) The dynamics of capillary flow. phys. Rev XVII:273.

    Article  Google Scholar 

  97. Supple S and Quirke N (2003) Rapid imbibition of fluids in carbon nanotubes. Phys. Rev. Lett. 90:214501.

    Article  Google Scholar 

  98. Sokhan VP, Nicholson D, and Quirke N (2004) Transport properties of nitrogen in single walled carbon nanotubes. J. Chem. Phys. 120:3855.

    Article  Google Scholar 

  99. Martic G, Gentner F, Seveno D, Coulon D, De Coninck J, and Blake TD (2002) A molecular dynamics simulation of capillary imbibition. Langmuir. 18:7971.

    Article  Google Scholar 

  100. Supple S and Quirke N (2004) Molecular dynamics of transient oil flows in nanopores I: Imbibition speeds for single wall carbon nanotubes. J. Chem. Phys. 121:8571.

    Article  Google Scholar 

  101. Dimitrov DI, Milchev A, and Binder K (2007) Capillary rise in nanopores: Molecular dynamics evidence for the Lucas-Washburn equation. Phys. Rev. Lett. 99:054501.

    Article  Google Scholar 

  102. Pernodet N, Samuilov V, Shin K, Sokolov J, Rafailovich MH, Gersappe D, and Chu B (2000) DNA Electrophoresis on a Flat Surface. Phys. Rev. Lett. 85:5651.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Department of Science and Technology and Department of Atomic Energy of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayant K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Singh, J.K. (2010). Molecular Simulation: Can it Help in the Development of Micro and Nano Devices?. In: Chakraborty, S. (eds) Microfluidics and Microfabrication. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1543-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1543-6_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1542-9

  • Online ISBN: 978-1-4419-1543-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics