Skip to main content

Viral Studies Point the Way: Mechanisms of Intercellular Transport

  • Chapter
  • First Online:
Short and Long Distance Signaling

Part of the book series: Advances in Plant Biology ((AIPB,volume 3))

Abstract

Plant development depends on the intercellular transport of macromolecules through gatable channels in the cell wall known as plasmodesmata (PD). Plant viruses exploit this intercellular trafficking pathway to move cell-to-cell and to cause systemic infection. Dependent on viral species, movement through PD can occur in virion or non-virion form and by different mechanisms for targeting and modification of the pore. These mechanisms are supported by viral movement proteins and by other virus-encoded factors that interact among themselves and with plant cellular components to facilitate virus movement in a coordinated and regulated fashion. This chapter provides an overview about current knowledge in virus cell-to-cell movement with the aim to extract principal mechanisms playing a role in intercellular transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akamatsu N, Takeda A, Kishimoto M, Kaido M, Okuno T, Mise K (2007) Phosphorylation and interaction of the movement and coat proteins of Brome mosaic virus in infected barley protoplasts. Arch Virol 152:2087–2093

    PubMed  CAS  Google Scholar 

  • Alzhanova DV, Napuli AJ, Creamer R, Dolja VV (2001) Cell-to-cell movement and assembly of a plant closterovirus: roles for the capsid proteins and Hsp70 homolog. EMBO J 20:6997–7007

    PubMed  CAS  Google Scholar 

  • Amari K, Boutant E, Hofmann C, Schmitt-Keichinger C, Fernandez-Calvino L, Didier P, Lerich A, Mutterer J, Thomas CL, Heinlein M, Mely Y, Maule AJ, Ritzenthaler C (2010) A family of plasmodesmal proteins with receptor-like properties for plant viral movement proteins. PLoS Pathog 6:e1001119

    PubMed  Google Scholar 

  • Andreev IA, Hyon Kim S, Kalinina NO, Rakitina DV, Fitzgerald AG, Palukaitis P, Taliansky ME (2004) Molecular interactions between a plant virus movement protein and RNA: force spectroscopy investigation. J Mol Biol 339:1041–1047

    PubMed  CAS  Google Scholar 

  • Aoki K, Kragler F, Xoconostle-Cazares B, Lucas WJ (2002) A subclass of plant heat shock cognate 70 chaperones carries a motif that facilitates trafficking through plasmodesmata. Proc Natl Acad Sci USA 99:16342–16347

    PubMed  CAS  Google Scholar 

  • Arce-Johnson P, Kahn TW, Reimann-Philipp U, Rivera-Bustamente R, Beachy RN (1995) The amount of movement protein produced in transgenic plants influences the establishment, local movement, and systemic spread of infection by movement protein-deficient Tobacco mosaic virus. Mol Plant Microbe Interact 3:415–423

    Google Scholar 

  • Ashby J, Boutant E, Seemanpillai M, Groner A, Sambade A, Ritzenthaler C, Heinlein M (2006) Tobacco mosaic virus movement protein functions as a structural microtubule-associated protein. J Virol 80:8329–8344

    PubMed  CAS  Google Scholar 

  • Asurmendi S, Berg RH, Koo JC, Beachy RN (2004) Coat protein regulates formation of replication complexes during Tobacco mosaic virus infection. Proc Natl Acad Sci USA 101:1415–1420

    PubMed  CAS  Google Scholar 

  • Atkins D, Hull R, Wells B, Roberts K, Moore P, Beachy RN (1991) The Tobacco mosaic virus 30 K movement protein in transgenic tobacco plants is localized to plasmodesmata. J Gen Virol 72:209–211

    PubMed  CAS  Google Scholar 

  • Avisar D, Prokhnevsky AI, Dolja VV (2008a) Class VIII myosins are required for plasmodesmatal localization of a closterovirus Hsp70 homolog. J Virol 82:2836–2843

    PubMed  CAS  Google Scholar 

  • Avisar D, Prokhnevsky AI, Makarova KS, Koonin EV, Dolja VV (2008b) Myosin XI-K is required for rapid trafficking of golgi stacks, peroxisomes, and mitochondria in leaf cells of Nicotiana benthamiana. Plant Physiol 146:1098–1108

    PubMed  CAS  Google Scholar 

  • Baluska F, Samaj J, Napier R, Volkmann D (1999) Maize calreticulin localizes preferentially to plasmodesmata in root apex. Plant J 19:481–488

    PubMed  CAS  Google Scholar 

  • Baron-Epel O, Hernandez D, Jiang LW, Meiners S, Schindler M (1988) Dynamic continuity of cytoplasmic and membrane compartments between plant cells. J Cell Biol 106:715–721

    PubMed  CAS  Google Scholar 

  • Barton DA, Cole L, Collings DA, Liu DY, Smith PM, Day DA, Overall RL (2011) Cell-to-cell transport via the lumen of the endoplasmic reticulum. Plant J 66:806–817

    PubMed  CAS  Google Scholar 

  • Bayne EH, Rakitina DV, Morozov SY, Baulcombe DC (2005) Cell-to-cell movement of Potato potexvirus X is dependent on suppression of RNA silencing. Plant J 44:471–482

    PubMed  CAS  Google Scholar 

  • Belin C, Schmitt C, Gaire F, Walter B, Demangeat G, Pinck L (1999) The nine C-terminal residues of the Grapevine fanleaf nepovirus movement protein are critical for systemic virus spread. J Gen Virol 80:1347–1356

    PubMed  CAS  Google Scholar 

  • Bell K, Oparka K (2011) Imaging plasmodesmata. Protoplasma 248:9–25

    PubMed  Google Scholar 

  • Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2:437–445

    PubMed  CAS  Google Scholar 

  • Bhat RA, Panstruga R (2005) Lipid rafts in plants. Planta 223:5–19

    PubMed  CAS  Google Scholar 

  • Blackman LM, Overall RL (1998) Immunolocalization of the cytoskeleton to plasmodesmata of Chara corallina. Plant J 14:733–741

    CAS  Google Scholar 

  • Blackman LM, Harper JDI, Overall RL (1999) Localization of a centrin-like protein to higher plant plasmodesmata. Eur J Cell Biol 78:297–304

    PubMed  CAS  Google Scholar 

  • Blum H, Gross HJ, Beier H (1989) The expression of the TMV-specific 30-kDa protein in tobacco protoplasts is strongly and selectively enhanced by actinomycin. Virology 169:51–61

    PubMed  CAS  Google Scholar 

  • Boevink P, Oparka K, Santa Cruz S, Martin B, Betteridge A, Hawes C (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J 15:441–447

    PubMed  CAS  Google Scholar 

  • Boutant E, Fitterer C, Ritzenthaler C, Heinlein M (2009) Interaction of the Tobacco mosaic virus movement protein with microtubules during the cell cycle in tobacco BY-2 cells. Protoplasma 237:3–12

    PubMed  CAS  Google Scholar 

  • Boyko V, Ferralli J, Heinlein M (2000a) Cell-to-cell movement of TMV RNA is temperature-dependent and corresponds to the association of movement protein with microtubules. Plant J 22:315–325

    PubMed  CAS  Google Scholar 

  • Boyko V, Ferralli J, Ashby J, Schellenbaum P, Heinlein M (2000b) Function of microtubules in intercellular transport of plant virus RNA. Nat Cell Biol 2:826–832

    PubMed  CAS  Google Scholar 

  • Boyko V, van der Laak J, Ferralli J, Suslova E, Kwon M-O, Heinlein M (2000c) Cellular targets of functional and dysfunctional mutants of Tobacco mosaic virus movement protein fused to GFP. J Virol 74:11339–11346

    PubMed  CAS  Google Scholar 

  • Boyko V, Ashby JA, Suslova E, Ferralli J, Sterthaus O, Deom CM, Heinlein M (2002) Intramolecular complementing mutations in Tobacco mosaic virus movement protein confirm a role for microtubule association in viral RNA transport. J Virol 76:3974–3980

    PubMed  CAS  Google Scholar 

  • Boyko V, Hu Q, Seemanpillai M, Ashby J, Heinlein M (2007) Validation of microtubule-associated Tobacco mosaic virus RNA movement and involvement of microtubule-aligned particle trafficking. Plant J 51:589–603

    PubMed  CAS  Google Scholar 

  • Brandner K, Sambade A, Boutant E, Didier P, Mely Y, Ritzenthaler C, Heinlein M (2008) TMV movement protein interacts with GFP-tagged microtubule Endbinding Protein 1 (EB1). Plant Physiol 147:611–623

    PubMed  CAS  Google Scholar 

  • Brill LM, Nunn RS, Kahn TW, Yeager M, Beachy RN (2000) Recombinant Tobacco mosaic virus movement protein is an RNA-binding, α-helical membrane protein. Proc Natl Acad Sci USA 97:7112–7117

    PubMed  CAS  Google Scholar 

  • Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    PubMed  CAS  Google Scholar 

  • Bucher GL, Tarina C, Heinlein M, Di Serio F, Meins F Jr, Iglesias VA (2001) Local expression of enzymatically active class 1 beta-1,3-glucanase enhances symptoms of TMV infection in tobacco. Plant J 28:361–369

    PubMed  CAS  Google Scholar 

  • Burch-Smith TM, Zambryski PC (2010) Loss of increased size exclusion limit (ISE)1 or ISE2 increases the formation of secondary plasmodesmata. Curr Biol 20:989–993

    PubMed  CAS  Google Scholar 

  • Burch-Smith TM, Stonebloom S, Xu M, Zambryski PC (2011) Plasmodesmata during development: re-examination of the importance of primary, secondary, and branched plasmodesmata structure versus function. Protoplasma 248:61–74

    PubMed  CAS  Google Scholar 

  • Cantrill LC, Overall RL, Goodwin PB (1999) Cell-to-cell communication via plant endomembranes. Cell Biol Int 23:653–661

    PubMed  CAS  Google Scholar 

  • Canut H, Carrasco A, Galaud JP, Cassan C, Bouyssou H, Vita N, Ferrara P, Pont-Lezica R (1998) High affinity RGD-binding sites at the plasma membrane of Arabidopsis thaliana links the cell wall. Plant J 16:63–71

    PubMed  CAS  Google Scholar 

  • Cao M, Ye X, Willie K, Lin J, Zhang X, Redinbaugh MG, Simon AE, Morris TJ, Qu F (2010) The capsid protein of Turnip crinkle virus overcomes two separate defense barriers to facilitate systemic movement of the virus in Arabidopsis. J Virol 84:7793–7802

    PubMed  CAS  Google Scholar 

  • Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, Zhou J, Lindgren O, Moreno-Risueno MA, Vaten A, Thitamadee S, Campilho A, Sebastian J, Bowman JL, Helariutta Y, Benfey PN (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–321

    PubMed  CAS  Google Scholar 

  • Carrington JC, Jensen PE, Schaad MC (1998) Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement. Plant J 14:393–400

    PubMed  CAS  Google Scholar 

  • Carvalho CM, Wellink J, Ribeiro SG, Goldbach RW, Van Lent JW (2003) The C-terminal region of the movement protein of Cowpea mosaic virus is involved in binding to the large but not to the small coat protein. J Gen Virol 84:2271–2277

    PubMed  CAS  Google Scholar 

  • Carvalho MF, Turgeon R, Lazarowitz SG (2006) The geminivirus nuclear shuttle protein NSP inhibits the activity of AtNSI, a vascular-expressed Arabidopsis acetyltransferase regulated with the sink-to-source transition. Plant Physiol 140:1317–1330

    PubMed  CAS  Google Scholar 

  • Carvalho CM, Fontenelle MR, Florentino LH, Santos AA, Zerbini FM, Fontes EP (2008) A novel nucleocytoplasmic traffic GTPase identified as a functional target of the bipartite geminivirus nuclear shuttle protein. Plant J 55:869–880

    PubMed  CAS  Google Scholar 

  • Chapman SN, Hills G, Watts J, Baulcombe DC (1992) Mutational analysis of the coat protein gene of Potato virus X: effects on virion morphology and viral pathogenicity. Virology 191: 223–230

    PubMed  CAS  Google Scholar 

  • Chen M-H, Citovsky V (2003) Systemic movement of a tobamovirus requires host cell pectin methylesterase. Plant J 35:386–392

    PubMed  CAS  Google Scholar 

  • Chen M-H, Sheng J, Hind G, Handa AK, Citovsky V (2000) Interaction between the Tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J 19:913–920

    PubMed  CAS  Google Scholar 

  • Chen MH, Tian GW, Gafni Y, Citovsky V (2005) Effects of calreticulin on viral cell-to-cell movement. Plant Physiol 138:1866–1876

    PubMed  CAS  Google Scholar 

  • Cheng CP, Tzafrir I, Lockhart BE, Olszewski NE (1998) Tubules containing virions are present in plant tissues infected with Commelina yellow mottle badnavirus. J Gen Virol 79:925–929

    PubMed  CAS  Google Scholar 

  • Chichili GR, Rodgers W (2009) Cytoskeleton-membrane interactions in membrane raft structure. Cell Mol Life Sci 66:2319–2328

    PubMed  CAS  Google Scholar 

  • Chitwood DH, Nogueira FT, Howell MD, Montgomery TA, Carrington JC, Timmermans MC (2009) Pattern formation via small RNA mobility. Genes Dev 23:549–554

    PubMed  CAS  Google Scholar 

  • Chowdhury SR, Savithri HS (2011) Interaction of Sesbania mosaic virus movement protein with the coat protein – implications for viral spread. FEBS J 278:257–272

    PubMed  CAS  Google Scholar 

  • Christensen N, Tilsner J, Bell K, Hammann P, Parton R, Lacomme C, Oparka K (2009) The 5′cap of Tobacco Mosaic Virus (TMV) is required for virion attachment to the actin/ER network during early infection. Traffic 10:536–551

    PubMed  CAS  Google Scholar 

  • Citovsky V, Knorr D, Schuster G, Zambryski P (1990) The P30 movement protein of Tobacco mosaic virus is a single-stranded nucleic acid binding protein. Cell 60:637–647

    PubMed  CAS  Google Scholar 

  • Citovsky V, Wong ML, Shaw AL, Venkataram Prasad BV, Zambryski P (1992) Visualization and characterization of Tobacco mosaic virus movement protein binding to single-stranded nucleic acids. Plant Cell 4:397–411

    PubMed  CAS  Google Scholar 

  • Citovsky V, McLean BG, Zupan JR, Zambryski P (1993) Phosphorylation of Tobacco mosaic virus cell-to-cell movement protein by a developmentally regulated plant cell wall-associated protein kinase. Genes Dev 7:904–910

    PubMed  CAS  Google Scholar 

  • Cleland RE, Fujiwara T, Lucas WJ (1994) Plasmodesmal-mediated cell-to-cell transport in wheat roots is modulated by anaerobic stress. Protoplasma 178:81–85

    PubMed  CAS  Google Scholar 

  • Cotton S, Grangeon R, Thivierge K, Mathieu I, Ide C, Wei T, Wang A, Laliberte JF (2009) Turnip mosaic virus RNA replication complex vesicles are mobile, align with microfilaments, and are each derived from a single viral genome. J Virol 83:10460–10471

    PubMed  CAS  Google Scholar 

  • Cowan GH, Lioliopoulou F, Ziegler A, Torrance L (2002) Subcellular localization, protein interactions, and RNA binding activity of Potato mop-top virus triple gene block proteins. Virology 298:106–115

    PubMed  CAS  Google Scholar 

  • Crawford KM, Zambryski PC (2000) Subcellular localization determines the availability of ­non-targeted proteins to plasmodesmatal transport. Curr Biol 10:1032–1040

    PubMed  CAS  Google Scholar 

  • Crawford KM, Zambryski PC (2001) Non-targeted and targeted protein movement through plasmodesmata in leaves in different developmental and physiological states. Plant Physiol 125: 1802–1812

    PubMed  CAS  Google Scholar 

  • Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, Gallagher KL, Wang JY, Blilou I, Scheres B, Benfey PN (2007) An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316:421–425

    PubMed  CAS  Google Scholar 

  • Curin M, Ojangu EL, Trutnyeva K, Ilau B, Truve E, Waigmann E (2007) MPB2C, a microtubule-associated plant factor, is required for microtubular accumulation of Tobacco mosaic virus movement protein in plants. Plant Physiol 143:801–811

    PubMed  CAS  Google Scholar 

  • Deom CM, Oliver MJ, Beachy RN (1987) The 30-kilodalton gene product of Tobacco mosaic virus potentiates virus movement. Science 237:384–389

    Google Scholar 

  • Desvoyes B, Faure-Rabasse S, Chen MH, Park JW, Scholthof HB (2002) A novel plant homeodomain protein interacts in a functionally relevant manner with a virus movement protein. Plant Physiol 129:1521–1532

    PubMed  CAS  Google Scholar 

  • Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    PubMed  CAS  Google Scholar 

  • Ding B, Turgeon R, Parthasarathy MV (1992a) Substructure of freeze-substituted plasmodesmata. Protoplasma 169:28–41

    Google Scholar 

  • Ding B, Haudenshield JS, Hull RJ, Wolf S, Beachy RN, Lucas WJ (1992b) Secondary plasmodesmata are specific sites of localization of the Tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 4:915–928

    PubMed  CAS  Google Scholar 

  • Ding B, Kwon M-O, Warnberg L (1996) Evidence that actin filaments are involved in controlling the permeability of plasmodesmata in tobacco mesophyll. Plant J 10:157–164

    Google Scholar 

  • Dolja VV, Haldeman R, Robertson NL, Dougherty WG, Carrington JC (1994) Distinct functions of capsid protein in assembly and movement of Tobacco etch virus. EMBO J 13:1482–1491

    PubMed  CAS  Google Scholar 

  • Dolja VV, Haldeman-Cahill R, Montgomery AE, Vandenbosch KA, Carrington JC (1995) Capsid protein determinants involved in cell-to-cell and long distance movement of Tobacco etch potyvirus. Virology 206:1007–1016

    PubMed  CAS  Google Scholar 

  • Dolja VV, Kreuze JF, Valkonen JPT (2006) Comparative and functional genomics of closteroviruses. Virus Res 117:38–51

    PubMed  CAS  Google Scholar 

  • Dorokhov YL, Alexandrov NM, Miroshnichenko NA, Atabekov JG (1983) Isolation and analysis of virus-specific ribonucleoprotein of Tobacco mosaic virus-infected tobacco. Virology 127: 237–252

    PubMed  CAS  Google Scholar 

  • Dorokhov YL, Alexandrova NM, Miroshnichenko NA, Atabekov JG (1984) The informosome-like virus-specific ribonucleoprotein (vRNP) may be involved in the transport of Tobacco mosaic virus infection. Virology 137:127–134

    PubMed  CAS  Google Scholar 

  • Dorokhov YL, Mäkinen K, Yu O, Merits A, Saarinen J, Kalkkinen N, Atabekov JG, Saarma M (1999) A novel function for a ubiquitous plant enzyme pectin methylesterase: the host-cell receptor for the Tobacco mosaic virus movement protein. FEBS Lett 461:223–228

    PubMed  CAS  Google Scholar 

  • Dunoyer P, Thomas C, Harrison S, Revers F, Maule A (2004) A cysteine-rich plant protein potentiates potyvirus movement through an interaction with the virus genome-linked protein VPg. J Virol 78:2301–2309

    PubMed  CAS  Google Scholar 

  • Dunoyer P, Himber C, Voinnet O (2005) DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat Genet 37:1356–1360

    PubMed  CAS  Google Scholar 

  • Dunoyer P, Schott G, Himber C, Meyer D, Takeda A, Carrington JC, Voinnet O (2010a) Small RNA duplexes function as mobile silencing signals between plant cells. Science 328:912–916

    PubMed  CAS  Google Scholar 

  • Dunoyer P, Brosnan CA, Schott G, Wang Y, Jay F, Alioua A, Himber C, Voinnet O (2010b) An endogenous, systemic RNAi pathway in plants. EMBO J 29:1699–1712

    PubMed  CAS  Google Scholar 

  • Ehlers K, van Bel AJ (2010) Dynamics of plasmodesmal connectivity in successive interfaces of the cambial zone. Planta 231:371–385

    PubMed  CAS  Google Scholar 

  • Epel BL (2009) Plant viruses spread by diffusion on ER-associated movement-protein-rafts through plasmodesmata gated by viral induced host beta-1,3-glucanases. Semin Cell Dev Biol 20:1074–1081

    PubMed  CAS  Google Scholar 

  • Erhardt M, Stussi-Garaud C, Guilley H, Richards KE, Jonard G, Bouzoubaa S (1999) The first triple gene block protein of Peanut clump virus localizes to the plasmodesmata during virus infection. Virology 264:220–229

    PubMed  CAS  Google Scholar 

  • Erhardt M, Morant M, Ritzenthaler C, Stussi-Garaud C, Guilley H, Richards K, Jonard G, Bouzoubaa S, Gilmer D (2000) P42 movement protein of Beet necrotic yellow vein virus is targeted by the movement proteins P13 and P15 to punctate bodies associated with plasmodesmata. Mol Plant Microbe Interact 13:520–528

    PubMed  CAS  Google Scholar 

  • Faik A, Laboure AM, Gulino D, Mandaron P, Falconet D (1998) A plant surface protein sharing structural properties with animal integrins. Eur J Biochem 253:552–559

    PubMed  CAS  Google Scholar 

  • Faulkner C, Maule A (2010) Opportunities and successes in the search for plasmodesmal proteins. Protoplasma 248:27–38

    PubMed  Google Scholar 

  • Fernandez-Calvino L, Faulkner C, Walshaw J, Saalbach G, Bayer E, Benitez-Alfonso Y, Maule A (2011) Arabidopsis plasmodesmal proteome. PLoS One 6:e18880

    PubMed  CAS  Google Scholar 

  • Ferralli J, Ashby J, Fasler M, Boyko V, Heinlein M (2006) Disruption of microtubule organization and centrosome function by expression of Tobacco mosaic virus movement protein. J Virol 80:5807–5821

    PubMed  CAS  Google Scholar 

  • Fitzgibbon J, Bell K, King E, Oparka K (2010) Super-resolution imaging of plasmodesmata using three-dimensional structured illumination microscopy. Plant Physiol 153:1453–1463

    PubMed  CAS  Google Scholar 

  • Florentino LH, Santos AA, Fontenelle MR, Pinheiro GL, Zerbini FM, Baracat-Pereira MC, Fontes EP (2006) A PERK-like receptor kinase interacts with the geminivirus nuclear shuttle protein and potentiates viral infection. J Virol 80:6648–6656

    PubMed  CAS  Google Scholar 

  • Foster RLS, Beck DL, Guilford PJ, Voot DM, Van Dolleweerd CJ, Andersen MT (1992) The coat protein of White clover mosaic potexvirus has a role in facilitating cell-to-cell transport in plants. Virology 191:480–484

    Google Scholar 

  • Fridborg I, Grainger J, Page A, Coleman M, Findlay K, Angell S (2003) TIP, a novel host factor linking callose degradation with the cell-to-cell movement of Potato virus X. Mol Plant Microbe Interact 16:132–140

    PubMed  CAS  Google Scholar 

  • Fujiki M, Kawakami S, Kim RW, Beachy RN (2006) Domains of Tobacco mosaic virus movement protein essential for its membrane association. J Gen Virol 87:2699–2707

    PubMed  CAS  Google Scholar 

  • Gardiner WE, Sunter G, Brand L, Elmer JS, Rogers SG, Bisaro DM (1988) Genetic analysis of Tomato golden mosaic virus: the coat protein is not required for systemic spread or symptom development. EMBO J 7:899–904

    PubMed  CAS  Google Scholar 

  • Genoves A, Navarro JA, Pallas V (2010) The Intra- and intercellular movement of Melon necrotic spot virus (MNSV) depends on an active secretory pathway. Mol Plant Microbe Interact 23: 263–272

    PubMed  CAS  Google Scholar 

  • Giddings TH, Staehelin LA (1978) Plasma membrane architecture of Anabaena cylindrica: occurrence of microplasmodesmata and changes associated with heterocyst development and the cell cycle. Eur J Cell Biol 16:235–249

    Google Scholar 

  • Gillespie T, Boevink P, Haupt S, Roberts AG, Toth R, Vantine T, Chapman S, Oparka KJ (2002) Functional analysis of a DNA shuffled movement protein reveals that microtubules are dispensable for the cell-to-cell movement of Tobacco mosaic virus. Plant Cell 14:1207–1222

    PubMed  CAS  Google Scholar 

  • Golomb L, Abu-Abied M, Belausov E, Sadot E (2008) Different subcellular localizations and functions of Arabidopsis myosin VIII. BMC Plant Biol 8:3

    PubMed  Google Scholar 

  • Gorshkova EN, Erokhina TN, Stroganova TA, Yelina NE, Zamyatin AA, Kalinina NO, Schiemann J, Solovyev AG, Morozov SY (2003) Immunodetection and fluorescence microscopy of transgenically expressed hordeivirus TGBp3 movement protein reveals its association with endoplasmic reticulum elements in close proximity to plasmodesmata. J Gen Virol 84:985–994

    PubMed  CAS  Google Scholar 

  • Grabski S, de Feijter AW, Schindler M (1993) Endoplasmic reticulum forms a dynamic continuum for lipid diffusion between contiguous soybean root cells. Plant Cell 5:25–38

    PubMed  CAS  Google Scholar 

  • Grieco F, Castellano MA, Di Sansebastiano GP, Maggipinto G, Neuhaus JM, Martelli GP (1999) Subcellular localization and in vivo identification of the putative movement protein of Olive latent virus 2. J Gen Virol 80(Pt 5):1103–1109

    PubMed  CAS  Google Scholar 

  • Griffing LR (2010) Networking in the endoplasmic reticulum. Biochem Soc Trans 38:747–753

    PubMed  CAS  Google Scholar 

  • Guenoune-Gelbart D, Elbaum M, Sagi G, Levy A, Epel BL (2008) Tobacco mosaic virus (TMV) replicase and movement protein function synergistically in facilitating TMV spread by lateral diffusion in the plasmodesmal desmotubule of Nicotiana benthamiana. Mol Plant Microbe Interact 21:335–345

    PubMed  CAS  Google Scholar 

  • Guseman JM, Lee JS, Bogenschutz NL, Peterson KM, Virata RE, Xie B, Kanaoka MM, Hong Z, Torii KU (2010) Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis chorus (glucan synthase-like 8). Development 137:1731–1741

    PubMed  CAS  Google Scholar 

  • Gutierrez R, Lindeboom JJ, Paredez AR, Emons AM, Ehrhardt DW (2009) Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat Cell Biol 11:797–806

    PubMed  CAS  Google Scholar 

  • Haley A, Hunter T, Kiberstis P, Zimmern D (1995) Multiple serine phosphorylation sites on the 30 kDa TMV cell-to-cell movement protein synthesized in tobacco protoplasts. Plant J 8: 715–724

    PubMed  CAS  Google Scholar 

  • Ham B-K, Lee T-H, You JS, Nam Y-W, Kim J-K, Paek K-H (1999) Isolation of a putative tobacco host factor interacting with Cucumber mosaic virus 2b protein by yeast two-hybrid screening. Mol Cells 9:548–555

    PubMed  CAS  Google Scholar 

  • Harries PA, Schoelz JE, Nelson RS (2009a) Covering common ground: F-actin-dependent transport of plant viral protein inclusions reveals a novel mechanism for movement utilized by unrelated viral proteins. Plant Signal Behav 4:454–456

    PubMed  CAS  Google Scholar 

  • Harries PA, Palanichelvam K, Yu W, Schoelz JE, Nelson RS (2009b) The Cauliflower mosaic virus protein P6 forms motile inclusions that traffic along actin microfilaments and stabilize microtubules. Plant Physiol 149:1005–1016

    PubMed  CAS  Google Scholar 

  • Harries PA, Park JW, Sasaki N, Ballard KD, Maule AJ, Nelson RS (2009c) Differing requirements for actin and myosin by plant viruses for sustained intercellular movement. Proc Natl Acad Sci USA 106:17594–17599

    PubMed  CAS  Google Scholar 

  • Haupt S, Cowan GH, Ziegler A, Roberts AG, Oparka KJ, Torrance L (2005) Two plant-viral movement proteins traffic in the endocytic recycling pathway. Plant Cell 17:164–181

    PubMed  CAS  Google Scholar 

  • Havelda Z, Maule AJ (2000) Complex spatial responses to Cucumber mosaic virus infection in susceptible Cucurbita pepo cotyledons. Plant Cell 12:1975–1985

    PubMed  CAS  Google Scholar 

  • Haywood V, Kragler F, Lucas WJ (2002) Plasmodesmata: pathways for protein and ribonucleoprotein signaling. Plant Cell 14(Supplement):S303–S325

    PubMed  CAS  Google Scholar 

  • Heinlein M (2002) Plasmodesmata: dynamic regulation and role in macromolecular cell-to-cell signalling. Curr Opin Plant Biol 5:543–552

    PubMed  CAS  Google Scholar 

  • Heinlein M (2005) Systemic RNA silencing. In: Oparka K (ed) Plasmodesmata. Oxford, Blackwell, pp 212–240

    Google Scholar 

  • Heinlein M (2006) TMV movement protein targets cell-cell channels in plants and prokaryotes: possible roles of tubulin- and FtsZ-based cytoskeletons. In: Baluska F, Volkmann D, Barlow PW (eds) Cell-cell channels. Landes Bioscience, Austin, pp 176–182

    Google Scholar 

  • Heinlein M, Epel BL (2004) Macromolecular transport and signaling through plasmodesmata. Int Rev Cytol 235:93–164

    PubMed  CAS  Google Scholar 

  • Heinlein M, Epel BL, Padgett HS, Beachy RN (1995) Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science 270:1983–1985

    PubMed  CAS  Google Scholar 

  • Heinlein M, Wood MR, Thiel T, Beachy RN (1998a) Targeting and modification of prokaryotic cell-cell junctions by Tobacco mosaic virus cell-to-cell movement protein. Plant J 14:345–351

    PubMed  CAS  Google Scholar 

  • Heinlein M, Padgett HS, Gens JS, Pickard BG, Casper SJ, Epel BL, Beachy RN (1998b) Changing patterns of localization of the Tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 10:1107–1120

    PubMed  CAS  Google Scholar 

  • Hirashima K, Watanabe Y (2001) Tobamovirus replicase coding region is involved in cell-to-cell movement. J Virol 75:8831–8836

    PubMed  CAS  Google Scholar 

  • Hirashima K, Watanabe Y (2003) RNA helicase domain of tobamovirus replicase executes cell-to-cell movement possibly through collaboration with its nonconserved region. J Virol 77: 12357–12362

    PubMed  CAS  Google Scholar 

  • Hofius D, Maier AT, Dietrich C, Jungkunz I, Bornke F, Maiss E, Sonnewald U (2007) Capsid protein-mediated recruitment of host DnaJ-like proteins is required for Potato virus Y infection in tobacco plants. J Virol 81:11870–11880

    PubMed  CAS  Google Scholar 

  • Hofmann C, Sambade A, Heinlein M (2007) Plasmodesmata and intercellular transport of viral RNA. Biochem Soc Trans 35:142–145

    PubMed  CAS  Google Scholar 

  • Hofmann C, Niehl A, Sambade A, Steinmetz A, Heinlein M (2009) Inhibition of Tobacco mosaic virus movement by expression of an actin-binding protein. Plant Physiol 149:1810–1823

    PubMed  CAS  Google Scholar 

  • Holdaway-Clarke TL, Walker NA, Hepler PK, Overall RL (2000) Physiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmata. Planta 210:329–335

    PubMed  CAS  Google Scholar 

  • Holt CA, Beachy RN (1991) In vivo complementation of infectious transcripts from mutant Tobacco mosaic virus cDNAs in transgenic plants. Virology 181:109–117

    PubMed  CAS  Google Scholar 

  • Howard AR, Heppler ML, Ju HJ, Krishnamurthy K, Payton ME, Verchot-Lubicz J (2004) Potato virus X TGBp1 induces plasmodesmata gating and moves between cells in several host species whereas CP moves only in N. benthamiana leaves. Virology 328:185–197

    PubMed  CAS  Google Scholar 

  • Huang Z, Andianov VM, Han Y, Howell SH (2001) Identification of Arabidopsis proteins that interact with the Cauliflower mosaic virus (CaMV) movement protein. Plant Mol Biol 47: 663–675

    PubMed  CAS  Google Scholar 

  • Huang T, Bohlenius H, Eriksson S, Parcy F, Nilsson O (2005) The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309:1694–1696

    PubMed  CAS  Google Scholar 

  • Iglesias VA, Meins F Jr (2000) Movement of plant viruses is delayed in a β-1,3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. Plant J 21:157–166

    PubMed  CAS  Google Scholar 

  • Ishiwatari Y, Fujiwara T, McFarland KC, Nemoto K, Hayashi H, Chino M, Lucas WJ (1998) Rice phloem thioredoxin h has the capacity to mediate its own cell-to-cell transport through plasmodesmata. Planta 205:12–22

    PubMed  CAS  Google Scholar 

  • Jackson AO, Lim HS, Bragg J, Ganesan U, Lee MY (2009) Hordeivirus replication, movement, and pathogenesis. Annu Rev Phytopathol 47:385–422

    PubMed  CAS  Google Scholar 

  • Jimenez I, Lopez L, Alamillo JM, Valli A, Garcia JA (2006) Identification of a Plum pox virus CI-interacting protein from chloroplast that has a negative effect in virus infection. Mol Plant Microbe Interact 19:350–358

    PubMed  CAS  Google Scholar 

  • Ju HJ, Samuels TD, Wang YS, Blancaflor E, Payton M, Mitra R, Krishnamurthy K, Nelson RS, Verchot-Lubicz J (2005) The Potato virus X TGBp2 movement protein associates with endoplasmic reticulum-derived vesicles during virus infection. Plant Physiol 138:1877–1895

    PubMed  CAS  Google Scholar 

  • Kahn TW, Lapidot M, Heinlein M, Reichel C, Cooper B, Gafny R, Beachy RN (1998) Domains of the TMV movement protein involved in subcellular localization. Plant J 15:15–25

    PubMed  CAS  Google Scholar 

  • Kaido M, Inoue Y, Takeda Y, Sugiyama K, Takeda A, Mori M, Tamai A, Meshi T, Okuno T, Mise K (2007) Downregulation of the NbNACa1 gene encoding a movement-protein-interacting protein reduces cell-to-cell movement of Brome mosaic virus in Nicotiana benthamiana. Mol Plant Microbe Interact 20:671–681

    PubMed  CAS  Google Scholar 

  • Kalinina NO, Rakitina DA, Solovyev AG, Schiemann J, Morozov SY (2002) RNA helicase activity of the plant virus movement proteins encoded by the first gene of the triple gene block. Virology 296:321–329

    PubMed  CAS  Google Scholar 

  • Karpova OV, Ivanov KI, Rodionova P, Dorokhov YL, Atabekov JG (1997) Nontranslatability and dissimilar behavior in plants and protoplasts of viral RNA and movement protein complexes formed in vitro. Virology 230:11–21

    PubMed  CAS  Google Scholar 

  • Karpova OV, Rodionova NP, Ivanov KI, Kozlovsky SV, Dorokhov YL, Atabekov JG (1999) Phosphorylation of Tobacco mosaic virus movement protein abolishes its translation repressing ability. Virology 261:20–24

    PubMed  CAS  Google Scholar 

  • Kasteel DTJ, Perbal M-C, Boyer J-C, Wellink J, Goldbach RW, Maule AJ, van Lent JWM (1996) The movement proteins of Cowpea mosaic virus and Cauliflower mosaic virus induce tubular structures in plant and insect cells. J Gen Virol 77:2857–2864

    PubMed  CAS  Google Scholar 

  • Kawakami S, Padgett HS, Hosokawa D, Okada Y, Beachy RN, Watanabe Y (1999) Phosphorylation and/or presence of serine 37 in the movement protein of Tomato mosaic tobamovirus is essential for intracellular localization and stability in vivo. J Virol 73:6831–6840

    PubMed  CAS  Google Scholar 

  • Kawakami S, Watanabe Y, Beachy RN (2004) Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proc Natl Acad Sci USA 101:6291–6296

    PubMed  CAS  Google Scholar 

  • Kehr J, Buhtz A (2008) Long distance transport and movement of RNA through the phloem. J Exp Bot 59:85–92

    PubMed  CAS  Google Scholar 

  • Kim JY (2005) Regulation of short-distance transport of RNA and protein. Curr Opin Plant Biol 8:45–52

    PubMed  CAS  Google Scholar 

  • Kim JY, Yan Z, Cilia M, Khalfan-Jagani Z, Jackson D (2002) Intercellular trafficking of a KNOTTED1 green fluorescent protein fusion in the leaf and shoot meristem of Arabidopsis. Proc Natl Acad Sci USA 99:4103–4108

    PubMed  CAS  Google Scholar 

  • Kim SH, Kalinina NO, Andreev I, Ryabov EV, Fitzgerald AG, Taliansky ME, Palukaitis P (2004) The C-terminal 33 amino acids of the Cucumber mosaic virus 3a protein affect virus movement, RNA binding and inhibition of infection and translation. J Gen Virol 85:221–230

    PubMed  CAS  Google Scholar 

  • Kim I, Cho E, Crawford K, Hempel FD, Zambryski PC (2005a) Cell-to-cell movement of GFP during embryogenesis and early seedling development in Arabidopsis. Proc Natl Acad Sci USA 102:2227–2231

    PubMed  CAS  Google Scholar 

  • Kim JY, Rim Y, Wang J, Jackson D (2005b) A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking. Genes Dev 19:788–793

    PubMed  CAS  Google Scholar 

  • Kim SH, Macfarlane S, Kalinina NO, Rakitina DV, Ryabov EV, Gillespie T, Haupt S, Brown JW, Taliansky M (2007) Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proc Natl Acad Sci USA 104: 11115–11120

    PubMed  CAS  Google Scholar 

  • Kitajima EW, Lauritis JA, Swift H (1969) Fine structure of zinnial leaf tissues infected with Dahlia mosaic virus. Virology 39:240–249

    PubMed  CAS  Google Scholar 

  • Kleinow T, Nischang M, Beck A, Kratzer U, Tanwir F, Preiss W, Kepp G, Jeske H (2009) Three C-terminal phosphorylation sites in the Abutilon mosaic virus movement protein affect symptom development and viral DNA accumulation. Virology 390:89–101

    PubMed  CAS  Google Scholar 

  • Kotlizky G, Katz A, van der Laak J, Boyko V, Lapidot M, Beachy RN, Heinlein M, Epel BL (2001) A dysfunctional movement protein of Tobacco mosaic virus interferes with targeting of wild type movement protein to microtubules. Mol Plant Microbe Interact 7:895–904

    Google Scholar 

  • Kragler F, Monzer J, Shash K, Xoconoctle-Cazares B, Lucas WJ (1998) Cell-to-cell transport of proteins: requirement for unfolding and characterization of binding to a putative plasmodesmal receptor. Plant J 15:367–381

    CAS  Google Scholar 

  • Kragler F, Monzer J, Xoconostle-Cazares B, Lucas WJ (2000) Peptide antagonists of the plasmodesmal macromolecular trafficking pathway. EMBO J 19:2856–2868

    PubMed  CAS  Google Scholar 

  • Kragler F, Curin M, Trutnyeva K, Gansch A, Waigmann E (2003) MPB2C, a microtubule-associated plant protein binds to and interferes with cell-to-cell transport of Tobacco mosaic virus movement protein. Plant Physiol 132:1870–1883

    PubMed  CAS  Google Scholar 

  • Krenz B, Windeisen V, Wege C, Jeske H, Kleinow T (2010) A plastid-targeted heat shock cognate 70 kDa protein interacts with the Abutilon mosaic virus movement protein. Virology 401:6–17

    PubMed  CAS  Google Scholar 

  • Krishnamurthy K, Heppler M, Mitra R, Blancaflor E, Payton M, Nelson RS, Verchot-Lubicz J (2003) The Potato virus X TGBp3 protein associates with the ER network for virus cell-to-cell movement. Virology 309:135–151

    PubMed  CAS  Google Scholar 

  • Kurata T, Ishida T, Kawabata-Awai C, Noguchi M, Hattori S, Sano R, Nagasaka R, Tominaga R, Koshino-Kimura Y, Kato T, Sato S, Tabata S, Okada K, Wada T (2005) Cell-to-cell movement of the CAPRICE protein in Arabidopsis root epidermal cell differentiation. Development 132:5387–5398

    PubMed  CAS  Google Scholar 

  • Laporte C, Vetter G, Loudes AM, Robinson DG, Hillmer S, Stussi-Garaud C, Ritzenthaler C (2003) Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of Grapevine fanleaf virus movement protein in tobacco BY-2 cells. Plant Cell 15:2058–2075

    PubMed  CAS  Google Scholar 

  • Laval V, Chabannes M, Carriere M, Canut H, Barre A, Rouge P, Pont-Lezica R, Galaud J (1999) A family of Arabidopsis plasma membrane receptors presenting animal beta-integrin domains. Biochim Biophys Acta 1435:61–70

    PubMed  CAS  Google Scholar 

  • Lawrence DM, Jackson AO (2001) Interactions of the TGB1 protein during cell-to-cell movement of Barley stripe mosaic virus. J Virol 75:8712–8723

    PubMed  CAS  Google Scholar 

  • Lee JY, Lu H (2011) Plasmodesmata: the battleground against intruders. Trends Plant Sci 16: 201–210

    PubMed  CAS  Google Scholar 

  • Lee J-Y, Yoo B-C, Lucas WJ (2000) Parallels between nuclear-pore and plasmodesmal trafficking of informational molecules. Planta 210:177–187

    PubMed  CAS  Google Scholar 

  • Lee J-Y, Yoo B-C, Rojas MR, Gomez-Ospina N, Staehelin LA, Lucas WJ (2003) Selective trafficking of non-cell-autonomous proteins mediated by NtNCAPP1. Science 299:392–396

    PubMed  CAS  Google Scholar 

  • Lee JY, Taoka K, Yoo BC, Ben-Nissan G, Kim DJ, Lucas WJ (2005) Plasmodesmal-associated protein kinase in tobacco and Arabidopsis recognizes a subset of non-cell-autonomous proteins. Plant Cell 17:2817–2831

    PubMed  CAS  Google Scholar 

  • Lee SC, Wu CH, Wang CW (2010) Traffic of a viral movement protein complex to the highly curved tubules of the cortical endoplasmic reticulum. Traffic 11:912–930

    PubMed  CAS  Google Scholar 

  • Lekkerkerker A, Wellink J, Yuan P, van Lent J, Goldbach R, van Kammen AB (1996) Distinct functional domains in the Cowpea mosaic virus movement protein. J Virol 70:5658–5661

    PubMed  CAS  Google Scholar 

  • Leonard S, Plante D, Wittmann S, Daigneault N, Fortin MG, Laliberte JF (2000) Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J Virol 74:7730–7737

    PubMed  CAS  Google Scholar 

  • Leonard S, Viel C, Beauchemin C, Daigneault N, Fortin MG, Laliberte JF (2004) Interaction of VPg-Pro of Turnip mosaic virus with the translation initiation factor 4E and the poly(A)-binding protein in planta. J Gen Virol 85:1055–1063

    PubMed  CAS  Google Scholar 

  • Levy A, Erlanger M, Rosenthal M, Epel BL (2007) A plasmodesmata-associated beta-1,3-­glucanase in Arabidopsis. Plant J 49:669–682

    PubMed  CAS  Google Scholar 

  • Lew RR (1994) Regulation of electrical coupling between Arabidopsis root hairs. Planta 193: 67–73

    CAS  Google Scholar 

  • Lewis JD, Lazarowitz SG (2010) Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proc Natl Acad Sci USA 107:2491–2496

    PubMed  CAS  Google Scholar 

  • Li Q, Palukaitis P (1996) Comparison of the nucleic acid- and NTP-binding properties of the movement protein of Cucumber mosaic cucumovirus and Tobacco mosaic tobamovirus. Virology 216:71–79

    PubMed  CAS  Google Scholar 

  • Li Y, Wu MY, Song HH, Hu X, Qiu BS (2005) Identification of a tobacco protein interacting with Tomato mosaic virus coat protein and facilitating long-distance movement of virus. Arch Virol 150:1993–2008

    PubMed  CAS  Google Scholar 

  • Lim HS, Bragg JN, Ganesan U, Lawrence DM, Yu J, Isogai M, Hammond J, Jackson AO (2008) Triple gene block protein interactions involved in movement of Barley stripe mosaic virus. J Virol 82:4991–5006

    PubMed  CAS  Google Scholar 

  • Lin B, Heaton LA (2001) An Arabidopsis thaliana protein interacts with a movement protein of Turnip crinkle virus in yeast cells and in vitro. J Gen Virol 82:1245–1251

    PubMed  CAS  Google Scholar 

  • Liu H, Boulton MI, Oparka KJ, Davies JW (2001) Interaction of the movement and coat proteins of Maize streak virus: implications for the transport of viral DNA. J Gen Virol 82:35–44

    PubMed  CAS  Google Scholar 

  • Liu J-Z, Blancaflor EB, Nelson RS (2005) The Tobacco mosaic virus 126-kilodalton protein, a constituent of the virus replication complex, alone or within the complex aligns with and traffics along microfilaments. Plant Physiol 138:1877–1895

    Google Scholar 

  • Lough TJ, Shash K, Xoconostle-Cazares B, Hofstra KR, Beck DL, Balmori E, Forster RL, Lucas WJ (1998) Molecular dissection of the mechanism by which potexvirus triple gene block proteins mediate cell-to-cell transport of infectious RNA. Mol Plant Microbe Interact 11:801–814

    CAS  Google Scholar 

  • Lough TJ, Netzler NE, Emerson SJ, Sutherland P, Carr F, Beck DL, Lucas WJ, Forster RL (2000) Cell-to-cell movement of potexviruses: evidence for a ribonucleoprotein complex involving the coat protein and first triple gene block protein. Mol Plant Microbe Interact 13:962–974

    PubMed  CAS  Google Scholar 

  • Luby-Phelps K (2000) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192:189–221

    PubMed  CAS  Google Scholar 

  • Lucas WJ (2006) Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology 344:169–184

    PubMed  CAS  Google Scholar 

  • Lucas WJ, Bouche-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B, Hake S (1995) Selective trafficking of KNOTTED1 homeodomain protein and its RNA through plasmodesmata. Science 270:1980–1983

    PubMed  CAS  Google Scholar 

  • Lucas WJ, Yoo B-C, Kragler F (2001) RNA as a long-distance information macromolecule in plants. Nat Rev Mol Cell Biol 2:849–857

    PubMed  CAS  Google Scholar 

  • Lucas WJ, Ham BK, Kim JY (2009) Plasmodesmata – bridging the gap between neighboring plant cells. Trends Cell Biol 19:495–503

    PubMed  CAS  Google Scholar 

  • Makarov VV, Rybakova EN, Efimov AV, Dobrov EN, Serebryakova MV, Solovyev AG, Yaminsky IV, Taliansky ME, Morozov SY, Kalinina NO (2009) Domain organization of the N-terminal portion of hordeivirus movement protein TGBp1. J Gen Virol 90:3022–3032

    PubMed  CAS  Google Scholar 

  • Mariano AC, Andrade MO, Santos AA, Carolino SM, Oliveira ML, Baracat-Pereira MC, Brommonshenkel SH, Fontes EP (2004) Identification of a novel receptor-like protein kinase that interacts with a geminivirus nuclear shuttle protein. Virology 318:24–31

    PubMed  CAS  Google Scholar 

  • Martens HJ, Roberts AG, Oparka KJ, Schulz A (2006) Quantification of plasmodesmatal endoplasmic reticulum coupling between sieve elements and companion cells using fluorescence redistribution after photobleaching. Plant Physiol 142:471–480

    PubMed  CAS  Google Scholar 

  • Más P, Beachy RN (1999) Replication of Tobacco mosaic virus on endoplasmic reticulum and role of the cytoskeleton and virus movement in intracellular distribution of viral RNA. J Cell Biol 147:945–958

    PubMed  Google Scholar 

  • Matsushita Y, Hanazawa K, Yoshioka K, Oguchi T, Kawakami S, Watanabe Y, Nishiguchi M, Nyunoya H (2000) In vitro phosphorylation of the movement protein of Tomato mosaic tobamovirus by a cellular kinase. J Gen Virol 81:2095–2102

    PubMed  CAS  Google Scholar 

  • Matsushita Y, Deguchi M, Youda M, Nishiguchi M, Nyunoya H (2001) The Tomato mosaic tobamovirus movement protein interacts with a putative transcriptional coactivator KELP. Mol Cells 12:57–66

    PubMed  CAS  Google Scholar 

  • Matsushita M, Miyakawa O, Deguchi M, Nishiguchi M, Nyunoya H (2002) Cloning of a tobacco cDNA coding for a putative transcriptional coactivator MBF1 that interacts with the Tomato mosaic virus movement protein. J Exp Bot 53:1531–1532

    PubMed  CAS  Google Scholar 

  • Matsushita Y, Ohshima M, Yoshioka K, Nishiguchi M, Nyunoya H (2003) The catalytic subunit of protein kinase CK2 phosphorylates in vitro the movement protein of Tomato mosaic virus. J Gen Virol 84:497–505

    PubMed  CAS  Google Scholar 

  • Maule AJ (2008) Plasmodesmata: structure, function and biogenesis. Curr Opin Plant Biol 11: 680–686

    PubMed  CAS  Google Scholar 

  • McGarry RC, Barron YD, Carvalho MF, Hill JE, Gold D, Cheung E, kraus WL, Lazarowitz SG (2003) A novel Arabidopsis acetyltransferase interacts with the geminivirus movement protein NSP. Plant Cell 15:1605–1618

    PubMed  CAS  Google Scholar 

  • McLean BG, Zupan J, Zambryski PC (1995) Tobacco mosaic virus movement protein associates with the cytoskeleton in tobacco plants. Plant Cell 7:2101–2114

    PubMed  CAS  Google Scholar 

  • Meshi T, Watanabe Y, Saito T, Sugimoto A, Maeda T, Okada Y (1987) Function of the 30 kd ­protein of Tobacco mosaic virus: involvement in cell-to-cell movement and dispensability for replication. EMBO J 6:2557–2563

    PubMed  CAS  Google Scholar 

  • Meusser B, Hirsch C, Jarosch E, Sommer T (2005) ERAD: the long road to destruction. Nat Cell Biol 7:766–772

    PubMed  CAS  Google Scholar 

  • Min BE, Martin K, Wang RY, Tafelmeyer P, Bridges M, Goodin M (2010) A host-factor interaction and localization map for a plant-adapted rhabdovirus implicates cytoplasm-tethered transcription activators in cell-to-cell movement. Mol Plant Microbe Interact 23:1420–1432

    PubMed  CAS  Google Scholar 

  • Modena NA, Zelada AM, Conte F, Mentaberry A (2008) Phosphorylation of the TGBp1 movement protein of Potato virus X by a Nicotiana tabacum CK2-like activity. Virus Res 137:16–23

    PubMed  CAS  Google Scholar 

  • Moore P, Fenczik CA, Deom CM, Beachy RN (1992) Developmental changes in plasmodesmata in transgenic tobacco expressing the movement protein of Tobacco mosaic virus. Protoplasma 170:115–127

    Google Scholar 

  • Morozov SY, Solovyev AG (2003) Triple gene block: modular design of a multifunctional machine for plant virus movement. J Gen Virol 84:1351–1366

    PubMed  CAS  Google Scholar 

  • Morvan O, Quentin M, Jauneau A, Mareck A, Morvan C (1998) Immunogold localization of pectin methylesterases in the cortical tissues of flax hypocotyl. Protoplasma 202:175–184

    CAS  Google Scholar 

  • Nagano H, Mise K, Furusawa I, Okuno T (2001) Conversion in the requirement of coat protein in cell-to-cell movement mediated by the Cucumber mosaic virus movement protein. J Virol 75:8045–8053

    PubMed  CAS  Google Scholar 

  • Nagpal P, Quatrano RS (1999) Isolation and characterization of a cDNA clone from Arabidopsis thaliana with partial sequence similarity to integrins. Gene 230:33–40

    PubMed  CAS  Google Scholar 

  • Noris E, Vaira AM, Caciagli P, Masenga V, Gronenborn B, Accotto GP (1998) Amino acids in the capsid protein of Tomato yellow leaf curl virus that are crucial for systemic infection, particle formation, and insect transmission. J Virol 72:10050–10057

    PubMed  CAS  Google Scholar 

  • Northcote DH, Davey R, Lay J (1989) Use of antisera to localize callose, xylan and arabinogalactan in the cell-plate, primary and secondary walls of plant-cells. Planta 178:353–366

    CAS  Google Scholar 

  • Nziengui H, Bouhidel K, Pillon D, Der C, Marty F, Schoefs B (2007) Reticulon-like proteins in Arabidopsis thaliana: structural organization and ER localization. FEBS Lett 581:3356–3362

    PubMed  CAS  Google Scholar 

  • Oparka KJ, Prior DAM, Santa Cruz S, Padgett HS, Beachy RN (1997) Gating of epidermal plasmodesmata is restricted to the leading edge of expanding infection sites of Tobacco mosaic virus. Plant J 12:781–789

    PubMed  CAS  Google Scholar 

  • Oparka KJ, Roberts AG, Boevink P, Santa Cruz S, Roberts I, Pradel KS, Imlau A, Kotlizky G, Sauer N, Epel B (1999) Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97:743–754

    PubMed  CAS  Google Scholar 

  • Ouko MO, Sambade A, Brandner K, Niehl A, Peña E, Ahad A, Heinlein M, Nick P (2010) Tobacco mutants with reduced microtubule dynamics are less susceptible to TMV. Plant J 62:829–839

    PubMed  CAS  Google Scholar 

  • Overall RL (1999) Structure of plasmodesmata. In: van Bel AJE, van Kesteren WJP (eds) Plasmodesmata, structure, function, role in cell communication. Springer, Berlin/Heidelberg/New York, pp 129–148

    Google Scholar 

  • Overall RL, Blackman LM (1996) A model of the macromolecular structure of plasmodesmata. Trends Plant Sci 9:307–311

    Google Scholar 

  • Paape M, Solovyev AG, Erokhina TN, Minina EA, Schepetilnikov MV, Lesemann DE, Schiemann J, Morozov SY, Kellmann JW (2006) At-4/1, an interactor of the Tomato spotted wilt virus movement protein, belongs to a new family of plant proteins capable of directed intra- and intercellular trafficking. Mol Plant Microbe Interact 19:874–883

    PubMed  CAS  Google Scholar 

  • Padgett HS, Epel BL, Kahn TW, Heinlein M, Watanabe Y, Beachy RN (1996) Distribution of tobamovirus movement protein in infected cells and implications for cell-to-cell spread of infection. Plant J 10:1079–1088

    PubMed  CAS  Google Scholar 

  • Padidam M, Beachy RN, Fauquet CM (1995) Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. J Gen Virol 76:25–35

    PubMed  CAS  Google Scholar 

  • Perbal M-C, Thomas CL, Maule AJ (1993) Cauliflower mosaic virus gene I product (P1) forms tubular structures which extend from the surface of infected protoplasts. Virology 195: 281–285

    PubMed  CAS  Google Scholar 

  • Perbal M-C, Haughn G, Saedler H, Schwarz-Sommer Z (1996) Non-autonomous function of Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking. Development 122:3433–3441

    PubMed  CAS  Google Scholar 

  • Peremyslov VV, Hagiwara Y, Dolya VV (1999) HSP70 homolog functions in cell-to-cell movement of a plant virus. Proc Natl Acad Sci USA 96:14771–14776

    PubMed  CAS  Google Scholar 

  • Pouwels J, Van Der Krogt GN, Van Lent J, Bisseling T, Wellink J (2002) The cytoskeleton and the secretory pathway are not involved in targeting the Cowpea mosaic virus movement protein to the cell periphery. Virology 297:48–56

    PubMed  CAS  Google Scholar 

  • Pouwels J, van der Velden T, Willemse J, Borst JW, van Lent J, Bisseling T, Wellink J (2004) Studies on the origin and structure of tubules made by the movement protein of Cowpea mosaic virus. J Gen Virol 85:3787–3796

    PubMed  CAS  Google Scholar 

  • Prokhnevsky AI, Peremyslov VV, Dolja VV (2005) Actin cytoskeleton is involved in targeting of a viral Hsp70 homolog to the cell periphery. J Virol 79:14421–14428

    PubMed  CAS  Google Scholar 

  • Prokhnevsky AI, Peremyslov VV, Dolja VV (2008) Overlapping functions of the four class XI myosins in Arabidopsis growth, root hair elongation, and organelle motility. Proc Natl Acad Sci USA 105:19744–19749

    PubMed  CAS  Google Scholar 

  • Radford JE, White RG (1998) Localization of a myosin-like protein to plasmodesmata. Plant J 14:743–750

    PubMed  CAS  Google Scholar 

  • Radford JE, White RG (2011) Inhibitors of myosin, but not actin, alter transport through Tradescantia plasmodesmata. Protoplasma 248:205–216

    PubMed  CAS  Google Scholar 

  • Raffaele S, Bayer E, Lafarge D, Cluzet S, German Retana S, Boubekeur T, Leborgne-Castel N, Carde JP, Lherminier J, Noirot E, Satiat-Jeunemaitre B, Laroche-Traineau J, Moreau P, Ott T, Maule AJ, Reymond P, Simon-Plas F, Farmer EE, Bessoule JJ, Mongrand S (2009) Remorin, a solanaceae protein resident in membrane rafts and plasmodesmata, impairs Potato virus X movement. Plant Cell 21:1541–1555

    PubMed  CAS  Google Scholar 

  • Rao W, Isaac RE, Keen JN (2011) An analysis of the Caenorhabditis elegans lipid raft proteome using geLC-MS/MS. J Proteomics 74:242–253

    PubMed  CAS  Google Scholar 

  • Reichel C, Beachy RN (1998) Tobacco mosaic virus infection induces severe morphological changes of the endoplasmatic reticulum. Proc Natl Acad Sci USA 95:11169–11174

    PubMed  CAS  Google Scholar 

  • Reichel C, Beachy RN (2000) Degradation of the Tobacco mosaic virus movement protein by the 26S proteasome. J Virol 74:3330–3337

    PubMed  CAS  Google Scholar 

  • Reichelt S, Knight AE, Hodge TP, Baluska F, Samaj J, Volkmann D, Kendrick-Jones J (1999) Characterization of the unconventional myosin VIII in plant cells and its localization at the post-cytokinetic cell wall. Plant J 19:555–569

    PubMed  CAS  Google Scholar 

  • Rhee Y, Tzfira T, Chen MH, Waigmann E, Citovsky V (2000) Cell-to-cell movement of Tobacco mosaic virus: enigmas and explanations. Mol Plant Pathol 1:33–39

    PubMed  CAS  Google Scholar 

  • Ribeiro D, Goldbach R, Kormelink R (2009) Requirements for ER-arrest and sequential exit to the golgi of Tomato spotted wilt virus glycoproteins. Traffic 10:664–672

    PubMed  CAS  Google Scholar 

  • Rigden JE, Krake LR, Rezaian MA, Dry IB (1994) ORF C4 of Tomato leaf curl geminivirus is a determinant of symptom severity. Virology 204:847–850

    PubMed  CAS  Google Scholar 

  • Ritzenthaler C, Schmidt A-C, Michler P, Stussi-Garaud C, Pinck L (1995) Grapevine fanleaf nepovirus putative movement protein is involved in tubule formation in vivo. Mol Plant Microbe Interact 8:379–387

    CAS  Google Scholar 

  • Robaglia C, Caranta C (2006) Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci 11:40–45

    PubMed  CAS  Google Scholar 

  • Roberts IM, Wang D, Findlay K, Maule AJ (1998) Ultrastructural and temporal observations of the potyvirus cylindrical inclusions (CIs) show that the CI protein acts transiently in aiding virus movement. Virology 245:173–181

    PubMed  CAS  Google Scholar 

  • Rojas MR, Zerbini M, Allison RF, Gilbertson RL, Lucas WJ (1997) Capsid protein and helper component-proteinase function as potyvirus cell-to-cell movement proteins. Virology 237: 283–295

    PubMed  CAS  Google Scholar 

  • Rojas MR, Jiang H, Salati R, Xoconostle-Cazares B, Sudarshana MR, Lucas WJ, Gilbertson RL (2001) Functional analysis of proteins involved in movement of the monopartite begomovirus, Tomato yellow leaf curl virus. Virology 291:110–125

    PubMed  CAS  Google Scholar 

  • Rojas MR, Hagen C, Lucas WJ, Gilbertson RL (2005) Exploiting chinks in the plant’s armor: evolution and emergence of geminiviruses. Annu Rev Phytopathol 43:361–394

    PubMed  CAS  Google Scholar 

  • Ruggenthaler P, Fichtenbauer D, Krasensky J, Jonak C, Waigmann E (2009) Microtubule-associated protein AtMPB2C plays a role in organization of cortical microtubules, stomata patterning, and tobamovirus infectivity. Plant Physiol 149:1354–1365

    PubMed  CAS  Google Scholar 

  • Ruiz-Medrano R, Xoconostle-Cazares B, Kragler F (2004) The plasmodesmatal transport pathway for homeotic proteins, silencing signals and viruses. Curr Opin Plant Biol 7:641–650

    PubMed  CAS  Google Scholar 

  • Runions J, Brach T, Kuhner S, Hawes C (2006) Photoactivation of GFP reveals protein dynamics within the endoplasmic reticulum membrane. J Exp Bot 57:43–50

    PubMed  CAS  Google Scholar 

  • Sagi G, Katz A, Guenoune-Gelbart D, Epel BL (2005) Class 1 reversibly glycosylated polypeptides are plasmodesmal-associated proteins delivered to plasmodesmata via the golgi apparatus. Plant Cell 17:1788–1800

    PubMed  CAS  Google Scholar 

  • Sambade A, Heinlein M (2009) Approaching the cellular mechanism that supports the intercellular spread of Tobacco mosaic virus. Plant Signal Behav 4:35–38

    PubMed  CAS  Google Scholar 

  • Sambade A, Brandner K, Hofmann C, Seemanpillai M, Mutterer J, Heinlein M (2008) Transport of TMV movement protein particles associated with the targeting of RNA to plasmodesmata. Traffic 9:2073–2088

    PubMed  CAS  Google Scholar 

  • Samuels TD, Ju HJ, Ye CM, Motes CM, Blancaflor EB, Verchot-Lubicz J (2007) Subcellular targeting and interactions among the Potato virus X TGB proteins. Virology 367(2):375–389

    PubMed  CAS  Google Scholar 

  • Sanderfoot AA, Ingham DJ, Lazarowitz SG (1996) A viral movement protein as a nuclear shuttle. The geminivirus BR1 movement protein contains domains essential for interaction with BL1 and nuclear localization. Plant Physiol 110:23–33

    PubMed  CAS  Google Scholar 

  • Sanfacon H (2005) Replication of positive-strand RNA viruses in plants: contact points between plant and virus components. Can J Bot 83:1529–1549

    CAS  Google Scholar 

  • Santa Cruz S, Roberts AG, Prior DAM, Chapman S, Oparka KJ (1998) Cell-to-cell and phloem-mediated transport of Potato virus X: the role of virions. Plant Cell 10:495–510

    Google Scholar 

  • Santos AA, Lopes KV, Apfata JA, Fontes EP (2010) NSP-interacting kinase, NIK: a transducer of plant defence signalling. J Exp Bot 61(14):3839–3845

    PubMed  CAS  Google Scholar 

  • Schaad MC, Anderberg RJ, Carrington JC (2000) Strain-specific interaction of the Tobacco etch virus NIa protein with the translation initiation factor eIF4E in the yeast two-hybrid system. Virology 273:300–306

    PubMed  CAS  Google Scholar 

  • Schepetilnikov MV, Manske U, Solovyev AG, Zamyatnin AA Jr, Schiemann J, Morozov SY (2005) The hydrophobic segment of Potato virus X TGBp3 is a major determinant of the protein intracellular trafficking. J Gen Virol 86:2379–2391

    PubMed  CAS  Google Scholar 

  • Seemanpillai M, Elamawi R, Ritzenthaler C, Heinlein M (2006) Challenging the role of microtubules in Tobacco mosaic virus movement by drug treatments is disputable. J Virol 80: 6712–6715

    PubMed  CAS  Google Scholar 

  • Seksek O, Biwersi J, Verkman AS (1997) Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol 138:131–142

    PubMed  CAS  Google Scholar 

  • Selth LA, Dogra SC, Rasheed MS, Randles JW, Rezaian MA (2006) Identification and characterization of a host reversibly glycosylated peptide that interacts with the Tomato leaf curl virus V1 protein. Plant Mol Biol 61:297–310

    PubMed  CAS  Google Scholar 

  • Senchou V, Weide R, Carrasco A, Bouyssou H, Pont-Lezica R, Govers F, Canut H (2004) High affinity recognition of a Phytophthora protein by Arabidopsis via an RGD motif. Cell Mol Life Sci 61:502–509

    PubMed  CAS  Google Scholar 

  • Shimizu T, Yoshii A, Sakurai K, Hamada K, Yamaji Y, Suzuki M, Namba S, Hibi T (2009) Identification of a novel tobacco DnaJ-like protein that interacts with the movement protein of Tobacco mosaic virus. Arch Virol 154:959–967

    PubMed  CAS  Google Scholar 

  • Shimmen T, Yokota E (2004) Cytoplasmic streaming in plants. Curr Opin Cell Biol 16:68–72

    PubMed  CAS  Google Scholar 

  • Simpson C, Thomas C, Findlay K, Bayer E, Maule AJ (2009) An Arabidopsis GPI-anchor ­plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. Plant Cell 21:581–594

    PubMed  CAS  Google Scholar 

  • Sit TL, AbouHaidir MG (1993) Infectious RNA transcripts derived from cloned cDNA of Papaya mosaic virus: effect of mutations to the capsid and polymerase proteins. J Gen Virol 74: 1133–1140

    PubMed  CAS  Google Scholar 

  • Soellick TR, Uhrig JF, Bucher GL, Kellmann JW, Schreier PH (2000) The movement protein NSm of Tomato spotted wilt tospovirus: RNA binding, interaction with TSWV N protein, and identification of interacting plant proteins. Proc Natl Acad Sci USA 97:2373–2378

    PubMed  CAS  Google Scholar 

  • Sokolova M, Prufer D, Tacke E, Rohde W (1997) The Potato leafroll virus 17 k movement protein is phosphorylated by a membrane-associated protein kinase from potato with biochemical features of protein kinase C. FEBS Lett 400:201–205

    PubMed  CAS  Google Scholar 

  • Solovyev AG, Stroganova TA, Jr Zamyatin AA, Fedorkin ON, Schiemann J, Morozov SY (2000) Subcellular sorting of small membrane-associated triple gene block proteins: TGBp3-assisted targeting of TGBp2. Virology 269:113–127

    PubMed  CAS  Google Scholar 

  • Sparkes I, Runions J, Hawes C, Griffing L (2009) Movement and remodeling of the endoplasmic reticulum in nondividing cells of tobacco leaves. Plant Cell 21:3937–3949

    PubMed  CAS  Google Scholar 

  • Storms MMH, Kormelink R, Peters D, van Lent JWM, Goldbach RW (1995) The nonstructural NSm protein of Tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology 214:485–493

    PubMed  CAS  Google Scholar 

  • Su S, Liu Z, Chen C, Zhang Y, Wang X, Zhu L, Miao L, Wang XC, Yuan M (2010) Cucumber mosaic virus movement protein severs actin filaments to increase the plasmodesmal size exclusion limit in tobacco. Plant Cell 22:1373–1387

    PubMed  CAS  Google Scholar 

  • Sun Y, Qian H, Xu XD, Han Y, Yen LF, Sun DY (2000) Integrin-like proteins in the pollen tube: detection, localization and function. Plant Cell Physiol 41:1136–1142

    PubMed  CAS  Google Scholar 

  • Szécsi J, Ding XS, Lim CO, Bendahmane M, Cho MJ, Nelson RS, Beachy RN (1999) Development of Tobacco mosaic virus infection sites in Nicothiana benthamiana. Mol Plant Microbe Interact 2:143–152

    Google Scholar 

  • Tagami Y, Watanabe Y (2007) Effects of brefeldin A on the localization of tobamovirus movement protein and cell-to-cell movement of the virus. Virology 361:133–140

    PubMed  CAS  Google Scholar 

  • Taoka K, Ham BK, Xoconostle-Cazares B, Rojas MR, Lucas WJ (2007) Reciprocal phosphorylation and glycosylation recognition motifs control NCAPP1 interaction with pumpkin phloem proteins and their cell-to-cell movement. Plant Cell 19:1866–1884

    PubMed  CAS  Google Scholar 

  • Thomas CL, Maule AJ (1995) Identification of structural domains within the Cauliflower mosaic virus movement protein by scanning deletion mutagenesis and epitope tagging. Plant Cell 7:561–572

    PubMed  CAS  Google Scholar 

  • Thomas CL, Bayer EM, Ritzenthaler C, Fernandez-Calvino L, Maule AJ (2008) Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLoS Biol 6:e7

    PubMed  Google Scholar 

  • Tilsner J, Cowan GH, Roberts AG, Chapman SN, Ziegler A, Savenkov E, Torrance L (2010) Plasmodesmal targeting and intercellular movement of Potato mop-top pomovirus is mediated by a membrane anchored tyrosine-based motif on the lumenal side of the endoplasmic reticulum and the C-terminal transmembrane domain in the TGB3 movement protein. Virology 402:41–51

    PubMed  CAS  Google Scholar 

  • Tomenius K, Clapham D, Meshi T (1987) Localization by immunogold cytochemistry of the virus-coded 30 K protein in plasmodesmata of leaves infected with Tobacco mosaic virus. Virology 160:363–371

    PubMed  CAS  Google Scholar 

  • Trutnyeva K, Bachmaier R, Waigmann E (2005) Mimicking carboxyterminal phosphorylation differentially effects subcellular distribution and cell-to-cell movement of Tobacco mosaic virus movement protein. Virology 332:563–577

    PubMed  CAS  Google Scholar 

  • Tucker EB (1990) Calcium-loaded 1,2-bis(2-aminophenoxy)ethane-N, N, N′, N′- tetraacetic acid blocks cell-to-cell diffusion of carboxyfluorescein in staminal hairs of Setcreasea purpurea. Planta 182:34–38

    CAS  Google Scholar 

  • Tucker EB (1993) Azide treatment enhances cell-to-cell diffusion in staminal hairs of Setcreasea purpurea. Protoplasma 174:45–49

    CAS  Google Scholar 

  • Tucker EB, Boss WF (1996) Mastoparan induced intracellular Ca2+ fluxes may regulate cell-to-cell communication in plants. Plant Physiol 111:459–467

    PubMed  CAS  Google Scholar 

  • Tyulkina LG, Karger EM, Sheveleva AA, Atabekov JG (2010) Binding of monoclonal antibodies to the movement protein (MP) of Tobacco mosaic virus: influence of subcellular MP localization and phosphorylation. J Gen Virol 91:1621–1628

    PubMed  CAS  Google Scholar 

  • Tzfira T, Rhee Y, Chen M-H, Kunik T, Citovsky V (2000) Nucleic acid transport in plant-microbe interactions: the molecules that walk through the walls. Annu Rev Microbiol 54:187–219

    PubMed  CAS  Google Scholar 

  • Ueda H, Yokota E, Kutsuna N, Shimada T, Tamura K, Shimmen T, Hasezawa S, Dolja VV, Hara-Nishimura I (2010) Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells. Proc Natl Acad Sci USA 107:6894–6899

    PubMed  CAS  Google Scholar 

  • Ueki S, Spektor R, Natale DM, Citovsky V (2010) ANK, a host cytoplasmic receptor for the Tobacco mosaic virus cell-to-cell movement protein, facilitates intercellular transport through plasmodesmata. PLoS Pathog 6:e1001201

    PubMed  Google Scholar 

  • van Bargen S, Salchert K, Paape M, Piechulla B, Kellmann J-W (2001) Interactions between Tomato spotted wilt virus movement protein and plant proteins showing homologies to myosin, kinesin, and DNAJ-like chaperones. Plant Physiol Biochem 39:1083–1093

    Google Scholar 

  • van der Wel NN, Goldbach R, van Lent J (1998) The movement protein and coat protein of Alfalfa mosaic virus accumulate in structurally modified plasmodesmata. Virology 244:322–329

    PubMed  Google Scholar 

  • van Lent J, Storms M, van der Meer F, Wellink J, Goldbach R (1991) Tubular structures involved in movement of Cowpea mosaic virus are also formed in infected cowpea protoplasts. J Gen Virol 72:2615–2623

    PubMed  Google Scholar 

  • Van Norman JM, Breakfield NW, Benfey PN (2011) Intercellular communication during plant development. Plant Cell 23:855–864

    PubMed  Google Scholar 

  • Verchot-Lubicz J (2005) A new cell-to-cell transport model for potexviruses. Mol Plant Microbe Interact 18:283–290

    PubMed  CAS  Google Scholar 

  • Verchot-Lubicz J, Ye CM, Bamunusinghe D (2007) Molecular biology of potexviruses: recent advances. J Gen Virol 88:1643–1655

    PubMed  CAS  Google Scholar 

  • Verchot-Lubicz J, Torrance L, Solovyev AG, Morozov SY, Jackson AO, Gilmer D (2010) Varied movement strategies employed by triple gene block-encoding viruses. Mol Plant Microbe Interact 23:1231–1247

    PubMed  CAS  Google Scholar 

  • Vogel F, Hofius D, Sonnewald U (2007) Intracellular trafficking of Potato leafroll virus movement protein in transgenic Arabidopsis. Traffic 8:1205–1214

    PubMed  CAS  Google Scholar 

  • Vogler H, Kwon MO, Dang V, Sambade A, Fasler M, Ashby J, Heinlein M (2008) Tobacco mosaic virus movement protein enhances the spread of RNA silencing. PLoS Pathog 4:e1000038

    PubMed  Google Scholar 

  • Waigmann E, Zambryski P (1995) Tobacco mosaic virus movement protein-mediated protein transport between trichome cells. Plant Cell 7:2069–2079

    PubMed  CAS  Google Scholar 

  • Waigmann E, Zambryski P (2000) Trichome plasmodesmata: a model system for cell-to-cell movement. Adv Bot Res 31:261–283

    Google Scholar 

  • Waigmann E, Lucas W, Citovsky V, Zambryski P (1994) Direct functional assay for Tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc Natl Acad Sci USA 91:1433–1437

    PubMed  CAS  Google Scholar 

  • Waigmann E, Chen M-H, Bachmeier R, Ghoshroy S, Citovsky V (2000) Regulation of plasmodesmal transport by phosphorylation of Tobacco mosaic virus cell-to-cell movement protein. EMBO J 19:4875–4884

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Emori Y, Ooshika I, Meshi T, Ohno T, Okada Y (1984) Synthesis of TMV-specific RNAs and proteins at the early stage of infection in tobacco protoplasts: transient expression of 30 k protein and its mRNA. Virology 133:18–24

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Meshi T, Okada Y (1992) In vivo phosphorylation of the 30-kDa protein of Tobacco mosaic virus. FEBS Lett 313:181–184

    PubMed  CAS  Google Scholar 

  • Wei T, Zhang C, Hong J, Xiong R, Kasschau KD, Zhou X, Carrington JC, Wang A (2010) Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLoS Pathog 6:e1000962

    PubMed  Google Scholar 

  • Wellink J, van Lent JWM, Verver J, Sijen T, Goldbach RW, van Kammen A (1993) The Cowpea mosaic virus M RNA-encoded 48-kilodalton protein is responsible for induction of tubular structures in protoplasts. J Virol 67:3660–3664

    PubMed  CAS  Google Scholar 

  • White RG, Badelt K, Overall RL, Vesk M (1994) Actin associated with plasmodesmata. Protoplasma 180:169–184

    CAS  Google Scholar 

  • Whitham SA, Quan S, Chang HS, Cooper B, Estes B, Zhu T, Wang X, Hou YM (2003) Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis plants. Plant J 33:271–283

    PubMed  CAS  Google Scholar 

  • Wieczorek A, Sanfacon H (1993) Characterization and subcellular location of Tomato ringspot nepovirus putative movement protein. Virology 194:734–742

    PubMed  CAS  Google Scholar 

  • Wille A, Lucas WJ (1984) Ultrastructural and histochemical changes on guard cells. Planta 160: 129–142

    Google Scholar 

  • Wittmann S, Chatel H, Fortin MG, Laliberte JF (1997) Interaction of the viral protein genome linked of Turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology 234:84–92

    PubMed  CAS  Google Scholar 

  • Wolf S, Deom CM, Beachy RN, Lucas WJ (1989) Movement protein of Tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246:377–379

    PubMed  CAS  Google Scholar 

  • Wright KM, Wood NT, Roberts AG, Chapman S, Boevink P, Mackenzie KM, Oparka KJ (2007) Targeting of TMV movement protein to plasmodesmata requires the Actin/ER network; evidence from FRAP. Traffic 8:21–31

    PubMed  CAS  Google Scholar 

  • Wright KM, Cowan GH, Lukhovitskaya NI, Tilsner J, Roberts AG, Savenkov EI, Torrance L (2010) The N-terminal domain of PMTV TGB1 movement protein is required for nucleolar localization, microtubule association, and long-distance movement. Mol Plant Microbe Interact 23:1486–1497

    PubMed  CAS  Google Scholar 

  • Wu X, Weigel D, Wigge PA (2002) Signaling in plants by intercellular RNA and protein movement. Genes Dev 16:151–158

    PubMed  CAS  Google Scholar 

  • Wu X, Dinneny JR, Crawford KM, Rhee Y, Citovsky V, Zambryski PC, Weigel D (2003) Modes of intercellular transcription factor movement in the Arabidopsis apex. Development 130: 3735–3745

    PubMed  CAS  Google Scholar 

  • Wu Q, Wang X, Ding SW (2010) Viral suppressors of RNA-based viral immunity: host targets. Cell Host Microbe 8:12–15

    PubMed  CAS  Google Scholar 

  • Wu CH, Lee SC, Wang CW (2011) Viral protein targeting to the cortical endoplasmic reticulum is required for cell-cell spreading in plants. J Cell Biol 193:521–535

    PubMed  CAS  Google Scholar 

  • Yaholom A, Lando R, Katz A, Epel BL (1998) A calcium-dependent protein kinase is associated with maize mesocotyl plasmodesmata. J Plant Physiol 153:354–362

    Google Scholar 

  • Yoo BC, Kragler F, Varkonyi-Gasic E, Haywood V, Archer-Evans S, Lee YM, Lough TJ, Lucas WJ (2004) A systemic small RNA signaling system in plants. Plant Cell 16:1979–2000

    PubMed  CAS  Google Scholar 

  • Yoshioka K, Matsushita Y, Kasahara M, Konagaya K, Nyunoya H (2004) Interaction of Tomato mosaic virus movement protein with tobacco RIO kinase. Mol Cells 17:223–229

    PubMed  CAS  Google Scholar 

  • Zavaliev R, Ueki S, Epel BL, Citovsky V (2011) Biology of callose (beta-1,3-glucan) turnover at plasmodesmata. Protoplasma 248:117–130

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

A.N. and E.P were supported through research grants provided by the HFSPO (RGP2006/22) and the ANR (ANR-08-BLAN-0244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Heinlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Peña, E., Niehl, A., Heinlein, M. (2012). Viral Studies Point the Way: Mechanisms of Intercellular Transport. In: Kragler, F., Hülskamp, M. (eds) Short and Long Distance Signaling. Advances in Plant Biology, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1532-0_1

Download citation

Publish with us

Policies and ethics