Skip to main content

Beyond the Genome: Functional Studies of Phototrophic Sulfur Oxidation

  • Conference paper
  • First Online:
Recent Advances in Phototrophic Prokaryotes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 675))

  • 1686 Accesses

Abstract

The increasing availability of complete genomic sequences for cultured phototrophic bacteria and assembled metagenomes from environments dominated by phototrophs has reinforced the need for a “post-genomic” analytical effort to test models of cellular structure and function proposed from genomic data. Comparative genomics has produced a testable model for pathways of sulfur compound oxidation in the phototrophic bacteria. In the case of sulfide, two enzymes are predicted to oxidize sulfide: sulfide:quinone oxidoreductase and flavocytochrome c sulfide dehydrogenase. However, these models do not predict which enzyme is important under what conditions. In Chlorobaculum tepidum, a model green sulfur bacterium, a combination of genetics and physiological analysis of mutant strains has led to the realization that this organism contains at least two active sulfide:quinone oxidoreductases and that there is significant interaction between sulfide oxidation and light harvesting. In the case of elemental sulfur, an organothiol intermediate of unknown structure has been proposed to activate elemental sulfur for transport into the cytoplasm where it can be oxidized or assimilated, and recent approaches using classical metabolite analysis have begun to shed light on this issue both in C. tepidum and the purple sulfur bacterium Allochromatium vinosum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arieli B, Shahak Y, Taglicht D, Hauska G, Padan E (1994) Purification and characterization of sulfide-quinone reductase, a novel enzyme driving anoxygenic photosynthesis in Oscillatoria limnetica. J Biol Chem 269:5705–5711

    PubMed  CAS  Google Scholar 

  • Arndt C, Gaill F, Felbeck H (2001) Anaerobic sulfur metabolism in thiotrophic symbioses. J Exp Biol 204:741–750

    PubMed  CAS  Google Scholar 

  • Arnirfakhri J, Vossoughi M, Soltanieh M (2006) Assessment of desulfurization of natural gas by chemoautotrophic bacteria in an anaerobic baffled reactor (ABR). Chem Eng Process 45:232–237

    Article  Google Scholar 

  • Bartsch RG, Newton GL, Sherrill C, Fahey RC (1996) Glutathione amide and its perthiol in anaerobic sulfur bacteria. J Bacteriol 178:4742–4746

    PubMed  CAS  Google Scholar 

  • Baumgartner LK, Reid RP, Dupraz C, Decho AW, Buckley DH, Spear JR, Przekop KM, Visscher PT (2006) Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment Geol 185:131–145

    Article  CAS  Google Scholar 

  • Bernhard JM (2003) Potential symbionts in bathyal foraminifera. Science 299: 861

    Article  PubMed  CAS  Google Scholar 

  • Bernhard JM, Buck KR, Farmer MA, Bowser SS (2000) The Santa Barbara Basin is a symbiosis oasis. Nature 403: 77–80

    Article  PubMed  CAS  Google Scholar 

  • Bernhard JM, Habura A, Bowser SS (2006) An endobiont-bearing Allogromiid from the Santa Barbara Basin: implications for the early diversification of foraminifera. J Geophys Res-Biogeosci 111:G03002 doi: 10.1029/2005JG000158

    Google Scholar 

  • Borrego CM, Garcia-Gil LJ (1994) Rearrangement of light harvesting bacteriochlorophyll homologues as a response of green sulfur bacteria to low light intensities. Photosynth Res 45:21–30

    Article  Google Scholar 

  • Bronstein M, Schutz M, Hauska G, Padan E, Shahak Y (2000) Cyanobacterial sulfide-quinone reductase: cloning and heterologous expression. J Bacteriol 182:3336–3344

    Article  PubMed  CAS  Google Scholar 

  • Bruchert V, Jorgensen BB, Neumann K, Riechmann D, Schlosser M, Schulz H (2003) Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochim Cosmochim Acta 67:4505–4518

    Article  CAS  Google Scholar 

  • Canfield DE, Raiswell R (1999) The evolution of the sulfur cycle. Am J Sci 299:697–723

    Article  CAS  Google Scholar 

  • Celis-Garcia LB, Gonzalez-Blanco G, Meraz M (2008) Removal of sulfur inorganic compounds by a biofilm of sulfate reducing and sulfide oxidizing bacteria in a down-flow fluidized bed reactor. J Chem Technol Biotechnol 83:260–268

    Article  CAS  Google Scholar 

  • Chan L-K, Morgan-Kiss R, Hanson TE (2008) Genetic and proteomic studies of sulfur oxidation in Chlorobium tepidum (syn. Chlorobaculum tepidum). In: Hell R, Dahl C, Knaff D and Leustek T (eds) Sulfur metabolism in phototrophic organisms pp 363–379. Springer, New York

    Google Scholar 

  • Chan LK, Morgan-Kiss RM, Hanson TE (2009) Functional analysis of three sulfide:quinone oxidoreductase homologs in Chlorobaculum tepidum. J Bacteriol 191:1026–1034

    Article  PubMed  CAS  Google Scholar 

  • Chen ZW, Koh M, Van Driessche G, Van Beeumen JJ, Bartsch RG, Meyer TE, Cusanovich MA, Mathews FS (1994) The structure of flavocytochrome c sulfide dehydrogenase from a purple phototrophic bacterium. Science 266:430–432

    Article  PubMed  CAS  Google Scholar 

  • Chew AGM, Frigaard NU, Bryant DA (2007) Bacteriochlorophyllide c c-82 and c-121 methyltransferases are essential for adaptation to low light in Chlorobaculum tepidum. J Bacteriol 189:6176–6184

    Article  CAS  Google Scholar 

  • Dahl C (2008) Inorganic sulfur compounds as electron donors in purple sulfur bacteria. In: Hell R, Dahl C, Knaff D, Leustek T (eds) Sulfur metabolism in phototrophic organisms pp 289–317. Springer, Dordrecht, The Netherlands

    Chapter  Google Scholar 

  • Dahl C, Engels S, Pott-Sperling AS, Schulte A, Sander J, Lubbe Y, Deuster O, Brune DC (2005) Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J Bacteriol 187:1392–1404

    Article  PubMed  CAS  Google Scholar 

  • Dahl C, Rakhely G, Pott-Sperling AS, Fodor B, Takacs M, Toth A, Kraeling M, Gy”orfi K, Kovacs A, Tusz J, Kovacs KL (1999) Genes involved in hydrogen and sulfur metabolism in phototrophic sulfur bacteria. FEMS Microbiol Lett 180:317–324

    Article  PubMed  CAS  Google Scholar 

  • Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L, Jiao X, Scalia R, Kiss L, Szabo C, Kimura H, Chow CW, Lefer DJ (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci U S A 104:15560–15565

    Article  PubMed  CAS  Google Scholar 

  • Elshahed MS, Youssef NH, Luo QW, Najar FZ, Roe BA, Sisk TM, Buhring SI, Hinrichs KU, Krumholz LR (2007) Phylogenetic and metabolic diversity of planctomycetes from anaerobic, sulfide- and sulfur-rich Zodletone Spring, Oklahoma. Appl Environ Microbiol 73:4707–4716

    Article  PubMed  CAS  Google Scholar 

  • Fahey RC (2001) Novel thiols of prokaryotes. Annu Rev Microbiol 55:333–356

    Article  PubMed  CAS  Google Scholar 

  • Fahey RC, Buschbacher RM, Newton GL (1987) The evolution of glutathione metabolism in phototrophic microorganisms. J Mol Evol 25:81–88

    Article  PubMed  CAS  Google Scholar 

  • Franz B, Gehrke T, Lichtenberg H, Hormes J, Dahl C, Prange A (2009) Unexpected extracellular and intracellular sulfur species during growth of Allochromatium vinosum with reduced sulfur compounds. Microbiol 155: 2766–2774

    Article  CAS  Google Scholar 

  • Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259

    Article  PubMed  CAS  Google Scholar 

  • Frigaard N-U, Bryant DA (2008a) Genomic and evolutionary perspectives on sulfur metabolism in green sulfur bacteria. In: Dahl C, Friedrich CG (eds) Microbial sulfur metabolism pp 60–76. Springer, New York

    Chapter  Google Scholar 

  • Frigaard N, Bryant D (2008b) Sulfur oxidation in green sulfur bacteria. In: Hell R, Dahl C, Knaff D, Leustek T (eds) Sulfur metabolism in phototrophic organisms pp 363–379. Springer, New York

    Google Scholar 

  • Goffredi SK, Waren A, Orphan VJ, Van Dover CL, Vrijenhoek RC (2004) Novel forms of structural integration between microbes and a hydrothermal vent gastropod from the Indian Ocean. Appl Environ Microbiol 70:3082–3090

    Article  PubMed  CAS  Google Scholar 

  • Goubern M, Andriamihaja M, Nubel T, Blachier F, Bouillaud F (2007) Sulfide, the first inorganic substrate for human cells. FASEB J 21:1699–1706

    Article  PubMed  CAS  Google Scholar 

  • Heising S, Richter L, Ludwig W, Schink B (1999) Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a “Geospirillum” sp. strain. Arch Microbiol 172:116–124

    Article  PubMed  CAS  Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE (2007) Hypothesis on chlorosome biogenesis in green photosynthetic bacteria. FEBS Lett 581:800–803

    Article  PubMed  CAS  Google Scholar 

  • Hollibaugh JT, Budinoff C, Hollibaugh RA, Ransom B, Bano N (2006) Sulfide oxidation coupled to arsenate reduction by a diverse microbial community in a soda lake. Appl Environ Microbiol 72:2043–2049

    Article  PubMed  CAS  Google Scholar 

  • Holmer M, Storkholm P (2001) Sulphate reduction and sulphur cycling in lake sediments: A review. Freshw Biol 46:431–451

    Article  CAS  Google Scholar 

  • Janssen AJ, Lens PN, Stams AJ, Plugge CM, Sorokin DY, Muyzer G, Dijkman H, Van Zessen E, Luimes P, Buisman CJ (2009) Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification. Sci Total Environ 407:1333–1343

    Article  PubMed  CAS  Google Scholar 

  • Kamp A, Stief P, Schulz-Vogt HN (2006) Anaerobic sulfide oxidation with nitrate by a freshwater beggiatoa enrichment culture. Appl Environ Microbiol 72: 4755–4760

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Tabata S (1997) Complete genome structure of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 38: 1171–1176

    Article  PubMed  CAS  Google Scholar 

  • Klamt S, Grammel H, Straube R, Ghosh R, Gilles ED (2008) Modeling the electron transport chain of purple non-sulfur bacteria. Mol Syst Biol 4:156 doi:10.1038/msb4100191

    Google Scholar 

  • Lefer DJ (2007) A new gaseous signaling molecule emerges: Cardioprotective role of hydrogen sulfide. Proc Natl Acad Sci U S A 104:17907–17908

    Article  PubMed  CAS  Google Scholar 

  • Macalady JL, Dattagupta S, Schaperdoth I, Jones DS, Druschel GK, Eastman D (2008) Niche differentiation among sulfur-oxidizing bacterial populations in cave waters. ISME Journal 2:590–601

    Article  PubMed  CAS  Google Scholar 

  • Madrid VM, Aller RC, Aller JY, Chistoserdov AY (2006) Evidence of the activity of dissimilatory sulfate-reducing prokaryotes in nonsulfidogenic tropical mobile muds. FEMS Microbiol Ecol 57:169–181

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Rotte C, Hoffmeister M, Theissen U, Gelius-Dietrich G, Ahr S, Henze K (2003) Early cell evolution, eukaryotes, anoxia, sulfide, oxygen, fungi first (?), and a tree of genomes revisited. IUBMB Life 55:193–204

    Article  PubMed  CAS  Google Scholar 

  • Meeks JC, Elhai J, Thiel T, Potts M, Larimer F, Lamerdin J, Predki P, Atlas R (2001) An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth Res 70:85–106

    Article  PubMed  CAS  Google Scholar 

  • Morgan-Kiss RM, Chan LK, Modla S, Weber TS, Warner M, Czymmek KJ, Hanson TE (2009) Chlorobaculum tepidum regulates chlorosome structure and function in response to temperature and electron donor availability. Photosynth Res 99:11–21

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Kaneko T, Sato S, Ikeuchi M, Katoh H, Sasamoto S, Watanabe A, Iriguchi M, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2002) Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res 9:123–130

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, Tsuchiya T, Sasamoto S, Watanabe A, Kawashima K, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Takeuchi C, Yamada M, Tabata S (2003) Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Res 10:137–145

    Article  PubMed  CAS  Google Scholar 

  • Oh-oka H, Blankenship RE (2004) Green bacteria: Secondary electron donor (cytochromes). In: Lennarz WJ, Lane MD (eds) Encyclopedia of biochemistry pp 321–324. Elsevier, Boston

    Chapter  Google Scholar 

  • Omoregie EO, Mastalerz V, de Lange G, Straub KL, Kappler A, Roy H, Stadnitskaia A, Foucher JP, Boetius A (2008) Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the chefren mud volcano (Nile deep sea fan, eastern Mediterranean). Appl Environ Microbiol 74:3198–3215

    Article  PubMed  CAS  Google Scholar 

  • Orphan VJ, Ussler W, Naehr TH, House CH, Hinrichs KU, Paull CK (2004) Geological, geochemical, and microbiological heterogeneity of the seafloor around methane vents in the Eel River basin, offshore California. Chem Geol 205:265–289

    Article  CAS  Google Scholar 

  • Overmann J (2006) Symbiosis between non-related bacteria in phototrophic consortia. Prog Mol Subcell Biol 41:21–37

    Article  PubMed  CAS  Google Scholar 

  • Overmann J, Beatty JT, Krouse HR, Hall KJ (1996) The sulfur cycle in the chemocline of a meromictic salt lake. Limnol Oceanogr 41:147–156

    Article  CAS  Google Scholar 

  • Pfannes KR, Vogl K, Overmann J (2007) Heterotrophic symbionts of phototrophic consortia: Members of a novel diverse cluster of betaproteobacteria characterized by a tandem rrn operon structure. Environ Microbiol 9:2782–2794

    Article  PubMed  CAS  Google Scholar 

  • Preisler A, de Beer D, Lichtschlag A, Lavik G, Boetius A, Jorgensen BB (2007) Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. ISME Journal 1:341–353

    PubMed  CAS  Google Scholar 

  • Reinartz M, Tschape J, Bruser T, Truper HG, Dahl C (1998) Sulfide oxidation in the phototrophic sulfur bacterium Chromatium vinosum. Arch Microbiol 170:59–68

    Article  PubMed  CAS  Google Scholar 

  • Saga Y, Osumi S, Higuchi H, Tamiaki H (2005) Bacteriochlorophyll-c homolog composition in green sulfur photosynthetic bacterium Chlorobium vibrioforme dependent on the concentration of sodium sulfide in liquid cultures. Photosynth Res 86:123–130

    Article  PubMed  CAS  Google Scholar 

  • Schutz M, Shahak Y, Padan E, Hauska G (1997) Sulfide-quinone reductase from Rhodobacter capsulatus. Purification, cloning, and expression. J Biol Chem 272:9890–9894

    Article  PubMed  CAS  Google Scholar 

  • Shahak Y (2008) Sulfide oxidation from cyanobacteria to humans: sulfide-quinone oxidoreductase (SQR). In: Hell R, Dahl C, Knaff D, Leustek T (eds) Sulfur metabolism in phototrophic organisms pp 319–335. Springer, Dordrecht, The Netherlands

    Chapter  Google Scholar 

  • Shahak Y, Arieli B, Padan E, Hauska G (1992) Sulfide quinone reductase (SQR) activity in Chlorobium. FEBS Lett 299: 127–130

    Article  PubMed  CAS  Google Scholar 

  • Shahak Y, Schutz M, Bronstein M, Griesbeck C, Hauska G, Padan E (1999) Sulfide-dependent anoxygenic photosynthesis in prokaryotes- sulfide-quinone reductase (SQR), the initial step. In: Peschek GA, Loffelhardt WL, Schmetterer G (eds) The phototrophic prokaryotes pp 217–228. Kluwer Academic/ Plenum, New York

    Chapter  Google Scholar 

  • Sorensen PG, Cox RP, Miller M (2008) Chlorosome lipids from Chlorobium tepidum: characterization and quantification of polar lipids and wax esters. Photosynth Res 95:191–196

    Article  PubMed  CAS  Google Scholar 

  • Theissen U, Hoffmeister M, Grieshaber M, Martin W (2003) Single eubacterial origin of eukaryotic sulfide : quinone oxidoreductase, a mitochondrial enzyme conserved from the early evolution of eukaryotes during anoxic and sulfidic times. Mol Biol Evol 20:1564–1574

    Article  PubMed  CAS  Google Scholar 

  • Turchyn AV, Schrag DP (2006) Cenozoic evolution of the sulfur cycle: insight from oxygen isotopes in marine sulfate. Earth Planet Sci Lett 241:763–779

    Article  CAS  Google Scholar 

  • Vergauwen B, Pauwels F, Jacquemotte F, Meyer TE, Cusanovich MK, Bartsch RG, Van Beeumen JJ (2001) Characterization of glutathione amide reductase from Chromatium gracile – identification of a novel thiol peroxidase (Prx/Grx) fueled by glutathione amide redox cycling. J Biol Chem 276:20890–20897

    Article  PubMed  CAS  Google Scholar 

  • Wakai S, Kikumoto M, Kanao T, Kamimura K (2004) Involvement of sulfide:quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1. Biosci Biotechnol Biochem 68:2519–2528

    Article  PubMed  CAS  Google Scholar 

  • Wang GZ, Spivack AJ, Rutherford S, Manor U, D′Hondt S (2008) Quantification of co-occurring reaction rates in deep subseafloor sediments. Geochim Cosmochim Acta 72:3479–3488

    Article  CAS  Google Scholar 

  • Weston NB, Porubsky WP, Samarkin VA, Erickson M, Macavoy SE, Joye SB (2006) Porewater stoichiometry of terminal metabolic products, sulfate, and dissolved organic carbon and nitrogen in estuarine intertidal creek-bank sediments. Biogeochem 77: 375–408

    Article  CAS  Google Scholar 

  • Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:587–590

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Vollertsen J, Hvitved-Jacobsen T (2005) Anoxic sulfide oxidation in wastewater of sewer networks. Water Sci Technol 52:191–199

    PubMed  CAS  Google Scholar 

  • Zopfi J, Bttcher ME, Jorgensen BB (2008) Biogeochemistry of sulfur and iron in Thioploca-colonized surface sediments in the upwelling area off central Chile. Geochim Cosmochim Acta 72:827–843

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Hanson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this paper

Cite this paper

Hanson, T.E., Morgan-Kiss, R.M., Chan, LK., Hiras, J. (2010). Beyond the Genome: Functional Studies of Phototrophic Sulfur Oxidation. In: Hallenbeck, P. (eds) Recent Advances in Phototrophic Prokaryotes. Advances in Experimental Medicine and Biology, vol 675. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1528-3_7

Download citation

Publish with us

Policies and ethics