Skip to main content

The Network of PII Signalling Protein Interactions in Unicellular Cyanobacteria

  • Conference paper
  • First Online:
Recent Advances in Phototrophic Prokaryotes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 675))

Abstract

PII signalling proteins constitute a large superfamily of signal perception and transduction proteins, which is represented in all domains of life and whose members play central roles in coordinating nitrogen assimilation. Generally, PII proteins act as sensors of the cellular adenylylate energy charge and 2-oxoglutarate level, and in response to these signals, they regulate central nitrogen assimilatory processes at various levels of control (from nutrient transport to gene expression) through protein–protein interactions with PII receptor proteins. An examination of the phylogeny of cyanobacteria reveals that specific functions of PII signalling evolved in this microbial lineage, which are not found in other prokaryotes. At least one of these functions, regulation of arginine biosynthesis by controlling the key enzyme N-acetyl-l-glutamate kinase (NAGK), was transmitted by the ancestral cyanobacterium, which gave rise to chloroplasts, into the eukaryotic domain and was conserved during the evolution of planta. We have investigated in some detail the PII signalling protein, its signal perception and its interactions with receptors in the unicellular cyanobacteria Synechococcus elongatus PCC 7942 and Synechocystis PCC 6803 and have performed comparative analysis with Arabidopsis thaliana PII–NAGK interaction. This chapter will summarize these studies and will describe the emerging picture of a complex network of PII protein interactions in the unicellular cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldehni MF, Sauer J, Spielhaupter C, Schmid R, Forchhammer K (2003) The Signal transduction protein PII is required for NtcA-regulated gene expression during nitrogen deprivation in the cyanobacterium Synechococcus elongatus Strain PCC 7942. J Bacteriol 185:2582–2591

    Article  CAS  Google Scholar 

  • Aldehni FA, Forchhammer K (2006) Analysis of a non-canonical NtcA-dependent promoter in Synechococcus elongatus and its regulation by NtcA and PII. Arch Microbiol 184:378–386

    Article  PubMed  CAS  Google Scholar 

  • Arcondéguy T, Jack R, Merrick M (2001) PII signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 65:80–105

    Article  PubMed  Google Scholar 

  • Barford D, Das AK, Egloff MP (1998) The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct 27:133–164

    Article  PubMed  CAS  Google Scholar 

  • Beez S, Fokina O, Herrmann C et al (2009) N-Acetyl-L-Glutamate kinase (NAGK) from oxygenic phototrophs: PII signal transduction across domains of life reveals novel insights into NAGK control. J Mol Biol 389:748–758

    Article  PubMed  CAS  Google Scholar 

  • Benelli EM, Buck, Polikarpov I et al (2002) Herbaspirillum seropedicae signal transducer protein PII is structurally similar to the enteric GlnK. Eur J Biochem 269:3296–3303

    Article  CAS  Google Scholar 

  • Burillo S, Luque I, Fuentes et al (2004) Interactions between the nitrogen signal transduction protein PII and N-acetyl glutamate kinase in organisms that perform oxygenic photosynthesis. J Bacteriol 186:3346–3354

    Article  PubMed  CAS  Google Scholar 

  • Chen YN, Ferrar T, Lohmeir-Vogel E et al (2006) The PII signal transduction protein of Arabidopsis thaliana forms a metabolite regulated complex with plastid N-acetyl glutamate kinase. J Biol Chem 281:5726–5733

    Article  PubMed  CAS  Google Scholar 

  • Conroy MJ, Durand A, Lupo D et al (2007) The crystal structure of the Escherichia coli AmtB-GlnK complex reveals how GlnK regulates the ammonia channel. Proc Natl Acad Sci USA 104:1213–1218

    Article  PubMed  CAS  Google Scholar 

  • Das AK, Helps NR, Cohen PTW et al (1996) Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 Å resolution. EMBO J. 15:6798–6809

    PubMed  CAS  Google Scholar 

  • Espinosa J, Forchhammer K, Burillo S et al (2006) Interaction network in cyanobacterial nitrogen regulation: PipX, a protein that interacts in a 2-oxoglutarate dependent manner with PII and NtcA. Mol Microbiol 61:457–466

    Article  PubMed  CAS  Google Scholar 

  • Espinosa J, Forchhammer K, Contreras, A (2007) Role of the Synechococcus PCC 7942 nitrogen regulator protein PipX on NtcA controlled processes. Microbiology 153:711–718

    Article  PubMed  CAS  Google Scholar 

  • Espinosa J, Castells MA, Forchhammer K et al (2008) Regulatory interactions involved in nitrogen signalling in cyanobacteria: partner swapping and the role of Pipx-PII complexes in Synechococcus sp. PCC 7942. In S. Netherlands (ed.), Biological nitrogen fixation: towards poverty alleviation through sustainable agriculture Vol 42. Springer, New York, pp 361–362

    Chapter  Google Scholar 

  • Espinosa J, Castells MA, Laichoubi KB, Contreras A (2009) Mutations at pipX suppress lethality of PII-deficient mutants of Synechococcus elongatus PCC 7942. J Bacteriol 191:4863–4869

    Article  PubMed  CAS  Google Scholar 

  • Forchhammer K (1999) The PII protein in Synechococcus sp. PCC 7942 senses and signals 2-oxoglutarate under ATP replete conditions. In: Peschek G, Löffelhardt W, Schmetterer G (eds) The Phototrophic Prokaryotes. Kluwer Academic/Plenum, New York, pp 549–553

    Chapter  Google Scholar 

  • Forchhammer K (2004) Global carbon/nitrogen control by PII signal transduction in cyanobacteria: from signals to targets. FEMS Microbiol Rev 28:319–333

    Article  PubMed  CAS  Google Scholar 

  • Forchhammer K (2008) PII signal transducers: Novel functional and structural insights. Trends Microbiol 16:65–72

    Article  PubMed  CAS  Google Scholar 

  • Forchhammer K, Tandeau de Marsac N (1994) The PII protein in the cyanobacterium Synechococcus sp. strain PCC 7942 is modified by serine phosphorylation and signals the cellular N-status. J Bacteriol 176:84–91

    PubMed  CAS  Google Scholar 

  • Forchhammer K, Tandeau de Marsac N (1995a) Functional analysis of the phosphoprotein PII (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 177:2033–2040

    PubMed  CAS  Google Scholar 

  • Forchhammer K, Tandeau de Marsac N (1995b) Phosphorylation of the PII protein (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942: Analysis of in vitro kinase activity J Bacteriol 177:5812–5817

    CAS  Google Scholar 

  • Forchhammer K, Hedler A (1997) Phosphoprotein PII from Cyanobacteria: Functional homology to the PII signal transduction protein from Escherichia coli. Eur J Biochem 244:869–875

    Article  PubMed  CAS  Google Scholar 

  • Forchhammer K, Irmler A, Kloft N et al (2004) PII signalling in unicellular cyanobacteria: analysis of redox-signals and energy charge. Physiol Plantarum 120:51–54

    Article  CAS  Google Scholar 

  • Gruswith F, O’Connell J, Stroud RM (2007) Inhibitory complex of the transmembrane ammonia channel, AmtB, and the cytosolic regulatory protein, GlnK, at 1.96 Å. Proc Natl Acad Sci USA 104:42–47

    Article  Google Scholar 

  • Heinrich, A, Maheswaran M, Ruppert U et al (2004) The Synechococcus elongatus PII signal transduction protein controls arginine synthesis by complex formation with N-acetyl-L-glutamate kinase. Mol Micorbiol 52:1303–1314

    Article  CAS  Google Scholar 

  • Irmler A, Sanner S, Dierks H et al (1997) Dephosphorylation of the phosphoprotein PII in Synechococcus PCC 7942: identification of an ATP and 2-oxoglutarate-regulated phosphatase activity. Mol Microbiol 26:81–90

    Article  PubMed  CAS  Google Scholar 

  • Irmler A, Forchhammer K (2001) A PP2C-type phosphatase dephosphorylates the PII signaling protein in the cyanobacterium Synechocystis PCC 6803. Proc Natl Acad Sci 98: 12978–12983

    Article  PubMed  CAS  Google Scholar 

  • Kloft N, Forchhammer K (2005) Signal Transduction Protein PII Phosphatase PphA Is Required for Light-Dependent Control of Nitrate Utilization in Synechocystis sp. strain PCC 6803. J Bacteriol 187:6683–6690

    Article  PubMed  CAS  Google Scholar 

  • Kloft N, Rasch G, Forchhammer K (2005) Protein phosphatase PphA from Synechocystis sp. PCC 6803: the physiological framework of PII-P dephosphorylation. Microbiology 151:1275–1283

    Article  PubMed  CAS  Google Scholar 

  • Lee HM, Flores E, Forchhammer K et al (2000) Phosphorylation of the signal transducer PII protein and an additional effector are required for the PII-mediated regulation of nitrate and nitrite uptake in the cyanobacterium Synechococcus sp. PCC 7942. Eur J Biochem 267:591–600

    Article  PubMed  CAS  Google Scholar 

  • Leigh JA, Dodsworth JA (2007) Nitrogen regulation in bacteria and archa. Annu Rev Microbiol 61:349–377

    Article  PubMed  CAS  Google Scholar 

  • Llacer JL, Contreras A, Forchhammer K et al (2007) The crystal structure of the complex of PII and acetylglutamate kinase reveals how PII controls the storage of nitrogen as arginine. Proc Natl Acad Sci USA 104:17644–17649

    Article  PubMed  CAS  Google Scholar 

  • Llacer JL, Rubio V (2009) Arginine and nitrogen storage. Curr Opin Struct Biol 18:673–681

    Article  Google Scholar 

  • Maheswaran M, Urbanke C, Forchhammer K (2004) Complex formation and catalytic activation by the PII signaling protein of N-acetyl-L-glutamate kinase from Synechococcus elongatus strain PCC 7942. J Biol Chem 279:55202–55210

    Article  PubMed  CAS  Google Scholar 

  • Maheswaran M, Ziegler K, Lockau W et al (2006) PII-Regulated Arginine Synthesis Controls the Accumulation of Cyanophycin in Synechocystis sp. Strain PCC 6803. J Bacteriol 188:2730–2734

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y, Moorhead GBG, Ng, KKS (2007) Structural basis for the regulation of N-acetylglutamate kinase by PII in Arabidopsis thaliana. J Biol Chem 282:35733–35740

    Article  PubMed  CAS  Google Scholar 

  • Moorhead GBG, Ferrar TS, Chen YM et al (2007) The higher plant PII signal transduction protein: structure, function and properties. Canad J Botany 85:533–537

    Article  CAS  Google Scholar 

  • Muro-Pastor MI, Reyes JC, Florencio FJ (2001) Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels. J Biol Chem 276:38320–38328

    PubMed  CAS  Google Scholar 

  • Ninfa AJ, Jiang P (2005) PII signal transduction proteins: sensors of [alpha]-ketoglutarate that regulate nitrogen metabolism. Curr Opin Microbiol8:168–173

    Article  PubMed  CAS  Google Scholar 

  • Osanai T, Sato S, Tabata S et al (2005a) Identification of PamA as a PII-binding membrane protein important in nitrogen-related and sugar-catabolic gene expression in Synechocystis sp. PCC 6803. J Biol Chem 280:34684–34690

    Article  PubMed  CAS  Google Scholar 

  • Osanai T, Kanesaki Y, Nakano T et al (2005b) Positive regulation of sugar catabolic pathways in the cyanobacterium Synechocystis sp. PCC 6803 by the group 2 factor SigE. J Biol Chem 280:30653–30659

    Article  PubMed  CAS  Google Scholar 

  • Osanai T, Tanaka K (2007) Keeping in touch with PII: PII-interacting proteins in unicellular cyanobacteria. Plant Cell Physiol 48:908– 914

    Article  PubMed  CAS  Google Scholar 

  • Palinska KA, Laloui W, Bedu S et al (2002) The signal transducer PII and bicarbonate acquisition in Prochlorococcus marinus PCC 9511, a marine cyanobacterium naturally deficient in nitrate and nitrite assimilation. Microbiology 148:2505–2412

    Google Scholar 

  • Paz-Yepes J, Flores E, Herrero A (2003) Transcriptional effects of the signal transduction protein PII (glnB gene product) on NtcA-dependent genes in Synechococcus sp. PCC 7942. FEBS Lett 543:42–46

    Article  PubMed  CAS  Google Scholar 

  • Ruppert U, Irmler A, Kloft N, Forchhammer K (2002) The novel protein phosphatase PphA from Synechocystis PCC 6803 controls dephosphorylation of the signaling protein PII. Mol Microbiol 44:855–864

    Article  PubMed  CAS  Google Scholar 

  • Sant’ Anna FH, Trentini DB, de Souto Weber S et al (2009) The PII Superfamily Revised: A Novel Group and Evolutionary Insights. J Mol Evol 68:322–336

    Article  Google Scholar 

  • Scanlan D, Ostrowski M, Mazard S et al (2009) Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 73:249–299

    Article  PubMed  CAS  Google Scholar 

  • Schlicker C, Fokina O, Kloft N et al (2008). Structural analysis of the PP2C Phosphatase tPphA from Thermosynechococcus elongatus: a flexible flap subdomain controls access to the catalytic site. J Mol Biol 376:570–581

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER (1990) Discovery of glutamine synthetase cascade. Methods Enzymol 182:793–809

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama K, Hayakawa T, Kudo T et al (2004) Interaction of N-acetylglutamate kinase with a PII-Like protein in rice. Plant Cell Physiol 45:1768–1778

    Article  PubMed  CAS  Google Scholar 

  • Tanigawa R, Shirokane M, Maeda S-I et al (2002) Transcriptional activation of NtcA-dependent promoters of Synechococcus sp. PCC 7942 by 2-oxoglutarate in vitro. Proc Natl Acad Sci USA 99:4251–4255

    Article  PubMed  CAS  Google Scholar 

  • Tsinoremas NF, Castets AM, Harrison MA et al (1991) Photosynthetic electron transport controls nitrogen assimilation in cyanobacteria by means of post-translational modification of the glnB gene product. Proc Natl Acad Sci USA 88:4565–4569

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Chea E, Carr PD et al (1998) GlnK, a PII-homologue: Structure reveals ATP binding site and indicates how the T-loop may be involved in molecular recognition. J Mol Biol 282:149–165

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Carr PD, Huber T et al (2001) The structure of the PII-ATP complex. Eur J Biochem 268:2028–2037

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Carr PD, Clancy P et al (2003) The structures of the PII proteins from the cyanobacteria Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803. Acta Crystallogr D 59:2183–2190

    Article  PubMed  Google Scholar 

  • Zhang W, Shi L (2004) Evolution of the PPM-family protein phosphatases in Streptomyces: duplication of catalytic domain and lateral recruitment of additional sensory domains. Microbiology 150:4189–4197

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Pu H, Wang Q et al (2007) PII is important in regulation of nitrogen metabolism but not required for heterocyst formation in the cyanobacterium Anabaena sp. PCC 7120. J Biol Chem 282:33641–33648

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Forchhammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this paper

Cite this paper

Forchhammer, K. (2010). The Network of PII Signalling Protein Interactions in Unicellular Cyanobacteria. In: Hallenbeck, P. (eds) Recent Advances in Phototrophic Prokaryotes. Advances in Experimental Medicine and Biology, vol 675. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1528-3_5

Download citation

Publish with us

Policies and ethics