Skip to main content

A Feasibility Study of Large-Scale Photobiological Hydrogen Production Utilizing Mariculture-Raised Cyanobacteria

  • Conference paper
  • First Online:
Recent Advances in Phototrophic Prokaryotes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 675))

Abstract

In order to decrease CO2 emissions from the burning of fossil fuels, the development of new renewable energy sources sufficiently large in quantity is essential. To meet this need, we propose large-scale H2 production on the sea surface utilizing cyanobacteria. Although many of the relevant technologies are in the early stage of development, this chapter briefly examines the feasibility of such H2 production, in order to illustrate that under certain conditions large-scale photobiological H2 production can be viable. Assuming that solar energy is converted to H2 at 1.2% efficiency, the future cost of H2 can be estimated to be about 11 (pipelines) and 26.4 (compression and marine transportation) cents kWh−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amos WA (2004) Updated cost analysis of photobiological hydrogen production from Chlamydomonas reinhardtii green algae – Milestone completion report. NREL/MP-560-35593. http://www.nrel.gov/docs/fy04osti/35593.pdf. Accessed 5 August 2008

  • Elhai J, Wolk CP (1988) Conjugal transfer of DNA to cyanobacteria. Methods Enzymol 167:747–754

    Article  PubMed  CAS  Google Scholar 

  • Happe T, Schütz K, Böhme H (2000) Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 182:1624–1631

    Article  PubMed  CAS  Google Scholar 

  • Joseck F, Wang M (2007) Well-to-Wheels Analysis. Presented to HTAC on July 31, 2007. http://www.hydrogen.energy.gov/pdfs/htacjuly07_well_to_wheels.pdf. Accessed 5 August

  • Masukawa H, Mochimaru M, Sakurai H (2002) Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol 58:618–624

    Article  PubMed  CAS  Google Scholar 

  • Masukawa H, Inoue K, Sakurai H (2007) Effects of disruption of homocitrate synthase genes on photobiological hydrogen production and nitrogenase of Nostoc sp. PCC 7120. Appl Environ Microbiol 73:7562–7570

    Article  PubMed  CAS  Google Scholar 

  • Rao KK, Cammack R (2001) Producing hydrogen as a fuel. In: Cammack R, Frey M, Robson R (eds) Hydrogen as a fuel – Learning from nature. Taylor & Francis, London and New York, pp 201–230

    Google Scholar 

  • Sakurai H, Masukawa H (2007) Promoting R & D in photobiological hydrogen production utilizing mariculture-raised cyanobacteria. Mar Biotechnol 9:128–145

    Article  PubMed  CAS  Google Scholar 

  • Sakurai H, Masukawa H, Inoue K (2009) A preliminary survey of the economical viability of large-scale photobiological hydrogen production utilizing mariculture-raised cyanobacteria. In: Gault PM, Marler HJ (eds) Handbook on cyanobacteria: biochemistry, biotechnology and applications. Nova Publishers, COMMACK, NY, pp 443–462

    Google Scholar 

  • Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66:1–20

    Google Scholar 

  • Tsygankov AA, Fedorov AS, Hisourov SN, Rao KK (2002) Hydrogen production by c cyanobacteria in an automated outdoor photobioreactor under aerobic conditions. Biotechnol Bioenbineer 80:777–783

    Article  CAS  Google Scholar 

  • Yoshino F, Ikeda H, Masukawa H, Sakurai H (2007) High photobiological hydrogen production activity of a Nostoc sp. PCC 7422 uptake hydrogenase-deficient mutant with high nitrogenase activity. Mar Biotechnol 9:101–112

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported in part by JSPS Grant KAKENHI (B) 21380200 to HS and MEXT Grant (high-tech research center project) to KI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidehiro Sakurai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this paper

Cite this paper

Sakurai, H., Masukawa, H., Kitashima, M., Inoue, K. (2010). A Feasibility Study of Large-Scale Photobiological Hydrogen Production Utilizing Mariculture-Raised Cyanobacteria. In: Hallenbeck, P. (eds) Recent Advances in Phototrophic Prokaryotes. Advances in Experimental Medicine and Biology, vol 675. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1528-3_17

Download citation

Publish with us

Policies and ethics