Advertisement

Role of NF-κB Inhibitors in HIV-Related Malignancies

  • Erin Gourley Reid
  • Dirk P. Dittmer
Chapter

Abstract

NF-κB is essential for B-cell development and crucial for the survival of B-cell lymphoma. Not surprisingly then NF-κB and other members in this pathway have been developed as anti-cancer drug targets. At the same time, NF-κB is essential for the maintenance and replication of human tumor viruses such as Epstein–Barr virus (EBV) and Kaposi’s sarcoma associated herpesvirus (KSHV). The high association of HIV lymphomas with these viruses provides an opportunity to approach these malignancies using strategies that target NF-κB.

Keywords

Multiple Myeloma Primary Effusion Lymphoma Primary Effusion Lymphoma Cell Gamma Herpesvirus Lytic Viral Replication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abe, Y., Matsubara, D., Gatanaga, H., Oka, S., Kimura, S., Sasao, Y., Saitoh, K., Fujii, T., Sato, Y., Sata, T., Katano, H. (2006). Distinct expression of Kaposi’s sarcoma-associated herpesvirus-encoded proteins in Kaposi’s sarcoma and multicentric Castleman’s disease. Pathol Int 56, 617–624.Google Scholar
  2. Abou-Merhi, R., Khoriaty, R., Arnoult, D., El Hajj, H., Dbouk, H., Munier, S., El-Sabban, M. E., Hermine, O., Gessain, A., de The, H., et al. (2007). PS-341 or a combination of arsenic trioxide and interferon-alpha inhibit growth and induce caspase-dependent apoptosis in KSHV/HHV-8-infected primary effusion lymphoma cells. Leukemia 21, 1792–1801.PubMedCrossRefGoogle Scholar
  3. An, J., Sun, Y., Fisher, M., and Rettig, M. B. (2004). Antitumor effects of bortezomib (PS-341) on primary effusion lymphomas. Leukemia 18, 1699–1704.PubMedCrossRefGoogle Scholar
  4. Annunziata, C. M., Davis, R. E., Demchenko, Y., Bellamy, W., Gabrea, A., Zhan, F., Lenz, G., Hanamura, I., Wright, G., Xiao, W., et al. (2007). Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12, 115–130.PubMedCrossRefGoogle Scholar
  5. Babcock, G. J., Decker, L. L., Volk, M., and Thorley-Lawson, D. A. (1998). EBV persistence in memory B cells in vivo. Immunity 9, 395–404.PubMedCrossRefGoogle Scholar
  6. Baud, V., and Karin, M. (2009). Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 8, 33–40.PubMedCrossRefGoogle Scholar
  7. Biggar, R. J., Engels, E. A., Ly, S., Kahn, A., Schymura, M. J., Sackoff, J., Virgo, P., and Pfeiffer, R. M. (2005). Survival after cancer diagnosis in persons with AIDS. J Acquir Immune Defic Syndr 39, 293–299.PubMedCrossRefGoogle Scholar
  8. Boccadoro, M., Morgan, G., and Cavenagh, J. (2005). Preclinical evaluation of the proteasome inhibitor bortezomib in cancer therapy. Cancer Cell Int 5, 18.PubMedCrossRefGoogle Scholar
  9. Bonnet, F., Jouvencel, A. C., Parrens, M., Leon, M. J., Cotto, E., Garrigue, I., Morlat, P., Beylot, J., Fleury, H., and Lafon, M. E. (2006). A longitudinal and prospective study of Epstein-Barr virus load in AIDS-related non-Hodgkin lymphoma. J Clin Virol 36, 258–263.PubMedCrossRefGoogle Scholar
  10. Boulanger, E., Meignin, V., and Oksenhendler, E. (2008). Bortezomib (PS-341) in patients with human herpesvirus 8-associated primary effusion lymphoma. Br J Haematol 141, 559–561.PubMedCrossRefGoogle Scholar
  11. Bouvard, V., Baan, R., Straif, K., Grosse, Y., Secretan, B., El Ghissassi, F., Benbrahim-Tallaa, L., Guha, N., Freeman, C., Galichet, L., and Cogliano, V. (2009). A review of human carcinogens – Part B: biological agents. Lancet Oncol 10, 321–322.PubMedCrossRefGoogle Scholar
  12. Bower, M., Fox, P., Fife, K., Gill, J., Nelson, M., and Gazzard, B. (1999). Highly active anti-retroviral therapy (HAART) prolongs time to treatment failure in Kaposi’s sarcoma. AIDS 13, 2105–2111.PubMedCrossRefGoogle Scholar
  13. Brinkmann, M. M., and Schulz, T. F. (2006). Regulation of intracellular signalling by the terminal membrane proteins of members of the Gammaherpesvirinae. J Gen Virol 87, 1047–1074.PubMedCrossRefGoogle Scholar
  14. Brown, H. J., Song, M. J., Deng, H., Wu, T. T., Cheng, G., and Sun, R. (2003). NF-kappaB inhibits gammaherpesvirus lytic replication. J Virol 77, 8532–8540.PubMedCrossRefGoogle Scholar
  15. Cahir-McFarland, E. D., Carter, K., Rosenwald, A., Giltnane, J. M., Henrickson, S. E., Staudt, L. M., and Kieff, E. (2004). Role of NF-kappa B in cell survival and transcription of latent membrane protein 1-expressing or Epstein-Barr virus latency III-infected cells. J Virol 78, 4108–4119.PubMedCrossRefGoogle Scholar
  16. Cahir-McFarland, E. D., Davidson, D. M., Schauer, S. L., Duong, J., and Kieff, E. (2000). NF-kappa B inhibition causes spontaneous apoptosis in Epstein-Barr virus-transformed lymphoblastoid cells. Proc Natl Acad Sci USA 97, 6055–6060.PubMedCrossRefGoogle Scholar
  17. Carbone, A., Cesarman, E., Spina, M., Gloghini, A., and Schulz, T. F. (2009). HIV-associated lymphomas and gamma-herpesviruses. Blood 113, 1213–1224. Epub 2008 Oct 27. Review.Google Scholar
  18. Chugh, P., Matta, H., Schamus, S., Zachariah, S., Kumar, A., Richardson, J. A., Smith, A. L., and Chaudhary, P. M. (2005). Constitutive NF-{kappa}B activation, normal Fas-induced apoptosis, and increased incidence of lymphoma in human herpes virus 8 K13 transgenic mice. Proc Natl Acad Sci USA 102, 12885–12890.PubMedCrossRefGoogle Scholar
  19. Damania, B., and Pipas, J. B., eds. (2009). DNA Tumor Viruses, (New York: Springer).Google Scholar
  20. Devergne, O., Cahir McFarland, E. D., Mosialos, G., Izumi, K. M., Ware, C. F., and Kieff, E. (1998). Role of the TRAF binding site and NF-kappaB activation in Epstein-Barr virus latent membrane protein 1-induced cell gene expression. J Virol 72, 7900–7908.PubMedGoogle Scholar
  21. Dittmer, D., Lagunoff, M., Renne, R., Staskus, K., Haase, A., and Ganem, D. (1998). A cluster of latently expressed genes in Kaposi’s sarcoma-associated herpesvirus. J Virol 72, 8309–8315.PubMedGoogle Scholar
  22. Engels, E. A., Pfeiffer, R. M., Goedert, J. J., Virgo, P., McNeel, T. S., Scoppa, S. M., and Biggar, R. J. (2006). Trends in cancer risk among people with AIDS in the United States 1980–2002. Aids 20, 1645–1654.PubMedCrossRefGoogle Scholar
  23. Flano, E., Husain, S. M., Sample, J. T., Woodland, D. L., and Blackman, M. A. (2000). Latent murine gamma-herpesvirus infection is established in activated B cells, dendritic cells, and macrophages. J Immunol 165, 1074–1081.PubMedGoogle Scholar
  24. Flano, E., Kim, I. J., Woodland, D. L., and Blackman, M. A. (2002). Gamma-herpesvirus latency is preferentially maintained in splenic germinal center and memory B cells. J Exp Med 196, 1363–1372.PubMedCrossRefGoogle Scholar
  25. Fu, D. X., Tanhehco, Y., Chen, J., Foss, C. A., Fox, J. J., Chong, J. M., Hobbs, R. F., Fukayama, M., Sgouros, G., Kowalski, J., et al. (2008). Bortezomib-induced enzyme-targeted radiation therapy in herpesvirus-associated tumors. Nat Med 14, 1118–1122.PubMedCrossRefGoogle Scholar
  26. Fu, D. X., Tanhehco, Y. C., Chen, J., Foss, C. A., Fox, J. J., Lemas, V., Chong, J. M., Ambinder, R. F., and Pomper, M. G. (2007). Virus-associated tumor imaging by induction of viral gene expression. Clin Cancer Res 13, 1453–1458.PubMedCrossRefGoogle Scholar
  27. Ghosh, S., ed. (2007). Handbook of Transcription Factor NF-kappaB, (Boca Raton: CRC Press).Google Scholar
  28. Glaser, S. L., Clarke, C. A., Gulley, M. L., Craig, F. E., DiGiuseppe, J. A., Dorfman, R. F., Mann, R. B., and Ambinder, R. F. (2003). Population-based patterns of human immunodeficiency virus-related Hodgkin lymphoma in the Greater San Francisco Bay Area, 1988–1998. Cancer 98, 300–309.PubMedCrossRefGoogle Scholar
  29. Guasparri, I., Keller, S. A., and Cesarman, E. (2004). KSHV vFLIP is essential for the survival of infected lymphoma cells. J Exp Med 199, 993–1003.PubMedCrossRefGoogle Scholar
  30. Heise, C., Sampson-Johannes, A., Williams, A., McCormick, F., Von Hoff, D. D., and Kirn, D. H. (1997). ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 3, 639–645.PubMedCrossRefGoogle Scholar
  31. Hinz, M., Lemke, P., Anagnostopoulos, I., Hacker, C., Krappmann, D., Mathas, S., Dorken, B., Zenke, M., Stein, H., and Scheidereit, C. (2002). Nuclear factor kappaB-dependent gene expression profiling of Hodgkin’s disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J Exp Med 196, 605–617.PubMedCrossRefGoogle Scholar
  32. Hochberg, D., Middeldorp, J. M., Catalina, M., Sullivan, J. L., Luzuriaga, K., and Thorley-Lawson, D. A. (2004). Demonstration of the Burkitt’s lymphoma Epstein-Barr virus phenotype in dividing latently infected memory cells in vivo. Proc Natl Acad Sci USA 101, 239–244.PubMedCrossRefGoogle Scholar
  33. Hoffmann, C., Wolf, E., Fatkenheuer, G., Buhk, T., Stoehr, A., Plettenberg, A., Stellbrink, H. J., Jaeger, H., Siebert, U., and Horst, H. A. (2003). Response to highly active antiretroviral therapy strongly predicts outcome in patients with AIDS-related lymphoma. AIDS 17, 1521–1529.PubMedCrossRefGoogle Scholar
  34. Hwang, S., Wu, T. T., Tong, L. M., Kim, K. S., Martinez-Guzman, D., Colantonio, A. D., Uittenbogaart, C. H., and Sun, R. (2008). Persistent gammaherpesvirus replication and dynamic interaction with the host in vivo. J Virol 82, 12498–12509.PubMedCrossRefGoogle Scholar
  35. Izumi, K. M., Kaye, K. M., and Kieff, E. D. (1997). The Epstein-Barr virus LMP1 amino acid sequence that engages tumor necrosis factor receptor associated factors is critical for primary B lymphocyte growth transformation. Proc Natl Acad Sci USA 94, 1447–1452.PubMedCrossRefGoogle Scholar
  36. Karin, M., Cao, Y., Greten, F. R., and Li, Z. W. (2002). NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2, 301–310.PubMedCrossRefGoogle Scholar
  37. Kaye, K. M., Izumi, K. M., Mosialos, G., and Kieff, E. (1995). The Epstein-Barr virus LMP1 cytoplasmic carboxy terminus is essential for B-lymphocyte transformation; fibroblast cocultivation complements a critical function within the terminal 155 residues. J Virol 69, 675–683.PubMedGoogle Scholar
  38. Keats, J. J., Fonseca, R., Chesi, M., Schop, R., Baker, A., Chng, W. J., Van Wier, S., Tiedemann, R., Shi, C. X., Sebag, M., et al. (2007). Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12, 131–144.PubMedCrossRefGoogle Scholar
  39. Keller, S. A., Schattner, E. J., and Cesarman, E. (2000). Inhibition of NF-kappaB induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood 96, 2537–2542.PubMedGoogle Scholar
  40. Kim, K., Ryu, K., Ko, Y., and Park, C. (2005). Effects of nuclear factor-kappaB inhibitors and its implication on natural killer T-cell lymphoma cells. Br J Haematol 131, 59–66.PubMedCrossRefGoogle Scholar
  41. Krug, L. T., Moser, J. M., Dickerson, S. M., and Speck, S. H. (2007). Inhibition of NF-kappaB activation in vivo impairs establishment of gammaherpesvirus latency. PLoS Pathog 3, e11.PubMedCrossRefGoogle Scholar
  42. Kulwichit, W., Edwards, R. H., Davenport, E. M., Baskar, J. F., Godfrey, V., and Raab-Traub, N. (1998). Expression of the Epstein-Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc Natl Acad Sci USA 95, 11963–11968.PubMedCrossRefGoogle Scholar
  43. Kurokawa, M., Ghosh, S. K., Ramos, J. C., Mian, A. M., Toomey, N. L., Cabral, L., Whitby, D., Barber, G. N., Dittmer, D. P., and Harrington, W. J., Jr. (2005). Azidothymidine inhibits NF-kappaB and induces Epstein-Barr virus gene expression in Burkitt lymphoma. Blood 106, 235–240.PubMedCrossRefGoogle Scholar
  44. Lassot, I., Latreille, D., Rousset, E., Sourisseau, M., Linares, L. K., Chable-Bessia, C., Coux, O., Benkirane, M., and Kiernan, R. E. (2007). The proteasome regulates HIV-1 transcription by both proteolytic and nonproteolytic mechanisms. Mol Cell 25, 369–383.PubMedCrossRefGoogle Scholar
  45. Lee, R. K., Cai, J. P., Deyev, V., Gill, P. S., Cabral, L., Wood, C., Agarwal, R. P., Xia, W., Boise, L. H., Podack, E., and Harrington, W. J., Jr. (1999). Azidothymidine and interferon-alpha induce apoptosis in herpesvirus- associated lymphomas. Cancer Res 59, 5514–5520.PubMedGoogle Scholar
  46. Lee, B. S., Connole, M., Tang, Z., Harris, N. L., and Jung, J. U. (2003). Structural analysis of the Kaposi’s sarcoma-associated herpesvirus K1 protein. J Virol 77, 8072–8086.PubMedCrossRefGoogle Scholar
  47. Mangeat, B., Turelli, P., Caron, G., Friedli, M., Perrin, L., and Trono, D. (2003). Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424, 99–103.PubMedCrossRefGoogle Scholar
  48. Martin, D., Galisteo, R., Ji, Y., Montaner, S., and Gutkind, J. S. (2008). An NF-kappaB gene expression signature contributes to Kaposi’s sarcoma virus vGPCR-induced direct and paracrine neoplasia. Oncogene 27, 1844–1852.PubMedCrossRefGoogle Scholar
  49. Matta, H., and Chaudhary, P. M. (2005). The proteasome inhibitor bortezomib (PS-341) inhibits growth and induces apoptosis in primary effusion lymphoma cells. Cancer Biol Ther 4, 77–82.PubMedCrossRefGoogle Scholar
  50. Matta, H., Mazzacurati, L., Schamus, S., Yang, T., Sun, Q., and Chaudhary, P. M. (2007). Kaposi’s sarcoma-associated herpesvirus (KSHV) oncoprotein K13 bypasses TRAFs and directly interacts with the IkappaB kinase complex to selectively activate NF-kappaB without JNK activation. J Biol Chem 282, 24858–24865.PubMedCrossRefGoogle Scholar
  51. Mehle, A., Wilson, H., Zhang, C., Brazier, A. J., McPike, M., Pery, E., and Gabuzda, D. (2007). Identification of an APOBEC3G binding site in human immunodeficiency virus type 1 Vif and inhibitors of Vif-APOBEC3G binding. J Virol 81, 13235–13241.PubMedCrossRefGoogle Scholar
  52. Mori, N., Yamada, Y., Ikeda, S., Yamasaki, Y., Tsukasaki, K., Tanaka, Y., Tomonaga, M., Yamamoto, N., and Fujii, M. (2002). Bay 11-7082 inhibits transcription factor NF-kappaB and induces apoptosis of HTLV-I-infected T-cell lines and primary adult T-cell leukemia cells. Blood 100, 1828–1834.PubMedCrossRefGoogle Scholar
  53. Nemunaitis, J., Ganly, I., Khuri, F., Arseneau, J., Kuhn, J., McCarty, T., Landers, S., Maples, P., Romel, L., Randlev, B., et al. (2000). Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res 60, 6359–6366.PubMedGoogle Scholar
  54. Petre, C. E., Sin, S. H., and Dittmer, D. P. (2007). Functional p53 signaling in Kaposi’s sarcoma-associated herpesvirus lymphomas: implications for therapy. J Virol 81, 1912–1922.PubMedCrossRefGoogle Scholar
  55. Pham, L. V., Tamayo, A. T., Yoshimura, L. C., Lo, P., and Ford, R. J. (2003). Inhibition of constitutive NF-kappa B activation in mantle cell lymphoma B cells leads to induction of cell cycle arrest and apoptosis. J Immunol 171, 88–95.PubMedGoogle Scholar
  56. Piccinini, M., Rinaudo, M. T., Chiapello, N., Ricotti, E., Baldovino, S., Mostert, M., and Tovo, P. A. (2002). The human 26S proteasome is a target of antiretroviral agents. AIDS 16, 693–700.PubMedCrossRefGoogle Scholar
  57. Prakash, O., Tang, Z. Y., Peng, X., Coleman, R., Gill, J., Farr, G., and Samaniego, F. (2002). Tumorigenesis and aberrant signaling in transgenic mice expressing the human herpesvirus-8 K1 gene. J Natl Cancer Inst 94, 926–935.PubMedCrossRefGoogle Scholar
  58. Raez, L., Cabral, L., Cai, J. P., Landy, H., Sfakianakis, G., Byrne, G. E., Jr., Hurley, J., Scerpella, E., Jayaweera, D., and Harrington, W. J., Jr. (1999). Treatment of AIDS-related primary central nervous system lymphoma with zidovudine, ganciclovir, and interleukin 2. AIDS Res Hum Retroviruses 15, 713–719.PubMedCrossRefGoogle Scholar
  59. Reid, T. R., Freeman, S., Post, L., McCormick, F., and Sze, D. Y. (2005). Effects of Onyx-015 among metastatic colorectal cancer patients that have failed prior treatment with 5-FU/leucovorin. Cancer Gene Ther 12, 673–681.PubMedCrossRefGoogle Scholar
  60. Reid, T., Galanis, E., Abbruzzese, J., Sze, D., Andrews, J., Romel, L., Hatfield, M., Rubin, J., and Kirn, D. (2001). Intra-arterial administration of a replication-selective adenovirus (dl1520) in patients with colorectal carcinoma metastatic to the liver: a phase I trial. Gene Ther 8, 1618–1626.PubMedCrossRefGoogle Scholar
  61. Sadagopan, S., Sharma-Walia, N., Veettil, M. V., Raghu, H., Sivakumar, R., Bottero, V., and Chandran, B. (2007). Kaposi’s sarcoma-associated herpes virus (KSHV/HHV-8) induces a sustained NF-{kappa}B activation during de novo infection of primary human dermal microvascular endothelial cells that is essential for viral gene expression. J Virol 81, 3949–3968. Epub 2007 Feb 7.Google Scholar
  62. Sen, R., and Baltimore, D. (1986). Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46, 705–716.PubMedCrossRefGoogle Scholar
  63. Shair, K. H., Bendt, K. M., Edwards, R. H., Bedford, E. C., Nielsen, J. N., and Raab-Traub, N. (2007). EBV latent membrane protein 1 activates Akt, NFkappaB, and Stat3 in B cell lymphomas. PLoS Pathog 3, e166.PubMedCrossRefGoogle Scholar
  64. Shair, K. H., Schnegg, C. I., and Raab-Traub, N. (2008). EBV latent membrane protein 1 effects on plakoglobin, cell growth, and migration. Cancer Res 68, 6997–7005.PubMedCrossRefGoogle Scholar
  65. Siddiqi, T., and Joyce, R. M. (2008). A case of HIV-negative primary effusion lymphoma treated with bortezomib, pegylated liposomal doxorubicin, and rituximab. Clin Lymphoma Myeloma 8, 300–304.PubMedCrossRefGoogle Scholar
  66. Srimatkandada, P., Loomis, R., Carbone, R., Srimatkandada, S., and Lacy, J. (2008). Combined proteasome and Bcl-2 inhibition stimulates apoptosis and inhibits growth in EBV-transformed lymphocytes: a potential therapeutic approach to EBV-associated lymphoproliferative diseases. Eur J Haematol 80, 407–418.PubMedCrossRefGoogle Scholar
  67. Stebbing, J., Ngan, S., Ibrahim, H., Charles, P., Nelson, M., Kelleher, P., Naresh, K. N., and Bower, M. (2008). The successful treatment of haemophagocytic syndrome in patients with human immunodeficiency virus-associated multi-centric Castleman’s disease. Clin Exp Immunol 154, 399–405.PubMedCrossRefGoogle Scholar
  68. Sullivan, R. J., Pantanowitz, L., Casper, C., Stebbing, J., and Dezube, B. J. (2008). HIV/AIDS: epidemiology, pathophysiology, and treatment of Kaposi sarcoma-associated herpesvirus disease: Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman disease. Clin Infect Dis 47, 1209–1215.PubMedCrossRefGoogle Scholar
  69. Sun, Q., Zachariah, S., and Chaudhary, P. M. (2003). The human herpes virus 8-encoded viral FLICE-inhibitory protein induces cellular transformation via NF-kappaB activation. J Biol Chem 278, 52437–52445.PubMedCrossRefGoogle Scholar
  70. Thome, M., Schneider, P., Hofmann, K., Fickenscher, H., Meinl, E., Neipel, F., Mattmann, C., Burns, K., Bodmer, J. L., Schroter, M., et al. (1997). Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386, 517–521.PubMedCrossRefGoogle Scholar
  71. Uchida, J., Yasui, T., Takaoka-Shichijo, Y., Muraoka, M., Kulwichit, W., Raab-Traub, N., and Kikutani, H. (1999). Mimicry of CD40 signals by Epstein-Barr virus LMP1 in B lymphocyte responses. Science 286, 300–303.PubMedCrossRefGoogle Scholar
  72. Usherwood, E. J., Stewart, J. P., Robertson, K., Allen, D. J., and Nash, A. A. (1996). Absence of splenic latency in murine gammaherpesvirus 68-infected B cell-deficient mice. J Gen Virol 77, 2819–2825.PubMedCrossRefGoogle Scholar
  73. Vega, M. I., Martinez-Paniagua, M., Jazirehi, A. R., Huerta-Yepez, S., Umezawa, K., Martinez-Maza, O., and Bonavida, B. (2008). The NF-kappaB inhibitors (bortezomib and DHMEQ) sensitise rituximab-resistant AIDS-B-non-Hodgkin lymphoma to apoptosis by various chemotherapeutic drugs. Leuk Lymphoma 49, 1982–1994.PubMedCrossRefGoogle Scholar
  74. Wang, L., Dittmer, D. P., Tomlinson, C. C., Fakhari, F. D., and Damania, B. (2006). Immortalization of primary endothelial cells by the K1 protein of Kaposi’s sarcoma-associated herpesvirus. Cancer Res 66, 3658–3666.PubMedCrossRefGoogle Scholar
  75. Zou, P., Kawada, J., Pesnicak, L., and Cohen, J. I. (2007). Bortezomib induces apoptosis of Epstein-Barr virus (EBV)-transformed B cells and prolongs survival of mice inoculated with EBV-transformed B cells. J Virol 81, 10029–10036.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Medicine (Hematology)Moores UCSD Cancer CenterLa JollaUSA
  2. 2.Department of Microbiology and ImmunologyLineberger Comprehensive Cancer Center, Center for AIDS Research, University of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations