Skip to main content

Principles of High-Intensity Focused Ultrasound

  • Chapter
  • First Online:
Interventional Oncology

Abstract

Although its use for therapeutic purposes predates diagnostic applications by several decades, ultrasound is most widely known for its imaging capabilities. The passage of ultrasound (US) through tissue can lead to biological changes that may be reversible or irreversible. The biological significance of these effects depends to a large extent on the energy in the ultrasound beam and the goal of the exposure. At diagnostic levels, any changes are largely believed to be biologically insignificant. For therapeutic ultrasound, beneficial cellular or functional effects are deliberately sought, whether these are at the cell membrane level (e.g., transient changes in permeability to facilitate drug delivery) or less subtle effects such as the localised temperatures rises that are required to achieve immediate thermal necrosis in high intensity focused ultrasound (HIFU; this technique is sometimes also referred to as FUS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ter Haar GR, Coussios C-C. High intensity focused ultrasound: past, present and future. Int J Hyperthermia. 2007;23:85–7.

    Article  PubMed  Google Scholar 

  2. Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys. 1984;10:787–800.

    Article  PubMed  CAS  Google Scholar 

  3. Goldberg SN, Solbiati L, Gazelle GS, Tanabe KK, Compton CC, Muller PR. Treatment of intra hepatic malignancy with radio-frequency ablation: pathologic correlation in 16 patients. AJR Am J Roentgenol. 1998;170:1023–8.

    PubMed  CAS  Google Scholar 

  4. Thompson S. Pathologic analysis of photothermal and photochemical effects of laser-tissue interactions. Photochem Photobiol. 1991;53:825–35.

    Google Scholar 

  5. Farjado LF, Egbort B, Marmor J, Hahn GM. Effects of hyperthermia on a malignant tumour. Cancer. 1980;45:613–23.

    Article  Google Scholar 

  6. Yatvin MB, Cramp WA. Role of cellular membranes in hyperthermia: some observations and theories reviewed. Int J Hyperthermia. 1993;9(2):165–85.

    Article  PubMed  CAS  Google Scholar 

  7. Nikfarjam M, Vijayaragavan M, Christophi C. Mechanisms of focal heat destruction of liver tumours. J Surg Res. 2005;127:208–23.

    Article  PubMed  Google Scholar 

  8. Pond JB. The role of heat in the production of ultrasonic focal lesions. J Acoust Soc Am. 1970;47:1607–11.

    Article  PubMed  CAS  Google Scholar 

  9. Wu F, Wang ZB, Cao YD, et al. Heat fixation of cancer cells ablated with high intensity focused ultrasound in patients with breast cancer. Am J Surg. 2006;192:179–84.

    Article  PubMed  Google Scholar 

  10. Chen L, Rivens I, ter Haar G, Riddler S, Hill CR, Bensted JP. Histologic changes in rat liver tumours treated with high intensity focused ultrasound. Ultrasound Med Biol. 1993;19:67–74.

    Article  PubMed  CAS  Google Scholar 

  11. ter Haar GR, Robertson D. Tissue destruction with focused ultrasound in vivo. Eur Urol. 1993;23 Suppl 1:8–11.

    PubMed  Google Scholar 

  12. Wu F, Chen WZ, Bai JB, et al. Pathological changes in human malignant carcinoma treated with high intensity focused ultrasound. Ultrasound Med Biol. 2001;27:1099–106.

    Article  PubMed  CAS  Google Scholar 

  13. Rowland IJ, Rivens I, Chen L, et al. MRI study of hepatic tumours following high intensity focused ultrasound surgery. Br J Radiol. 1997;70:144–53.

    PubMed  CAS  Google Scholar 

  14. Chen L, Bouley D, Yuh E, Arceuiol D, Butts K. Study of focused ultrasound tissue damage using MRI and histology. J Magn Reson Imaging. 1999;10:146–53.

    Article  PubMed  CAS  Google Scholar 

  15. Delon-Martin C, Vogt C, Chignier E, Guers C, Chapelon JY, Cathignol D. Venous thrombosis generation by means of high intensity focused ultrasound. Ultrasound Med Biol. 1995;21:113–9.

    Article  PubMed  CAS  Google Scholar 

  16. Hynynen K, Chung AH, Colucci V, Jolesz FA. Potential adverse effects of high intensity focused ultrasound exposure on blood vessels in vivo. Ultrasound Med Biol. 1996;22:193–201.

    Article  PubMed  CAS  Google Scholar 

  17. Ishikawa T, Okai T, Sasaki K, et al. Functional and histological changes in rat femoral arteries by HIFU exposure. Ultrasound Med Biol. 2003;29(10):1471–7.

    Article  PubMed  Google Scholar 

  18. Rivens IH, Rowland IJ, Denbow M, Fisk NM, ter Haar GR, Leach MO. Vascular occlusion using focused ultrasound surgery for use in fetal medicine. Eur J Ultrasound. 1999;9:89–97.

    Article  PubMed  CAS  Google Scholar 

  19. Ichihara M, Sasaki K, Umemura S-I, Kushima M, Okai T. Blood flow occlusion via ultrasound image-guided high-intensity focused ultrasound and its effect on tissue perfusion. Ultrasound Med Biol. 2007;33(3):452–9.

    Article  PubMed  Google Scholar 

  20. Henderson PW, Lewis GK, Shaikh N, et al. A portable high-intensity focused ultrasound device for noninvasive venous ablation. J Vasc Surg. 2010;51:707–11.

    Article  PubMed  Google Scholar 

  21. Ishikawa T, Okai T, Sasaki K, et al. Sequential changes in rat femoral artery blood flow and tissue degeneration after exposure to high-intensity focused ultrasound. J Med Ultrasonics. 2008;35(4):177–82.

    Article  Google Scholar 

  22. Seket B, Lafon C, Salomir R, et al. Morphological analysis of the interstitial ultrasonic ablation in porcine liver in vivo. Eur Surg Res. 2008;41(1):24–32.

    Article  PubMed  CAS  Google Scholar 

  23. ter Haar GR, Coussios C-C. High intensity focused ultrasound: physical principles and devices. Int J Hyperthermia. 2007;23:89–104.

    Article  PubMed  Google Scholar 

  24. Rivens IH, Shaw A, Civale J, Morris H. Treatment monitoring and thermometry for therapeutic focused ultrasound. Int J Hyperthermia. 2007;23:121–39.

    Article  PubMed  CAS  Google Scholar 

  25. Rieke V, Butts PK. MR thermometry. J Magn Reson Imaging. 2008;27:376–90.

    Article  PubMed  Google Scholar 

  26. Curiel L, Souchon R, Rouviere O, Gelet A, Chapelon J-Y. Elastography for the follow-up of high intensity focused ultrasound prostate cancer treatment: initial comparison with MRI. Ultrasound Med Biol. 2005;31:1461–8.

    Article  PubMed  CAS  Google Scholar 

  27. Sinkus R, Lorenzen J, Schrader D, Lorenzen M, Dargatz M, Holz D. High-resolution tensor MR elastography for breast tumour detection. Phys Med Biol. 2000;45:1649–64.

    Article  PubMed  CAS  Google Scholar 

  28. Illing RO, Kennedy JE, Wu F, et al. The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population. Br J Cancer. 2005;93:890–5.

    Article  PubMed  CAS  Google Scholar 

  29. Leslie TA, Kennedy JE. High intensity focused ultrasound in the treatment of abdominal and gynaecological diseases. Int J Hyperthermia. 2007;23:173–82.

    Article  PubMed  CAS  Google Scholar 

  30. Park MY, Jung SE, Cho SH, et al. Preliminary experience using high intensity focused ultrasound for treating liver metastasis from colon and stomach cancer. Int J Hyperthermia. 2009;25(3):180–8.

    Article  PubMed  CAS  Google Scholar 

  31. Zhu H, Zhou K, Zhang L, et al. High intensity focused ultrasound (HIFU) therapy for local treatment of hepatocellular carcinoma: role of partial rib resection. Eur J Radiol. 2009;72:160–6.

    Article  PubMed  Google Scholar 

  32. Civale J, Clarke RL, Rivens IH, ter Haar GR. The use of a segmented transducer for rib sparing in HIFU treatments. Ultrasound Med Biol. 2006;32:1753–61.

    Article  PubMed  Google Scholar 

  33. Hand JW, Shaw A, Sadhoo N, Rajagopal S, Dickinson RJ, Gavrilov LR. A random phased array device for delivery of high intensity focused ultrasound. Phys Med Biol. 2009;54(19):5675–93.

    Article  PubMed  CAS  Google Scholar 

  34. Wu F, Wang Z, Chen W-Z, et al. Extracorporeal high intensity focused ultrasound ablation in the treatment of patients with large hepatocellular carcinoma. Ann Surg Oncol. 2007;11:1061–9.

    Article  Google Scholar 

  35. Fry WJ, Mosberg Jr WH, Barnard JW, Fry FJ. Production of focal destructive lesions in the central nervous system with ultrasound. J Neurosurg. 1954;11:471–8.

    Article  PubMed  CAS  Google Scholar 

  36. Tanter M, Pernot M, Aubry J-F, Montaldo G, Marquet F, Fink M. Compensating for bone interfaces and respiratory motion in high-intensity focused ultrasound. Int J Hyperthermia. 2007;23:141–51.

    Article  PubMed  CAS  Google Scholar 

  37. Hynynen K, Clement G. Clinical applications of focused ultrasound – the brain. Int J Hyperthermia. 2007;23:193–202.

    Article  PubMed  CAS  Google Scholar 

  38. MacDannold N, Clement G, Black P, Jolesz F, Hynynen K. Transcranial magnetic resonance imaging – guided focused ultrasound surgery of brain tumors: initial findings in 3 patients. Neurosurgery. 2010;66:323–32.

    Article  Google Scholar 

  39. Illing RI, Chapman A. The clinical applications of high intensity focused ultrasound in the prostate. Int J Hyperthermia. 2007;23:183–91.

    Article  PubMed  Google Scholar 

  40. Uchida T, Ohkusa H, Yamashita H, et al. Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer. Int J Urol. 2006;13:228–33.

    Article  PubMed  Google Scholar 

  41. Blana A, Thüroff S, Murat FJ, et al. First analysis of the long-term results with transrectal HIFU in patients with localised prostate cancer. Eur Urol. 2008;53:1194–203.

    Article  PubMed  Google Scholar 

  42. Rove KO, Sullivan KF, Crawford ED. High intensity focused ultrasound: ready for prime time? Urol Clin N Am. 2010;37:27–35.

    Article  Google Scholar 

  43. Tempany CM, Stewart EA, McDannold N, et al. MR imaging guided focused ultrasound surgery of uterine leiomyomas: a feasibility study. Radiology. 2003;226:897–905.

    Article  PubMed  Google Scholar 

  44. Stewart EA, Rabinovici J, Tempany CM, et al. Clinical outcomes of focused ultrasound surgery for the treatment of uterine fibroids. Fertil Steril. 2006;85:22–9.

    Article  PubMed  Google Scholar 

  45. Mikami K, Murakami T, Okada A, Osuga K, Tomoda K, Nakamura H. Magnetic resonance imaging-guided focused ultrasound ablation of uterine fibroids: early clinical experience. Radiat Med. 2008;26:198–205.

    Article  PubMed  Google Scholar 

  46. Morita Y, Ito N, Hikida H. Non-invasive magnetic resonance imaging guided focused ultrasound treatment for uterine fibroids – early experience. Eur J Obstet Gynecol Reprod Biol. 2008;139:199–203.

    Article  PubMed  Google Scholar 

  47. Zaher S, Gedroyc WM, Regan L. Patient suitability for magnetic resonance guided focused ultrasound surgery of uterine fibroids. Eur J Obstet Gynecol Reprod Biol. 2009;143:98–102.

    Article  PubMed  Google Scholar 

  48. Wu F, Wang ZB, Chen WZ, Bai J, Zhu H, Qiao TY. Preliminary experience using high intensity focused ultrasound for the treatment of patients with advanced stage renal malignancy. J Urol. 2003;170:2237–40.

    Article  PubMed  Google Scholar 

  49. Klingler HC, Susani M, Seip R, Mauermann J, Sanghvi N, Marberger MJ. A novel approach to energy ablative therapy of small renal tumours: laparoscopic high-intensity focused ultrasound. Eur Urol. 2008;53:810–8.

    Article  PubMed  Google Scholar 

  50. Wu F, Wang Z, Zhu H, et al. Feasibility of US-guided high-intensity focused ultrasound treatment in patients with advanced pancreatic cancer: initial experience. Radiology. 2005;236:1034–40.

    Article  PubMed  Google Scholar 

  51. Wu F, Wang Z, Cao Y-D, et al. Expression of tumor antigens and heat shock protein 70 in breast cancer cells after high intensity focused ultrasound ablation. Ann Surg Oncol. 2007;14:1237–42.

    Article  PubMed  Google Scholar 

  52. Hynynen K, Pomeroy O, Smith DN, et al. MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study. Radiology. 2001;219:176–85.

    PubMed  CAS  Google Scholar 

  53. Liberman B, Gianfelice D, Inbar Y, et al. Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: a multicenter study. Ann Surg Oncol. 2008;16:140–6.

    Article  PubMed  Google Scholar 

  54. Gianfelice D, Gupta CH, Kucharczyk W, et al. Palliative treatment of painful bone metastases with MR imaging-guided focused ultrasound. Radiology. 2008;249:352–62.

    Article  Google Scholar 

  55. Shen S-H, Fennessy F, McDannold N, Jolesz F, Tempany C. Image-guided thermal therapy of uterine fibroids. Semin Ultrasound CT MR. 2009;30:91–104.

    Article  PubMed  Google Scholar 

  56. Rabinovici J, Inbar Y, Revel A, Zalel Y, et al. Clinical improvement and shrinkage of uterine fibroids after thermal ablation by magnetic resonance-guided focused ultrasound surgery. Ultrasound Obstet Gynecol. 2007;30:771–7.

    Article  PubMed  CAS  Google Scholar 

  57. Rabinovici J, David M, Fukunishi M, et al. Pregnancy outcome following magnetic resonance guided focused ultrasound surgery (MRgFUS) for conservative treatment of uterine fibroids. Fertil Steril. 2010;93(1):199–209.

    Article  PubMed  Google Scholar 

  58. Leon-Villapalos J, Kaniorou-Larai M, Dziewulski P. Full thickness abdominal burn following magnetic resonance guided focused ultrasound therapy. Burns. 2005;31:1054–5.

    Article  PubMed  Google Scholar 

  59. Wu F, Wang ZB, Chen WZ, et al. Extracorporeal focused ultrasound surgery for treatment of human solid carcinomas: early Chinese clinical experience. Ultrasound Med Biol. 2004;30:245–60.

    Article  PubMed  Google Scholar 

  60. Kennedy JE, Wu F, ter Haar GR, et al. High-intensity focused ultrasound for the treatment of liver tumours. Ultrasonics. 2004;42:931–5.

    Article  PubMed  CAS  Google Scholar 

  61. Fry WJ, Fry FJ. Fundamental neurological research and human neurosurgery using intense ultrasound. IRE Trans Biomed Electronics. 1960;ME-7:166–81.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gail ter Haar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

ter Haar, G. (2012). Principles of High-Intensity Focused Ultrasound. In: Mueller, P., Adam, A. (eds) Interventional Oncology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1469-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1469-9_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1468-2

  • Online ISBN: 978-1-4419-1469-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics