Skip to main content

Schemata Learning

  • Chapter
  • First Online:
Perception-Action Cycle

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS))

  • 1442 Accesses

Abstract

This chapter describes a possible brain model that could account for neuronal mechanisms of schemata learning and discusses the results of robotic experiments implemented with the model. We consider a dynamic neural network model which is characterized by their multiple time-scales dynamics. The model assumes that the slow dynamic part corresponding to the premotor cortex interacts with the fast dynamics part corresponding to the inferior parietal lobe (IPL). Using this model, the robotics experiments on developmental tutoring of a set of goal-directed actions were conducted. The results showed that functional hierarchical structures emerge through stages of developments where behavior primitives are generated in the fast dynamics part in earlier stages, and their compositional sequences of achieving goals appear in the slow dynamics part in later stages. It was also observed that motor imagery is generated in earlier stages compared to actual behaviors. We discuss that schemata of goal-directed actions should be acquired with gradual development of the internal image and compositionality for the actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arbib, M.: Perceptual structures and distributed motor control. In: Handbook of physiology: the nervous system, II. motor control, pp. 1448–1480. MIT, Cambridge, MA (1981)

    Google Scholar 

  2. Beer, R.: A dynamical systems perspective on agent-environment interaction. Artificial Intelligence 72(1), 173–215 (1995)

    Article  Google Scholar 

  3. Billard, A., Mataric, M.: Learning human arm movements by imitation: evaluation of a biologically-inspired connectionist architecture. Robotics and Autonomous Systems 941, 1–16 (2001)

    Google Scholar 

  4. Colby, C., Duhamel, J., Goldberg, M.: Ventral intraparietal area of the macaque: anatomic location and visual response properties. Journal of Neurophysiology 69, 902–914 (1993)

    CAS  PubMed  Google Scholar 

  5. Decety, J.: Do executed and imagined movements share the same central structures? Cognitive Brain Research 3, 87–93 (1996)

    Article  CAS  PubMed  Google Scholar 

  6. Demiris, J., Hayes, G.: Imitation as a dual-route process featuring predictive and learning components: a biologically plausible computational model. In: Imitation in animals and artifacts, pp. 327–361. MIT, Cambridge, MA (2002)

    Google Scholar 

  7. Diamond, A.: Neuropsychological insights into the meaning of object concept development. In: The epigenesis of mind: essays on biology and cognition, pp. 67–110. Erlbaum, Hillsdale, NJ (1991)

    Google Scholar 

  8. Doya, K., Yoshizawa, S.: Memorizing oscillatory patterns in the analog neuron network. In: Proceedings of 1989 International Joint Conference on Neural Networks, pp. I:27–32. Washington, DC (1989)

    Google Scholar 

  9. Ehrsson, H., Fagergren, A., Johansson, R., Forssberg, H.: Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation. Journal of Neurophysiology 90, 2978–2986 (2003)

    Article  PubMed  Google Scholar 

  10. Eskandar, E., Assad, J.: Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance. Nature Neuroscience 2, 88–93 (1999)

    Article  CAS  PubMed  Google Scholar 

  11. Fagg, A.H., Arbib, M.A.: Modeling parietal-premotor interactions in primate control of grasping. Neural Networks 11, 1277–1303 (1998)

    Article  PubMed  Google Scholar 

  12. Feltz, D.L., Landers, D.M.: The effects of mental practice on motor skill learning and performance: a meta-analysis. Journal of Sport Psychology 5, 25–57 (1983)

    Google Scholar 

  13. Fetz, E., Finocchio, D., Baker, M., Soso, M.: Sensory and motor responses of precentral cortex cells during comparable passive and active joint movements. Journal of Neurophysiology 43, 1070–1089 (1980)

    CAS  PubMed  Google Scholar 

  14. Flanagan, J., Vetter, P., Johansson, R., Wolpert, D.: Prediction precedes control in motor learning. Current Biology 13(2), 146–150 (2003)

    Article  CAS  PubMed  Google Scholar 

  15. Fogassi, L., Ferrari, P., Gesierich, B., Rozzi, S., Chersi, F., Rizzolatti, G.: Parietal lobe: from action organization to intention understanding. Science 308, 662–667 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. Geschwind, N., Kaplan, E.: Human cerebral disconnection syndromes. Neurology 12, 675–685 (1962)

    CAS  PubMed  Google Scholar 

  17. Heilman, K.: Ideational apraxia - a re-definition. Brain 96, 861–864 (1973)

    Article  CAS  PubMed  Google Scholar 

  18. Hesslow, G.: Conscious thought as simulation of behaviour and perception. Trends in Cognitive Sciences 6(6), 242–247 (2002)

    Article  PubMed  Google Scholar 

  19. Inamura, T., Nakamura, N., Ezaki, H., Toshima, I.: Imitation and primitive symbol acquisition of humanoids by the integrated mimesis loop. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 4208–4213 (2001)

    Google Scholar 

  20. Inamura, T., Toshima, I., Tanie, H., Nakamura, Y.: Embodied symbol emergence based on mimesis theory. International Journal of Robotics Research 23(44), 363–377 (2004)

    Google Scholar 

  21. Isomura, Y., Akazawa, T., Nambu, A., Takada, M.: Neural coding of “attention for action” and “response selection” in primate anterior cingulate cortex. The Journal of Neuroscience 23, 8002–8012 (2003)

    CAS  PubMed  Google Scholar 

  22. Ito, M.: Bases and implications of learning in the cerebellum – adaptive control and internal model mechanism. Progress in Brain Research 148, 95–109 (2005)

    Article  PubMed  Google Scholar 

  23. Ito, M., Noda, K., Hoshino, Y., Tani, J.: Dynamic and interactive generation of object handling behaviors by a small humanoid robot using a dynamic neural network model. Neural Networks 19, 323–337 (2006)

    Article  PubMed  Google Scholar 

  24. Jeannerod, M.: The representing brain: neural correlates of motor imitation and imaginary. Behavioral and Brain Science 17, 187–245 (1994)

    Article  Google Scholar 

  25. Jeannerod, M.: Mental imagery in the motor context. Neuropsychologia 33(11), 1419–1432 (1995)

    Article  CAS  PubMed  Google Scholar 

  26. Jordan, M., Rumelhart, D.: Forward models: supervised learning with a distal teacher. Cognitive Science 16, 307–354 (1992)

    Article  Google Scholar 

  27. Karmiloff-Smith, A.: Beyond modularity. A developmental perspective on cognitive science. MIT, Cambridge, MA (1992)

    Google Scholar 

  28. Kawato, M., Furukawa, K., Suzuki, R.: A hierarchical neural network model for the control and learning of voluntary movement. Biological Cybernetics 57, 169–185 (1987)

    Article  CAS  PubMed  Google Scholar 

  29. Kawato, M., Maeda, Y., Uno, Y., Suzuki, R.: Trajectory formation of arm movement by cascade neural network model based on minimum torque-change criterion. Biological Cybernetics 62(4), 275–288 (1990)

    Article  CAS  PubMed  Google Scholar 

  30. Liepmann, H.: Apraxie. Ergebnisse der Gesamten Medizin 1, 516–543 (1920)

    Google Scholar 

  31. Luria, A.: The working brain. Penguin Books, New York (1973)

    Google Scholar 

  32. McCarthy, J.: Situations, actions and causal laws. Stanford Artificial Intelligence Project, Memo2, (1963)

    Google Scholar 

  33. McDonald, S., Tate, R., Rigby, J.: Error types in ideomotor apraxia: a qualitative analysis. Brain and Cognition 25(2), 250–270 (1994)

    Article  CAS  PubMed  Google Scholar 

  34. Nishimoto, R., Namikawa, J., Tani, J.: Learning multiple goal-directed actions through self-organization of a dynamic neural network model: a humanoid robot experiment. Adaptive Behavior 16, 166–181 (2008)

    Article  Google Scholar 

  35. Nolfi, S.: Evolving robots able to self-localize in the environment: The importance of viewing cognition as the result of processes occurring at different time scales. Connection Science 14(3), 231–244 (2002)

    Article  Google Scholar 

  36. Ohshima, F., Takeda, K., Bandou, M., Inoue, K.: A case of ideational apraxia -an impairment in the sequence of acts. Journal of Japanese Neuropsychology 14, 42–48 (1998)

    Google Scholar 

  37. Okamoto, H., Isomura, Y., Takada, M., Fukai, T.: Temporal intagration by stochastic recurrent network dynamics with bimodal neurons. Journal of Neurophysiology 97, 3859–3867 (2007)

    Article  PubMed  Google Scholar 

  38. Oztop, E., Arbib, M.A.: Schema design and implementation of the grasp-related mirror neuron system. Biological Cybernetics 87, 116–140 (2002)

    Article  PubMed  Google Scholar 

  39. Pezzulo, G.: Coordinating with the future: the anticipatory nature of representation. Minds and Machines 18, 179–225 (2008)

    Article  Google Scholar 

  40. Piaget, J.: The construction of reality in the child. Basic Books, New York (1954)

    Book  Google Scholar 

  41. Rizzolatti, G., Fadiga, L., Galless, V., Fogassi, L.: Premotor cortex and the recognition of motor actions. Cognitive Brain Research 3, 131–141 (1996)

    Article  CAS  PubMed  Google Scholar 

  42. Rumelhart, D., Hinton, G., Williams, R.: Learning internal representations by error propagation. In: D. Rumelhart, J. McClelland (eds.) Parallel distributed processing, pp. 318–362. MIT, Cambridge, MA (1986)

    Google Scholar 

  43. Sakai, Y., Okamoto, H., Fukai, T.: Computational algorithms and neuronal network models underlying decision processes. Neural Networks 19, 1091–1105 (2006)

    Article  PubMed  Google Scholar 

  44. Sakata, H., Taira, M., Murata, A., Mine, S.: Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cerebral Cortex 5, 429–438 (1995)

    Article  CAS  PubMed  Google Scholar 

  45. Sato, N., Sakata, H., Tanaka, Y., Taira, M.: Navigation-associated medial parietal neurons in monkeys. Proceedings of the National Academy of Sciences of USA 103, 17,001–17,006 (2006)

    Google Scholar 

  46. Schaal, S., Ijspeert, A., Billard, A.: Computational approaches to motor learning by imitation. Philosophical Transaction of the Royal Society of London: Series B, Biological Sciences 358(1431), 537–547 (2003)

    Article  Google Scholar 

  47. Schoner, S., Kelso, S.: Dynamic pattern generation in behavioral and neural systems. Science 239, 1513–1519 (1988)

    Article  CAS  PubMed  Google Scholar 

  48. Smith, L., Thelen, E.: A dynamic systems approach to the development of cognition and action. MIT, Cambridge, MA (1994)

    Google Scholar 

  49. Soso, M., Fetz, E.: Responses of identified cells in postcentral cortex of awake monkeys during comparable active and passive joint movements. Journal of Neurophysiology 43, 1090–1110 (1980)

    CAS  PubMed  Google Scholar 

  50. Tani, J.: Model-based learning for mobile robot navigation from the dynamical systems perspective. IEEE Transactions on Systems, Man, and Cybernetics B 26(3), 421–436 (1996)

    Article  CAS  Google Scholar 

  51. Tani, J.: Learning to generate articulated behavior through the bottom-up and the top-down interaction process. Neural Networks 16, 11–23 (2003)

    Article  PubMed  Google Scholar 

  52. Tani, J., Fukumura, N.: Learning goal-directed sensory-based navigation of a mobile robot. Neural Networks 7(3) (1994)

    Google Scholar 

  53. Tani, J., Ito, M., Sugita, Y.: Self-organization of distributedly represented multiple behavior schemata in a mirror system: reviews of robot experiments using RNNPB. Neural Networks 17, 1273–1289 (2004)

    Article  PubMed  Google Scholar 

  54. Tani, J., Nishimoto, R., Namikawa, J., Ito, M.: Codevelopmental learning between human and humanoid robot using a dynamic neural network model. IEEE Transactions on Systems, Man, and Cybernetics 38(1), 43–59 (2008)

    Article  PubMed  Google Scholar 

  55. Tani, J., Nishimoto, R., Paine, R.: Achieving “organic compositionality” through self-organization: reviews on brain-inspired robotics experiments. Neural Networks 21, 584–603 (2008)

    Article  PubMed  Google Scholar 

  56. Tani, J., Nolfi, S.: Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systems. In: R. Pfeifer, B. Blumberg, J. Meyer, S. Wilson (eds.) From animals to animats 5. MIT, Cambridge, MA (1998). Later published in Neural Networks, vol 12, pp. 1131–1141, 1999

    Google Scholar 

  57. Vogt, S.: On relations between perceiving, imaging and performing in the learning of cyclical movement sequences. British Journal of Psychology 86, 191–216 (1995)

    PubMed  Google Scholar 

  58. Wolpert, D., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Networks 11, 1317–1329 (1998)

    Article  CAS  PubMed  Google Scholar 

  59. Yamashita, Y., Tani, J.: Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment. PLoS Computational Biology 4(11) (2008)

    Google Scholar 

Download references

Acknowledgements

The authors thank Sony Corporation for providing them with a humanoid robot as a research platform. The study has been partially supported by a Grant-in-Aid for Scientific Research on Priority Areas “Emergence of Adaptive Motor Function through Interaction between Body, Brain and Environment” from the Japanese Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Tani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nishimoto, R., Tani, J. (2011). Schemata Learning. In: Cutsuridis, V., Hussain, A., Taylor, J. (eds) Perception-Action Cycle. Springer Series in Cognitive and Neural Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1452-1_7

Download citation

Publish with us

Policies and ethics