Skip to main content

Neural Network Models for Reaching and Dexterous Manipulation in Humans and Anthropomorphic Robotic Systems

  • Chapter
  • First Online:

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS))

Abstract

One fundamental problem for the developing brain as well as for any artificial system aiming to control a complex kinematic mechanism, such as a redundant anthropomorphic limb or finger, is to learn internal models of sensorimotor transformations for reaching and grasping. This is a complex problem since the mapping between sensory and motor spaces is generally highly nonlinear and depends of the constraints imposed by the changing physical attributes of the limb and hand and the changes in the developing brain. Previous computational models suggested that the development of visuomotor behavior requires a certain amount of simultaneous exposure to patterned proprioceptive and visual stimulation under conditions of self-produced movement—referred to as ‘motor babbling.’ However, the anthropomorphic geometrical constraints specific to the human arm and finger have not been incorporated in these models for performance in 3D. Here we propose a large scale neural network model composed of two modular components. The first module learns multiple internal inverse models of the kinematic features of an anthropomorphic arm and fingers having seven and four degree of freedom, respectively. Once the 3D inverse kinematics of the limb/finger are learned, the second module learns a simplified control strategy for the whole hand shaping during grasping tasks that provides a realistic coordination among fingers. These two bio-inspired neural models functionally mimic specific cortical features and are able to reproduce reaching and grasping human movements. The high modularity of this neural model makes it well suited as a high-level neuro-controller for planning and control of grasp motions in actual anthropomorphic robotic system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The models described in this chapter focus on the inverse kinematic problems, ignoring the effects of inertial and interaction forces with external loads on planned prehension movements. Although the limb’s dynamic computations are very important for the execution of planned kinematic trajectories, their study is outside the scope of this chapter. The reader is referred to Contreras-Vidal et al. (1997) and Bullock et al. (1998) for models of voluntary arm movements under variable force conditions that are compatible with the proposed model in this chapter.

References

  1. Abend W, Bizzi E, Morasso P. (1982). Human arm trajectory formation. Brain, 705:331–348

    Article  Google Scholar 

  2. Albus JS. (1971). A theory of cerebellar function. Math. Biosci., 10:25–61

    Article  Google Scholar 

  3. Atkeson CG, Hollerbach JM. (1985). Kinematic features of unrestrained vertical arm movements. J. Neurosci., 5(9):2318–2330

    CAS  PubMed  Google Scholar 

  4. Baraduc P, Guigon E, Burnod Y. (2001). Recoding arm position to learn visuomotor transformations. Cereb. Cortex, 11(10):906–917

    Article  CAS  PubMed  Google Scholar 

  5. Baraduc P, Guigon E. (2002). Population computation of vectorial transformations. Neural Comput., 14(4):845–871

    Article  PubMed  Google Scholar 

  6. Braido P, Zhang X. (2004). Quantitative analysis of finger motion coordination in hand manipulative and gestic acts. Hum. Mov. Sci., 22:661–678

    Article  PubMed  Google Scholar 

  7. Bullock D, Grossberg S. (1988). Neural dynamics of planned arm movements: emergent invariants and speed-accuracy trade-offs during trajectory formation. Psychol. Rev., 95(1):49–90

    Article  CAS  PubMed  Google Scholar 

  8. Bullock D, Grossberg S, Guenther FH. (1993). A self organizing neural model for motor equivalent reaching and tool use by a multijoint arm. J. Cogn. Neurosci., 5(4):408–435

    Article  Google Scholar 

  9. Bullock D, Cisek P, Grossberg S. (1998). Cortical networks for control of voluntary arm movements under variable force conditions. Cereb. Cortex, 8(1):48–62

    Article  CAS  PubMed  Google Scholar 

  10. Burnod Y, Baraduc P, Battaglia-Mayer A, Guigon E, Koechlin E, Ferraina S, Lacquaniti F, Caminiti R. (1999). Parieto-frontal coding of reaching: an integrated framework. Exp. Brain Res., 129:325–346

    Article  CAS  PubMed  Google Scholar 

  11. Caminiti R, Johnson PB, Urbano A. (1990). Making arm movements within different parts of space: dynamic aspects in the primate motor cortex. J Neurosci., 10:2039–2058

    CAS  PubMed  Google Scholar 

  12. Caminiti R, Ferraina S, Johnson PB. (1996). The sources of visual input to the primate frontal lobe: a novel role for the superior parietal lobule. Cereb. Cortex, 6:102–119

    Article  PubMed  Google Scholar 

  13. Cohen YE, Andersen R. (2002). A common reference frame for movement plans in posterior parietal cortex. Nat. Rev. Neurosci., 3:553–562

    Article  CAS  PubMed  Google Scholar 

  14. Conforto S, Bernabucci I, Severini G, Schmid M, D’Alessio T. (2009). Biologically inspired modelling for the control of upper limb movements: from concept studies to future applications. Front. Neurorobotics, 3(3):1–5

    Google Scholar 

  15. Contreras-Vidal JL, Grossberg S, Bullock D. (1997). A neural model of cerebellar learning for arm movement control: cortico-spino-cerebellar dynamics. Learn. Mem., 3(6):475–502

    Article  CAS  PubMed  Google Scholar 

  16. Contreras-Vidal JL, Bo J, Boudreau JP, Clark JE. (2005). Development of visuomotor representations for hand movement in young children. Exp. Brain Res., 162(2):155–164

    Article  PubMed  Google Scholar 

  17. Contreras-Vidal JL. (2006). Development of forward models for hand localization and movement control in 6- to 10-year-old children. Hum. Mov. Sci., 25(4–5):634–645

    Article  PubMed  Google Scholar 

  18. Cutkosky MR. (1989). On grasp choice, grasp models and the design of hands for manufacturing tasks. IEEE Trans. Rob. Autom., 5(3):269–279

    Article  Google Scholar 

  19. Cutkosky MR, Howe RD. (1990). Human grasp choice and robotic grasp analysis. In ST Venkataraman and T Iberall (Eds), Dextrous robot hands. New York: Springer, pp. 5–31

    Google Scholar 

  20. Desmurget M, Epstein CM, Turner RS, Prablanc C, Alexander GE, Grafton ST. (1999). Role of the posterior parietal cortex in updating reaching movements to a visual target. Nat. Neurosci., 2(6):563–567

    Article  CAS  PubMed  Google Scholar 

  21. Doya K. (1999). What are the computations of cerebellum, the basal ganglia, and the cerebral cortex? Neural Netw., 12:961–974

    Article  PubMed  Google Scholar 

  22. Fagg AH, Arbib MA. (1998). Modeling parietal-premotor interactions in primate control of grasping. Neural Netw., 11(7–8):1277–1303

    Article  PubMed  Google Scholar 

  23. Ferraina S, Garasto MR, Battaglia-Mayer A, Ferraresi P, Johnson PB, Lacquaniti F, Caminiti R. (1997a). Visual control of hand-reaching movement: activity in parietal area7m. Eur. J. Neurosci., 9:1090–1095

    Article  CAS  PubMed  Google Scholar 

  24. Ferraina S, Johnson PB, Garasto MR, Battaglia-Mayer A, Ercolani L, Bianchi L, Lacquaniti F, Caminiti R. (1997b). Combination of hand and gaze signals during reaching: activity in parietal area 7m of the monkey. J. Neurophysiol., 77:1034–1038

    CAS  PubMed  Google Scholar 

  25. Fiala JC. (1994). A network for learning kinematics with application to human reaching models. Proc. IEEE Int. Conf. Neural Netw., 5:2759–2764

    Google Scholar 

  26. Flash T, Hogan N. (1985). The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci., 5(7):1688–1703

    CAS  PubMed  Google Scholar 

  27. Fogassi L, Gallese V, Buccino G, Craghiero L, Fadiga L, Rizzolatti G. (2001). Cortical mechanism for the visual guidance of hand grasping movements in the monkey: a reversible inactivation study. Brain, 124:571–586

    Article  CAS  PubMed  Google Scholar 

  28. Gallese V, Fadiga L, Fogassi L, Luppino G, Murata A. (1997). A parietal-frontal circuit for hand grasping movements in the monkey: evidence from reversible inactivation experiments. In P Thier and HO Karnath (Eds), Parietal lobe contributions to orientation in 3D space. Berlin: Springer, pp. 255–270

    Google Scholar 

  29. Gan JQ, Oyama E, Rosales EM, Hu H. (2005). A complete analytical solution to the inverse kinematics of the pioneer 2 robotic arm. Robotica, 23(1):123–129

    Article  Google Scholar 

  30. Gentili RJ, Papaxanthis C, Ebadzadeh M, Ouanezar S, Eskiizmirliler S, Darlot C, Maier M. (2006). Internal representation of gravitational forces in cerebellar pathways allows for the dynamic inverse computation of vertical pointing movements of a robot arm. Program No. 57.7. 2006 Neuroscience Meeting Planner. Atlanta, GA: Society for Neuroscience, 2006. Online.

    Google Scholar 

  31. Gentili R, Papaxanthis C, Ebadzadeh M, Ouanezar S, Eskiizmirliler S, Darlot C, Maier MA. (2007). Sensorimotor predictions in cerebellar pathways allows inverse dynamic computation of the gravitational forces on vertical pointing movement of a robot arm. NEASB Conference, University of Maryland, College Park, USA

    Google Scholar 

  32. Gentili RJ, Contreras-Vidal JL. (2008). A neural model of cortico-spino-cerebellar learning for force computation during precision grip. Program No. 77.9/NN31. 2008 Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience, 2008. Online

    Google Scholar 

  33. Gentili RJ, Charalambos P, Ebadzadeh M, Eskiizmirliler S, Ouanezar S, Darlot C. (2009a). Integration of gravitational torques in cerebellar pathways allows for the dynamic inverse computation of vertical pointing movements of a robot arm. PLoS One, 4(4):e5176

    Article  PubMed  Google Scholar 

  34. Gentili RJ, Oh H, Contreras-Vidal JL. (2009b) A cortical neural model for inverse kinematics computation of an anthropomorphic robot finger. Program No. 862.15. 2009 Neuroscience Meeting Planner. Chicago, IL: Society for Neuroscience, 2009. Online.

    Google Scholar 

  35. Georgopoulos AP, Kalaska JF, Curtcher MD, Caminiti R, Massey JT. (1984). The representation of movement direction in the motor cortex: single cell and population studies. In GM Edelman, WE Gall and WM Cowan (Eds), Dynamic aspects of cortical function. New York: Wiley, pp. 501–524

    Google Scholar 

  36. Georgopoulos AP, Schwartz AN, Kettner RE. (1986). Neuronal population coding of movement direction. Science, 233:1416–1419

    Article  CAS  PubMed  Google Scholar 

  37. Ghez C, Gordon J, Ghilardi MF, Sainburg R. (1994). Contributions of vision and perception to accuracy in limb movements. In MS Gazzaniga (Eds), The cognitive neurosciences. Cambridge: MIT, pp. 549–564

    Google Scholar 

  38. Goodale MS, Milner AD. (1992). Separate visual pathways for perception and action. Trends Neurosci., 15:20–25

    Article  CAS  PubMed  Google Scholar 

  39. Gorce P, Fontaine JG. (1996). Design methodology for flexible grippers. J. Intell. Robot. Syst., 15(3):307–328

    Article  Google Scholar 

  40. Gordon J, Ghiraldi MF, Ghez C. (1994). Accuracy of planar reaching movements. I. independence of direction and extent variability, Exp. Brain Res., 99:97–111

    Google Scholar 

  41. Grinyagin IV, Biryukova EV, Maier MA. (2005). Kinematic and dynamic synergies of human precision-grip movements. J. Neurophysiol., 94(4):2284–2294

    Article  CAS  PubMed  Google Scholar 

  42. Grosse-Wentrup M, Contreras-Vidal JL. (2007). The role of the striatum in adaptation learning: a computational model. Biol. Cybern., 96(4):377–388

    Article  PubMed  Google Scholar 

  43. Guenther FH, Micci-Barreca D. (1997). Neural models for flexible control of redundant systems. In PG Morasso and V Sanguinetti (Eds), Self-organization, computational maps and motor control. North-Holland Psychology series, Elsevier, pp. 383–421

    Chapter  Google Scholar 

  44. Guigon E, Grandguillaume P, Otto I, Boutkhil L, Burnod Y. (1994). Neural network models of cortical functions based on the computational properties of the cerebral cortex. J. Physiol., 88:291–308

    CAS  Google Scholar 

  45. HartenBerg RS, Denavit J. (1964). Kinematic synthesis of linkages. McGraw-Hill, New York

    Google Scholar 

  46. Hollerbach JM, Moore SP, Atkeson CG. (1986). Workspace effect in arm movement kinematics derived by joint interpolation. In G Ganchev, B Dimitrov and P Patev (Eds), Motor control. New York: Plenum, pp. 197–208

    Google Scholar 

  47. Hulliger M. (1984). The mammalian muscle spindle and its central control. Rev. Physiol. Biochem. Pharmacol., 101:1–110

    Article  CAS  PubMed  Google Scholar 

  48. Iberall T. (1987). Grasp planning for human prehension. Proceedings of the 10 th International Conference on Artificial Intelligence, Milan, Italy, pp. 1153–1156

    Google Scholar 

  49. Iberall T, Jackson J, Labbe L, Zamprano R. (1988). Knowledge based prehension: capturing human dexterity. Proceedings of the IEEE International Conference on Robotics and Automation, Philadelphia, PA, USA, pp. 82–87

    Google Scholar 

  50. Iberall T. (1997). Human prehension and dexterous robot hands. Int. J. Rob. Res., 16(3):285–299

    Article  Google Scholar 

  51. Ito M. (1984). The cerebellum and neural control. Raven, New York

    Google Scholar 

  52. Jeannerod M. (1991). The interaction of visual and proprioceptive cues in controlling reaching movements. In DR Humphrey and HJ Freund (Eds), Motor control: concepts and issues. New York: Wiley, pp. 277–291

    Google Scholar 

  53. Jeannerod M. (1994). The hand and the object: the role of posterior parietal cortex in forming motor representations. Can. J. Physiol. Pharmacol., 72:535–541

    CAS  PubMed  Google Scholar 

  54. Johnson PB, Ferraina S, Garasto MR, Battaglia-Mayer A, Ercolani L, Burnod Y, Caminiti R. (1997). From vision to movement: cortico-cortical connections and combinatorial properties of reaching related neurons in parietal areas V6 and V6A. In P Their and O Karnath (Eds), Parietal lobe contributions to orientation in 3D space. Heidelberg: Springer, pp. 221–236

    Google Scholar 

  55. Jordan MI, Rumelhart DE. (1992). Forward models: supervised learning with a distal teacher. Cogn. Sci., 16:307–354

    Article  Google Scholar 

  56. Kalaska JF, Cohen DAD, Prud’homme M, Hyde ML. (1990). Parietal area 5 neuronal activity encodes movement kinematics, not movement dynamics. Exp. Brain Res., 80:351–364

    Article  CAS  PubMed  Google Scholar 

  57. Kang SB, Ikeuchi K. (1997). Toward automatic robot instruction from perception: mapping human grasps to manipulator grasps. IEEE Trans. Rob. Autom., 13(1):81–95

    Article  Google Scholar 

  58. Kerr J, Roth R. (1986). Analysis of multifingered hands. Int. J. Rob. Res., 4:3–17

    Article  Google Scholar 

  59. Kuperstein M. (1991). Infant neural controller for adaptive sensory-motor coordination. Neural Netw., 4(2):131–146

    Article  Google Scholar 

  60. Luppino G, Murata A, Govoni P, Matelli M. (1999). Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and ventral premotor cortex (areas F5 and F4). Exp. Brain Res., 128:181–187

    Article  CAS  PubMed  Google Scholar 

  61. Marr D. (1969). A theory of cerebellar cortex. J. Physiol., 202:437–470

    CAS  PubMed  Google Scholar 

  62. Mason CR, Gomez JE, Ebner TJ. (2001). Hand synergies during reach-to-grasp. J. Neurophysiol., 86(6):2896–2910

    CAS  PubMed  Google Scholar 

  63. Molina-Vilaplana J, Pedreno-Molina JL, Lopez-Coronado J. (2004). Hyper RBF model for accurate reaching in redundant robotic systems. Neurocomputing, 61:495–501

    Article  Google Scholar 

  64. Molina-Vilaplana J, López-Coronado J. (2006). A neural network model for coordination of hand gesture during reach to grasp. Neural Netw., 19:12–30

    Article  Google Scholar 

  65. Molina-Vilaplana J, Feliu-Batlle J, Lopez-Coronado J. (2007). A modular neural network architecture for step-wise learning of grasping tasks. Neural Netw., 20(5):631–645

    Article  CAS  PubMed  Google Scholar 

  66. Molina-Vilaplana J, Contreras-Vidal JL, Herrero-Ezquerro MT, López Coronado J. (2009). A model for altered neural network dynamics related to prehension movements in parkinson disease. Biol. Cybern., 100(4):271–287

    Article  CAS  PubMed  Google Scholar 

  67. Morasso P. (1981). Spatial control of arm movements. Exp. Brain Res., 42(2):223–227

    Article  CAS  PubMed  Google Scholar 

  68. Moussa MA, Kamel MS. (1998). An experimental approach to robotic grasping using a connectionist architecture and generic grasping functions. IEEE Trans. Syst. Man Cybern. C Appl Rev., 28(2):239–253

    Article  Google Scholar 

  69. Murata A, Gallese V, Kaseda K, Sakata H. (1996). Parietal neurons related to memory guided hand manipulation. J. Neurophysiol., 75:2180–2186

    CAS  PubMed  Google Scholar 

  70. Murata A, Fadiga L, Fogassi L, Gallese V, Raos V, Rizzolatti G. (1997). Object representations in the ventral premotor cortex of the monkey. J. Neurophysiol., 78:2226–2230

    CAS  PubMed  Google Scholar 

  71. Murata A, Gallese V, Luppino G, Kaseda K, Sakata H. (2000). Selectivity for the shape, size and orientation of objects for grasping in neurons of monkey parietal area AIP. J. Neurophysiol., 83:339–365

    Google Scholar 

  72. Morrey BF, Chao EY. (1976). Passive motion of the elbow joint. J. Bone Joint Surg. Am., 58:501–508

    CAS  PubMed  Google Scholar 

  73. Napier JR. (1956). The prehensile movements of the human hand. J. Bone Joint Surg., 38B:902–913

    Google Scholar 

  74. Pause M, Kunesch E, Binkofski F, Freund HJ. (1989). Sensorimotor disturbances in patients with lesions in parietal cortex. Brain, 112:1599–1625

    Article  PubMed  Google Scholar 

  75. Pedreño-Molina JL, Molina-Vilaplana J, López-Coronado J, Gorce P. (2005). A modular neural network linking hyper RBF and AVITE models for reaching moving objects. Robotica, 23:625–633

    Article  Google Scholar 

  76. Poggio T, Girosi F. (1989). A theory of networks for approximation and learning. AI Memo 1140, MIT

    Google Scholar 

  77. Pons JL, Ceres R, Pfeiffer F. (1999). Multifingered dextrous robotic hands design and control: a review. Robotica, 17(6):661–674

    Article  Google Scholar 

  78. Porter R, Lemon RN. (1993). Corticospinal function and voluntary movement. Oxford University Press, New York

    Google Scholar 

  79. Pouget A, Snyder LH. (2000). Computational approaches to sensorimotor transformations. Nature, 3:1192–1198

    CAS  Google Scholar 

  80. Rizzolatti G, Camarda R, Fogassi L, Gentilucci M, Luppino G, Matelli M. (1988). Functional organization of inferior area 6 in the macaque monkey.II.area F5 and the control of distal movement. Exp. Brain Res., 71:491–507

    Google Scholar 

  81. Rizzolatti G, Gentilucci M, Camarda R, Gallese V, Luppino G, Matelli M, Fogassi R. (1990). Neurons related to reaching-grasping arm movements in the rostral part of area 6 (area 6 beta). Exp. Brain Res., 82:337–350

    Article  CAS  PubMed  Google Scholar 

  82. Sakata H, Taira M, Murata A, Mine S. (1995). Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cereb. Cortex, 5:429–438

    Article  CAS  PubMed  Google Scholar 

  83. Santello M, Flanders M, Soechting JF. (2002). Patterns of hand motion during grasping and the influence of sensory guidance. J. Neurosci., 22(4):1426–1435

    CAS  PubMed  Google Scholar 

  84. Shadmehr R, Wise SP. (2005). Computational neurobiology of reaching and pointing: a foundation for motor learning. MIT, Cambridge MA

    Google Scholar 

  85. Sheng L, Yiqing W, Qingwei Ch, Weili H. (2006). A new geometrical method for the inverse kinematics of the hyper-redundant manipulators. IEEE Int. Conf. Robot. Biomim., pp. 1356–1359

    Google Scholar 

  86. Snyder LH, Batista AP, Andersen RA. (1997). Coding of intention in the posterior parietal cortex. Nature, 386:167–170

    Article  CAS  PubMed  Google Scholar 

  87. Swett BA, Contreras-Vidal JL, Birn R, Braun AR. (2010). Neural substrates of graphomotor sequence learning: A combined fMRI and kinematic study. J Neurophysiol., 103(6):3366–3377

    Article  PubMed  Google Scholar 

  88. Taha Z, Brown R, Wright D. (1997). Modeling and simulation of the hand grasping using neural networks. Med. Eng. Physiol., 19(6):536–538

    Article  CAS  Google Scholar 

  89. Tikhonov AN, Arsenin VY. (1977). Solutions of ill-posed problems. WH Winston (Ed). Washington DC

    Google Scholar 

  90. Todorov E, Jordan MI. (2002). Optimal feedback control as a theory of motor coordination. Nat. Neurosci., 5(11):1226–1235

    Article  CAS  PubMed  Google Scholar 

  91. Todorov E. (2004). Optimality principles in sensorimotor control. Nat. Neurosci., 7(9):907–915

    Article  CAS  PubMed  Google Scholar 

  92. Ulloa A, Bullock D. (2003). A neural network simulating human reach-grasp coordination by updating of vector positioning commands. Neural Netw., 16:1141–1160

    Article  PubMed  Google Scholar 

  93. Ungerleider LG, Mishkin M. (1982) Two cortical visual systems. In DJ Ingle, MA Goodale and RJW Mansfield (Eds), Analysis of visual behavior. Cambridge, MA: MIT, pp. 549–586

    Google Scholar 

  94. Uno Y, Kawato M, Suzuki R. (1989). Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model. Biol. Cybern., 61(2):89–101

    Google Scholar 

  95. Uno Y, Fukumura N, Suzuki R, Kawato M. (1995). A computational model for recognizing objects and planning hand shapes in grasping movements. Neural Netw., 8(6):839–851

    Article  Google Scholar 

  96. Wimmers RH, Savelsbergh GJ, Peek PJ, Hopkins B. (1998). Evidence for a phase transition in the early development of prehension. Dev. Psychobiol., 32:235–248

    Article  CAS  PubMed  Google Scholar 

  97. Wise SP, Boussaoud D, Johnson PB, Caminiti R. (1997). Premotor and parietal cortex: cortico-cortical connectivity and combinatorial computations. Annu. Rev. Neurosci., 20:25–42

    Article  CAS  PubMed  Google Scholar 

  98. Woelfl K, Pfeiffer F. (1995). Grasp strategies for a dextrous robotic hand. In V Graefe (Ed), Intelligent robots and systems. Amsterdam: Elsevier, pp. 259–277

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Office of Naval Research (N000140910126) and the National Institutes of Health (PO1HD064653). Rodolphe J. Gentili would like to sincerely thank La Fondation Motrice, Paris, France, for the continued support of his research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Contreras-Vidal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gentili, R.J., Oh, H., Molina, J., Contreras-Vidal, J.L. (2011). Neural Network Models for Reaching and Dexterous Manipulation in Humans and Anthropomorphic Robotic Systems. In: Cutsuridis, V., Hussain, A., Taylor, J. (eds) Perception-Action Cycle. Springer Series in Cognitive and Neural Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1452-1_6

Download citation

Publish with us

Policies and ethics