Skip to main content

Multisensor Fusion for Low-Power Wireless Microsystems

  • Chapter
  • First Online:
Perception-Action Cycle

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS))

  • 1474 Accesses

Abstract

This chapter addresses the use of artificial neural network (ANN) as a form of multisensor fusion for low-power microsystems in wireless sensor networks. The ANN is configured to perform local preprocessing and early clustering/classification of high-dimensional sensory signals. This chapter reviews the use of ANNs applied to fuse electrochemical sensory data, and the status of state-of-the-art VLSI neural hardware is presented. The hardware-amenability of these neural algorithms creates an opportunity to integrate multiple sensors and their data fusion within a single silicon chip, thus miniaturizing the physical size of microsystems and improving the signal integrity of measurements. Besides the operation of early classification, several other practical issues (i.e., stochastic noise, time-dependent drift, and biofouling) of electrochemical sensors are also discussed. Subsequently, a multisensor microsystem named Lab-in-a-Pill is used as a case study. We demonstrate how to implement an ANN to perform early classification and thus to autocalibrate an array of electrochemical sensors online. The chapter concludes with some discussion and future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CI can be defined as the phenomenon that occurs when later training disrupts results of previous training and is characterized by the inability to incrementally learn sets of training patterns. CI is readily observed in studies of backpropagation. This phenomenon is also referred to as sequential learning and sometimes lifelong learning (Sarkaria 2004).

  2. 2.

    Lab-on-a-Chip is a technology that integrates complex laboratory sensors and sample-handling capabilities onto a glass or silicon plate (Figeys and Pinto 2000).

  3. 3.

    SoC is an electronics design methodology that integrates data analysis, instrumentation, and communication capabilities onto a single piece of silicon (Martin and Chang 2001). The reuse of pre-developed electronic circuit modules is an essential component of the SoC concept.

  4. 4.

    This input noise is external, not the purposely injected N j .

  5. 5.

    In this context, “reconstruction” refers to the ability of the CRBM to converge and regenerate the distribution of training data at the visible layer with its trained weights after several Gibbs-sampling steps, disregard to what the initial states of the visible neurons were.

References

  • Alspector, J., Allen, R.B., Jayakumar, A., Zeppenfeld, T., Meir, R.: Relaxation networks for large supervised learning problems. In: Advances in Neural Processing Systems, 4, 1015–1026 (1991)

    Google Scholar 

  • Alspector, J., Gannett, J.W., Haber, S., Parker, M.B., Chu, R.: A VLSI-efficient technique for generating multiple uncorrelated noise sources and its application to stochastic neural networks. IEEE Transactions on Circuits and Systems 38(1), 109–123 (1991)

    Article  Google Scholar 

  • Alspector, J., amd R. B. Allen, B.G.: Performance of a stochastic learning microchip. In: Advances in Neural Information Processing Systems, 1, 748–760 (1989)

    Google Scholar 

  • Argyrakis, P., Hamilton, A., Webb, B., Zhang, Y., Gonos, T., Cheung, R.: Fabrication and characterization of a wind sensor for integration with a neuron circuit. Microelectronic Engineering 84(5–8), 1749–1753 (2007)

    Article  CAS  Google Scholar 

  • Artursson, T., Eklov, T., Lundstrom, I., Martensson, P., Sjostrom, M., Holmberg, M.: Drift correction for gas sensors using multivariate methods. Journal of Chemometrics 14, 711–723 (2000)

    Article  CAS  Google Scholar 

  • Asanovic, K., Morgan, N.: Experimental determination of precision requirements for back-propagation training of artificial neural networks. In: Proceedings of International Conference on Microelectronics for Neural Network, pp. 9–15. Munich, Germany (1991)

    Google Scholar 

  • Aydin, N., Arslan, T., Cumming, D.R.S.: A direct-sequence spread-spectrum communication system for integrated sensor microsystems. IEEE Transactions on Information Technology in Biomedicine 9(1), 4–12 (2005)

    Article  PubMed  Google Scholar 

  • Bedoya, G., Jutten, C., Bermejo, S., Cabestany, J.: Improving semiconductor-based chemical sensor arrays using advanced algorithms for blind source separation. In: Proceedings of the IEEE Sensors for Industry Conference, pp. 149–154. New Orleans, Louisiana, USA (2004)

    Google Scholar 

  • Bermejo, S., Bedoya, G., Parisi, V., Cabestany, J.: An on-line water monitoring system using a smart ISFET array. In: Proceedings of the IEEE Conference on Industrial Electronics Society, pp. 2797–2802 (2002)

    Google Scholar 

  • Brdys, M.A., Kulawski, G.J.: Dynamic neural controllers for induction motor. IEEE Transactions on Neural Networks 10(2), 340–355 (1999)

    Article  CAS  PubMed  Google Scholar 

  • Bris, N.L., Birot, D.: Automated pH-ISFET measurements under hydrostatic pressure for marine monitoring application. Analytica Chimica Acta 356, 205–215 (1997)

    Article  Google Scholar 

  • Cameron, K.L., Murray, A.F.: Minimizing the effect of process mismatch in a neuromorphic system using spike-timing-dependent adaptation. IEEE Transactions on Neural Networks 19(5), 899–913 (2008)

    Article  PubMed  Google Scholar 

  • Card, H.C., McNeill, D.K., Schneider, C.R.: Analog VLSI circuits for competitive learning networks. Analog Integrated Circuits and Signal Processing 15, 291–314 (1998)

    Article  Google Scholar 

  • Chen, H., Fleury, P., Murray, A.F.: Minimizing Contrastive Divergence in noisy, mixed-mode VLSI neurons. In: Advances in Neural Information Processing Systems, vol. 16 (2003)

    Google Scholar 

  • Chen, H., Murray, A.F.: A Continuous Restricted Boltzmann Machine with an implementable training algorithm. IEE Proceedings on Vision, Image and Signal Processing 150(3), 153–158 (2003)

    Article  Google Scholar 

  • Chen, H., Murray, A.F.: Continuous-valued probabilistic behaviour in a vlsi generative model. IEEE Transactions on Neural Networks 17(3), 755–770 (2006)

    Article  PubMed  Google Scholar 

  • Chen, T.L., You, R.Z.: A novel fault-tolerant sensor system for sensor drift compensation. Sensors and Actuators A: Physical 147(2), 623–632 (2008)

    Article  Google Scholar 

  • Chua, L.O., Roska, T.: The CNN paradigm. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications 40(3), 147–156 (1993)

    Article  Google Scholar 

  • Chung, D., Merat, F.L.: Neural network based sensor array signal processing. In: Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 757–764. Washington, DC, USA (1996)

    Google Scholar 

  • Clarke, D.W.: Sensor, actuator and plant validation. IEE Colloquium on Intelligent and Self-Validating Sensors pp. 1–8 (1999)

    Google Scholar 

  • Coggins, R., Jabri, M., Flower, B., Pickard, S.: A hybrid analog and digital VLSI neural network for intracardiacmorphology classification. IEEE Journal of Solid-States Circuits 30(5), 542–550 (1995)

    Article  Google Scholar 

  • Errachid, A., Bausells, J., Jaffrezic-Renault, N.: A simple REFET for pH detection in differential mode. Sensors and Actuators B 60, 43–48 (1999)

    Article  Google Scholar 

  • Figeys, D., Pinto, D.: Lab-on-a-chip: A revolution in biological and medical sciences. Analytical Chemistry 72(9), 330A–335A (2000)

    Article  CAS  PubMed  Google Scholar 

  • Fleury, P., Chen, H., Murray, A.F.: On-chip Contrastive Divergence learning in analogue VLSI. In: Proceedings of the International Joint Conference on Neural Networks, pp. 1723–1728. Budapest, Hungary (2004)

    Google Scholar 

  • Gardner, J.W., Hines, E.L., Molinier, F., Bartlett, P.N., Mottram, T.T.: Prediction of health of dairy cattle from breath samples using neural network with parametric model of dynamic response of array of semiconducting gas sensors. IEE Proceedings on Sci. Meas. Technology 146(2), 102–106 (1999)

    Article  Google Scholar 

  • Grattarola, M., Massobrio, G., Martinoia, S.: Modelling H + -Sensitive FET’s with SPICE. IEEE Transactions on Electron Devices 39(4), 813–819 (1992)

    Article  CAS  Google Scholar 

  • Guo, T.H., Nurre, J.: Sensor failure detection and recovery by neural networks. In: Proceedings of IJCNN, vol. 1, pp. 221–226. Seattle, WA, USA (1991)

    Google Scholar 

  • Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall (1998)

    Google Scholar 

  • Heckerman, D.: Learning in graphical models, chap. A tutorial on learning with Bayesian networks, pp. 301–354. MIT, Cambridge, MA, USA (1999)

    Google Scholar 

  • Hendrikse, J., Olthuis, W., Bergveld, P.: A method of reducing oxygen induced drift in iridium oxide pH sensors. Sensors and Actuators B 53, 97–103 (1998)

    Article  Google Scholar 

  • Higuchi, T., Furuya, T., Handa, K., Takahashi, N., Nishiyama, H., Kokubu, A.: IXM2: A parallel associative processor. In: Proceedings of the international symposium on Computer architecture, pp. 22–31. Toronto, Ontario, Canada (1991)

    Google Scholar 

  • Hinton, G.E.: Products of experts. In: Proceedings of the 9th International Conference on Artificial Neural Networks, pp. 1–6. Edinburgh, Scotland (1999)

    Google Scholar 

  • Hinton, G.E.: Training Products of Experts by Minimizing Contrastive Divergence. Neural Computation 14, 1771–1800 (2002)

    Article  PubMed  Google Scholar 

  • Holmberg, M., Davide, F.A.M., Natale, C.D., D’Amico, A., Winquist, F., Lundstrom, I.: Drift counteraction in odour recognition applications: lifelong calibration method. Sensors and Actuators B 42, 185–194 (1997)

    Article  Google Scholar 

  • Holmin, S., Krantz-Rulcker, C., Lundstrom, I., Winquist, F.: Drift correction of electronic tongue responses. Institute of Physics Measurement Science Technology 12, 1348–1354 (2001)

    Article  CAS  Google Scholar 

  • Holt, J.L., Hwang, J.N.: Finite precision error analysis of neural network hardware implementations. IEEE Transactions on Computers 42(3), 281–290 (1993)

    Article  Google Scholar 

  • Hsu, D., Figueroa, M., Diorio, C.: Competitive learning with floating-gate circuits. IEEE Transactions on Neural Networks 13(3), 732–744 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Ienne, P., Cornu, T., Kuhn, G.: Special-purpose digital hardware for neural networks: An architectural survey. Journal of VLSI Signal Processing Systems 13, 5–25 (1996)

    Article  Google Scholar 

  • ITRS: International technology roadmap for semiconductors update. Technical report (2008)

    Google Scholar 

  • Jabri, M., Flower, B.: Weight perturbation: An optimal architecture and learning technique for analog VLSI feedforward and recurrent multilayer networks. IEEE Transactions on Neural Networks 3(1), 154–157 (1992)

    Article  CAS  PubMed  Google Scholar 

  • Jamasb, S.: An analytical technique for counteracting drift in ion-selective field effect transistor (ISFETs). IEEE Sensors Journal (2004)

    Google Scholar 

  • Jamasb, S., Collins, S.D., Smith, R.L.: Correction of instability in Ion-selective Field Effect Transistors for accurate continuous monitoring of pH. In: Proceedings of IEEE International Conference of EMBS, pp. 2337–2340. Chicago, IL, USA (1997)

    Google Scholar 

  • Jamasb, S., Collins, S.D., Smith, R.L.: A physical model for threshold voltage instability in Si 3 N 4-Gate H  + -Sensitive FET’s (pH-ISFET’s). IEEE Transactions on Electron Devices 45(6), 1239–1245 (1998)

    Article  CAS  Google Scholar 

  • Johannessen, E.A., Wang, L., Cui, L., Tang, T.B., Ahmadian, M., Astaras, A., Reid, S.W., Yam, S., Murray, A.F., Flynn, B.W., Beaumont, S.P., Cumming, D.R.S., Cooper, J.M.: Implementation of multichannel sensors for remote biomedical measurements in a microsystems format. IEEE Transactions on Biomedical Engineering 51(3), 525–535 (2004)

    Article  PubMed  Google Scholar 

  • Keller, P.E., Kouzes, R.T., Kangas, L.J.: Three neural network based sensor systems for environmental monitoring. In: Proceedings of the IEEE Electro, pp. 378–382. Boston, MA, USA (1994)

    Google Scholar 

  • Kermani, B.G., Schiffman, S.S., Nagle, H.T.: Using neural networks and genetic algorithms to enhance performance in an electronic nose. IEEE Transactions on Biomedical Engineering 46(4), 429–439 (1999)

    Article  CAS  PubMed  Google Scholar 

  • Ko, W.H., Fung, C.D.: VLSI and intelligent transducers. Sensors and Actuators 2, 239–250 (1982)

    Article  Google Scholar 

  • Lang, K.J., Waibel, A.H., Hinton, G.E.: A time-delay neural network architecture for isolated word recognition. Neural Networks 3(1), 23–43 (1990)

    Article  Google Scholar 

  • Lazzerini, B., Marcelloni, F.: Counteracting drift of olfactory sensors by appropriately selecting features. IEE Electronics Letters 36(6), 509–510 (2000)

    Article  Google Scholar 

  • Leong, P.H.W., Jabri, M.A.: A low power trainable analogue neural network classifier chip. In: Proceedings of the IEEE Custom Integrated Circuits Conference, pp. 451–454. San Diego, CA, USA (1993)

    Google Scholar 

  • Lichtsteiner, P., Posch, C., Delbruck, T.: A 128x128 120db 15μs latency asynchronous temporal contrast vision sensor. IEEE Journal of Solid-State Circuits 43(2), 566–576 (2008)

    Article  Google Scholar 

  • Lindquist, M., Wide, P.: Virtual water quality tests with an electronic tongue. In: Proceedings of the IEEE IMTC, vol. 2, pp. 1320–1324 (2001)

    CAS  Google Scholar 

  • Luo, R.C., Yih, C.C., Su, K.L.: Multisensor fusion and integration: Approachs, applications, and future research directions. IEEE Sensors Journal 2(2), 107–119 (2002)

    Article  Google Scholar 

  • Macq, D., Verleysen, M., Jespers, P., Legat, J.D.: Analog implementation of a kohonen map with on-chip learning. IEEE Transactions on Neural Networks 4(3), 456–461 (1993)

    Article  CAS  PubMed  Google Scholar 

  • Marco, S., Ortega, A., Pardo, A., Samitier, J.: Gas identification with tin oxide sensor array and self-organizing maps: Adaptive correction of sensor drifts. IEEE Transactions on Instrumentation and Measurement 47(1), 316–321 (1998)

    Article  CAS  Google Scholar 

  • Martin, G., Chang, H.: System-on-chip design. In: Proceedings of International Conference on ASIC, pp. 12–17. Shanghai, China (2001)

    Google Scholar 

  • Mayes, D.J., Hamilton, A., Murray, A.F., Reekie, H.M.: A pulsed VLSI radial basis function chip. In: Proceedings of the IEEE International Symposium on Circuits and Systems, vol. 3, pp. 297–300. Atlanta, GA, USA (1996)

    Google Scholar 

  • Middelhoek, S., Hoogerwerf, A.C.: Smart Sensors: When and Where? Sensors and Actuators 8, 39–48 (1985)

    Article  CAS  Google Scholar 

  • Moerland, P., Fiesler, E.: Handbook of Neural Computation, chap. Chapter E1.2: Neural Network Adaptations to Hardware Implementations. Institute of Physics Publishing and Oxford University Publishing, New York, USA (1996)

    Google Scholar 

  • Murata, N., Muller, K., Ziehe, A., Amari, S.: Adaptive on-line learning in changing environments. In: Advance in Neural Information Processing Systems, vol. 9, pp. 599–605 (1996)

    Google Scholar 

  • Natale, C.D., Davide, F.A.M., D’Amico, A.: A self-organizing system for pattern classification: time varying statistics and sensor drift effects. Sensors and Actuators B 26-27, 237–241 (1995)

    Article  Google Scholar 

  • Nishizawa, K., Hirai, Y.: Hardware implementation of PCA neural network. In: Proceedings of ICONIP, pp. 85–88. Kitakyushu, Japan (1998)

    Google Scholar 

  • Park, G., Farrar, C.R., Rutherford, A.C., Robertson, A.N.: Piezoelectric active sensor self-diagnostics using electrical admittance measurements. Journal of Vibration and Acoustics 128(4), 469–476 (2006)

    Article  Google Scholar 

  • Park, S., Lee, C.S.G.: Fusion-based sensor fault detection. In: Proceedings of IEEE International Symposium on Intelligent Control, pp. 156–161. Chicago, IL, USA (1993)

    Google Scholar 

  • Parlos, A.G., Chong, K.T., Atiya, A.F.: Application of the recurrent multilayer perceptron in modelling complex process dynamics. IEEE Transactions on Neural Networks 5(2), 255–266 (1994)

    Article  CAS  PubMed  Google Scholar 

  • Philipp, R.M., Orr, D., Gruev, V., van der Spiegel, J., Etienne-Cummings, R.: Linear current-mode active pixel sensor. IEEE Journal of Solid-State Circuits 42(11), 2482–2491 (2007)

    Article  Google Scholar 

  • Platonov, A.A., Szabatin, J., Jedrzejewski, K.: Optimal synthesis of smart measurement systems with adaptive correction of drifts and setting errors of the sensor’s working point. IEEE Transactions on Intrumentation and Measurement 47(3), 659–665 (1998)

    Article  Google Scholar 

  • Pottie, G.J., Kaiser, W.J.: Wireless integrated network sensors. Communications of the ACM 43(5), 51–58 (2000)

    Article  Google Scholar 

  • Rabaey, J.M., Ammer, M.J., da Silva Jr., J.L., Patel, D., Roundy, S.: PicoRadio supports ad hoc ultra-low power wireless networking. Computer 33(7), 42–48 (2000)

    Google Scholar 

  • Rodriguez-Mendez, M.L., Arrieta, A.A., Parra, V., Bernal, A., Vegas, A., Villanueva, S., Gutierrez-Osuna, R., de Saja, J.A.: Fusion of three sensory modalities for the multimodal characterization of red wines. IEEE Sensors Journal 4(3), 348–354 (2004)

    Article  CAS  Google Scholar 

  • Roppel, T., Wilson, D., Dunman, K., Becanovic, V., Padgett, M.L.: Design of a low-power, portable sensor system using embedded neural networks and hardware preprocessing. In: Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 142–145 (1999)

    Google Scholar 

  • Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Representations by Error Propagation, Computational models of cognition and perception, vol. 1, chap. 8, pp. 319–362. MIT, Cambridge, MA, USA (1986)

    Google Scholar 

  • Sachenko, A., Kochan, V., Turchenko, V., Tsahouridis, K., Laopoulos, T.: Error compensation in an intelligent sensing instrumentation system. In: Proceedings of IEEE Instrumnetation and Measurement Technology Conference, pp. 869–874. Budapest, Hungary (2001)

    Google Scholar 

  • Sarkaria, S.: Catastrophic interference (2004). http://www.ee.ubc.ca/elec592/PDFfiles/Catastrophic\_Learning.pdf

  • Sarry, F., Lumbreras, M.: Gas discrimination in an air-conditioned system. IEEE Transactions on Instrumentation and Measurement 49(4), 809–812 (2000)

    Article  CAS  Google Scholar 

  • Sayago, I., d. C. Horrillo, M., Baluk, S., Aleixandre, M., Fernandez, M.J., Ares, L., Garcia, M., Santos, J.P., Gutierrez, J.: Detection of toxic gases by a tin oxide multisensor. IEEE Sensors Journal 2(5), 387–393 (2002)

    Google Scholar 

  • Seiter, J.C., DeGrandpre, M.D.: Redundant chemical sensors for calibration-impossible applications. Talanta pp. 99–106 (2001)

    Google Scholar 

  • Shi, B.E.: A low power orientation selective vision sensor. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing 47(5), 435–440 (2002)

    Article  Google Scholar 

  • Shin, H.W., Llober, E., Gardner, J.W., Hines, E.L., Dow, C.S.: Classification of the strain and growth phase of Cyanobacteria in potable water using an electronic nose system. IEE Proceedings on Science, Measurement and Technology 147(4), 158–164 (2000)

    Article  Google Scholar 

  • Smith, R.L., Scott, D.C.: An integrated sensor for electrochemical measurements. IEEE Transactions on Biomedical Engineering 33(2), 83–90 (1986)

    Article  CAS  PubMed  Google Scholar 

  • Smolensky, P.: Parallel Distributed Processing: Explorations in Microstructure of Cognition, vol. 1, chap. Information processing in dynamical systems: Foundations of harmony theory, pp. 195–281. MIT (1986)

    Google Scholar 

  • Steinhage, A., Winkel, C.: A robust self-calibrating data fusion architecture. In: Proceedings of IEEE National Geoscience and Remote Sensing Symposium, pp. 963–965. Honolulu, HI, USA (2000)

    Google Scholar 

  • Stetter, J.R., Penrose, W.R.: The electrochemical nose. http://electrochem.cwru.edu/ed/encycl/art-n01-nose.htm (2001)

  • Sundic, T., Marco, S., Samitier, J., Wide, P.: Electronic tongue and electronic nose data fusion in classification with neural networks and fuzzy logic based models. In: Proceedings of the IEEE IMTC, vol. 3, pp. 1474–1479 (2000)

    Google Scholar 

  • Tang, T.B., Chen, H., Murray, A.F.: Adaptive, integrated sensor processing to compensate for drift and uncertainty: a stochastic ‘neural’ approach. IEE Proceedings on Nanobiotechnology 151(1), 28–34 (2004)

    Article  CAS  Google Scholar 

  • Tang, T.B., Johannessen, E., Wang, L., Astaras, A., Ahmadian, M., Murray, A.F., Cooper, J.M., Beaumont, S.P., Flynn, B.W., Cumming, D.R.S.: Toward a miniature wireless integrated multisensor microsystem for industrial and biomedical applications. IEEE Sensors Journal: Special Issue on Integrated Multisensor Systems and Signal Processing 2(6), 628–635 (2002)

    CAS  Google Scholar 

  • Tang, T.B., Murray, A.F.: Adaptive sensor modelling and classification using a continuous restricted boltzmann machine (crbm). Neurocomputing 70(7-9), 1198–1206 (2007)

    Article  Google Scholar 

  • Tsai, C.S., Tong, C.C., Oh, L.E.: Sensor data correction with neural network incorporating fuzzy logic. In: Proceedings of IEEE International Fuzzy Systems Conference, pp. 66–71. Seoul, Korea (1999)

    Google Scholar 

  • Warneke, B.A., Scott, M.D., Leibowitz, B.S., Zhou, L., Bellew, C.L., Chediak, J.A., Kahn, J.M., Boser, B.E., Pister, K.S.J.: An autonomous 16mm3 solar-powered node for distributed wireless sensor networks. In: Proceedings of IEEE Sensors, pp. 1510–1515. Orlando, FL, USA (2002)

    Google Scholar 

  • Wegmann, G., Tsividis, Y.: Very accurate dynamic current mirrors. Electronics Letters 25(10), 644–646 (1989)

    Article  Google Scholar 

  • Wide, P., Winquist, F., Bergsten, P., Petriu, E.M.: The human-based multisensor fusion method for artificial nose and tongue sensor data. IEEE Transactions on Instrumentation and Measurement 47(5), 1072–1077 (1998)

    Article  Google Scholar 

  • Widrow, B., Hoff, M.E.: Adaptive switching circuits. IRE WESCON Convention Record pp. 96–104 (1960)

    Google Scholar 

  • Wise, K.D.: Integrated microsystems: Merging MEMS, micropower electronics, and wireless commnunications. In: Proceedings of IEEE ASIC/SoC Conference, pp. xxiii–xxix (1999)

    Google Scholar 

  • Woodburn, R., Murray, A.F.: Implementing artificial neural networks in analogue VLSI. In: Proceedings of the International Conference on Neural Information Processing, pp. 658–661. Dunedin, New Zealand (1997)

    Google Scholar 

  • Yen, G.G., Feng, W.: Winner take all experts network for sensor validation. In: Proceedings of the IEEE International Conference on Control Applications, pp. 92–97. Anchorage, Alaska, USA (2000)

    Google Scholar 

  • Zimmermann, H.G., Tietz, C., Grothmann, R.: Yield curve forecasting by error correction neural networks and partial learning. In: ESANN Proceedings, pp. 407–412. Bruges, Belgium (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Boon Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tang, T.B., Murray, A.F. (2011). Multisensor Fusion for Low-Power Wireless Microsystems. In: Cutsuridis, V., Hussain, A., Taylor, J. (eds) Perception-Action Cycle. Springer Series in Cognitive and Neural Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1452-1_22

Download citation

Publish with us

Policies and ethics