Preserving Fertility

  • Kutluk Oktay
  • Ozgur Oktem


Negative impact of modern cancer treatment methods on human reproduction has been recognized. In this chapter, we first summarize the facts about cancer and treatment-related adverse outcomes in female reproductive function, then discuss the needs, and outline the current strategies and the future directions of fertility preservation and ovarian cryopreservation and transplantation in adult and adolescent female patients whose fertility are jeopardized by the therapies required for the treatment of their primary illnesses.


Fertility preservation Cancer Gonadotoxic Chemotherapy Radiation Cryopreservation 


  1. 1.
    Jemal A, Siegel R, Ward E et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71-96CrossRefPubMedGoogle Scholar
  2. 2.
    Johnson J, Bagley J, Skaznik-Wikiel M et al (2005) Oocyte generation in adult mammalian ovaries by putative germcells in bone marrow and peripheral blood. Cell 122:303-315CrossRefPubMedGoogle Scholar
  3. 3.
    Johnson J, Canning J, Kaneko T et al (2004) Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 428:145-150CrossRefPubMedGoogle Scholar
  4. 4.
    Oktem O, Oktay K (2008) Preservation of menstrual function in adolescent and young females. Ann N Y Acad Sci 1135:237-243CrossRefPubMedGoogle Scholar
  5. 5.
    Sonmezer M, Oktay K (2004) Fertility preservation in female patients. Hum Reprod Update 10:251-266CrossRefPubMedGoogle Scholar
  6. 6.
    Lee SJ, Schover LR, Partridge AH et al (2006) American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J Clin Oncol 24:2917-2931CrossRefPubMedGoogle Scholar
  7. 7.
    Oktay K, Oktem O, Reh A (2006) Measuring the impact of chemotherapy on fertility in women with breast cancer. J Clin Oncol 24:4044-4046CrossRefPubMedGoogle Scholar
  8. 8.
    Scheffer GJ, Broekmans FJ, Looman CW et al (2003) The number of antral follicles in normal women with proven fertility is the best reflection of reproductive age. Hum Reprod 18:700-706CrossRefPubMedGoogle Scholar
  9. 9.
    Plowchalk DR, Mattison DR (1991) Phosphoramide mustard is responsible for the ovarian toxicity of cyclophosphamide. Toxicol Appl Pharmacol 107:472-481CrossRefPubMedGoogle Scholar
  10. 10.
    Morita Y, Perez GI, Paris F et al (2000) Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med 10:1109-1114Google Scholar
  11. 11.
    Oktem O, Oktay K (2007) A novel ovarian xenografting model to characterize the impact of chemotherapy agents on human primordial follicle reserve. Cancer Res 67(21):10159-10162CrossRefPubMedGoogle Scholar
  12. 12.
    Oktem O, Oktay K (2007) Quantitative assessment of the impact of chemotherapy on ovarian follicle reserve and stromal function. Cancer 110:2222-2229CrossRefPubMedGoogle Scholar
  13. 13.
    Oktay K (2006) Spontaneous conceptions and live birth after heterotopic ovarian transplantation: is there a germline stem cell connection? Hum Reprod 21:1345-1348CrossRefPubMedGoogle Scholar
  14. 14.
    Schwartz GN, Warren MK, Rothwell SW et al (1998) Post-chemotherapy and cytokine pretreated marrow stromal cell layers suppress hematopoiesis from normal donor CD341 cells. Bone Marrow Transplant 22:457-468CrossRefPubMedGoogle Scholar
  15. 15.
    Stillman RJ, Schinfeld JS, Schiff I et al (1981) Ovarian failure in long term survivors of childhood malignancy. Am J Obstet Gynecol 139:62-66PubMedGoogle Scholar
  16. 16.
    Sklar C (2005) Maintenance of ovarian function and risk of premature menopause related to cancer treatment. J Natl Cancer Inst Monogr 34:25-27CrossRefPubMedGoogle Scholar
  17. 17.
    Wallace WHB, Thompson AB, Kelsey TW (2003) Radiosensitivity of the human oocyte. Hum Reprod 18:117-121CrossRefPubMedGoogle Scholar
  18. 18.
    Horning SJ, Hoppe RT, Kaplan HS, Rosenberg SA (1981) Female reproductive potential after treatment for Hodgkin’s disease. N Engl J Med 304:1377-1382CrossRefPubMedGoogle Scholar
  19. 19.
    Lushbaugh CC, Casarett GW (1976) The effects of gonadal irradiation in clinical radiation therapy: a review. Cancer 37:1111-1120CrossRefPubMedGoogle Scholar
  20. 20.
    Thibaud E, Ramirez M, Brauner R et al (1992) Preservation of ovarian function by ovarian transposition performed before pelvic irradiation during childhood. J Pediatr 121:880-884CrossRefPubMedGoogle Scholar
  21. 21.
    Sarafoglou K, Boulad F, Boulad F, Sklar C (1997) Gonadal function after bone marrow transplantation for acute leukemia during childhood. J Pediatr 130:210-216CrossRefPubMedGoogle Scholar
  22. 22.
    Sklar C (1995) Growth and endocrine disturbances after bone marrow transplantation in childhood. Acta Paediatr 411(suppl):57-61CrossRefGoogle Scholar
  23. 23.
    Sanders JE, Hawley J, Levy W et al (1996) Pregnancies following high-dose cyclophosphamide with or without high-dose busulfan or total-body irradiation and bone marrow transplantation. Blood 87:3045-3052PubMedGoogle Scholar
  24. 24.
    Armstrong GT, Sklar CA, Hudson MM, Robison LL (2007) Long-term health status among survivors of childhood cancer: does sex matter? J Clin Oncol 25:4477-4489CrossRefPubMedGoogle Scholar
  25. 25.
    Chow EJ, Friedman DL, Yasui Y et al (2008) Timing of Menarche among survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. Pediatr Blood Cancer 50:854-858CrossRefPubMedGoogle Scholar
  26. 26.
    Wallace W, Shalet SM, Crowne EC, Morris-Jones PH, Gattamaneni HR (1989) Ovarian failure following abdominal irradiation in childhood: natural history and prognosis. Clin Oncol 1:75-79CrossRefGoogle Scholar
  27. 27.
    Bath LE, Wallace WH, Critchley HO (2002) Late effects of the treatment of childhood cancer on the female reproductive system and the potential for fertility preservation. BJOG 1092:107-114Google Scholar
  28. 28.
    Critchley HO, Wallace WH, Shalet SM, Mamtora H, Higginson J, Anderson DC (1992) Abdominal irradiation in childhood: the potential for pregnancy. Brit J Obstet Gynaecol 99:392-394Google Scholar
  29. 29.
    Green DM, Whitton JA, Stovall M et al (2002) Pregnancy outcome of female survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. Am J Obstet Gynecol 187:1070-1080CrossRefPubMedGoogle Scholar
  30. 30.
    Cohen SLB, SS BC et al (2006) Female survivors of childhood cancer: preterm birth and low birth weight among their children. J Natl Cancer Inst 98:1453-1461CrossRefPubMedGoogle Scholar
  31. 31.
    Sklar CA, Constine LS (1995) Chronic neuroendocrinological sequelae of radiation therapy. Int J Radiat Oncol Biol Phys 31:1113-1121PubMedGoogle Scholar
  32. 32.
    Oktay K, Newton H, Aubard Y, Salha O, Gosden RG (1998) Cryopreservation of immature human oocytes and ovarian tissue: an emerging technology? Fertil Steril 69:1-7CrossRefPubMedGoogle Scholar
  33. 33.
    Shamonki MI, Oktay K (2005) Oocyte and ovarian tissue cryopreservation: indications, techniques, and applications. Semin Reprod Med 23:266-276CrossRefPubMedGoogle Scholar
  34. 34.
    Oktem O, Sonmezer M, Oktay K (2004) Ovarian tissue cryopreservation and other fertility preserving strategies. In: Gardner DK, Weismann A, Howles CM, Shoham Z (eds) Textbook of assisted reproductive techniques, 2nd edn. Taylor & Francis, Florida, pp 315-327Google Scholar
  35. 35.
    Baird DT, Webb R, Campbell BK, Harkness LM, Gosden RG (1999) Long-term ovarian function in sheep after ovariectomy and transplantation of autografts stored at −196°C. Endocrinology 140:462-471CrossRefPubMedGoogle Scholar
  36. 36.
    Oktay K (2001) Ovarian cryopreservation and transplantation: preliminary findings and implications for cancer patients. Hum Reprod Update 7:526-534CrossRefPubMedGoogle Scholar
  37. 37.
    Oktay K, Karlikaya G (2000) Ovarian function after transplantation of frozen, banked autologous ovarian tissue. N Engl J Med 342:1919CrossRefPubMedGoogle Scholar
  38. 38.
    Oktay K, Buyuk E, Veeck L et al (2004) Embryo development after heterotopic transplantation of cryopreserved ovarian tissue. Lancet 363:837-840CrossRefPubMedGoogle Scholar
  39. 39.
    Oktay K, Oktem O (2007) Regeneration of oocytes after chemotherapy: connecting the evidence from mouse to human. J Clin Oncol 25:3185-3187CrossRefPubMedGoogle Scholar
  40. 40.
    Donnez J, Dolmans MM, Demylle D et al (2004) Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet 364:1405-1410CrossRefPubMedGoogle Scholar
  41. 41.
    Meirow D, Levron J, Eldar-Geva T et al (2005) Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med 353:318-321CrossRefPubMedGoogle Scholar
  42. 42.
    Demeestere I, Simon P, Buxant F et al (2006) Ovarian function and spontaneous pregnancy after combined heterotopic and orthotopic cryopreserved ovarian tissue transplantation in a patient previously treated with bone marrow transplantation: case report. Hum Reprod 21:2010-2014CrossRefPubMedGoogle Scholar
  43. 43.
    Oktay K, Oktem O Safety and utilization of ovarian cryopreservation for fertility preservation in cancer patients: long term experience. Fertil Steril (2008)Google Scholar
  44. 44.
    Borini A, Cattoli M, Bulletti C, Coticchio G (2008) Clinical efficiency of oocyte and embryo cryopreservation. Ann N Y Acad Sci 1127:49-58CrossRefPubMedGoogle Scholar
  45. 45.
    Oktay K, Hourvitz A, Sahin G et al (2006) Letrozole reduces estrogen and gonadotropin exposure in women with breast cancer undergoing ovarian stimulation before chemotherapy. J Clin Endocrinol Metab 91:3885-3890CrossRefPubMedGoogle Scholar
  46. 46.
    Oktay K, Buyuk E, Libertella N, Akar M, Rosenwaks Z (2005) Fertility preservation in breast cancer patients: a prospective controlled comparison of ovarian stimulation with tamoxifen and letrozole for embryo cryopreservation. J Clin Oncol 23:4347-4353CrossRefPubMedGoogle Scholar
  47. 47.
    Fisher B, Costantino J, Redmond C et al (1989) A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor-positive tumors. New Engl J Med 320:479-484CrossRefPubMedGoogle Scholar
  48. 48.
    Azin AA, Constantini-Fernando M, Oktay K (2008) Safety of fertility preseration by ovarian stunulation with letrozole and gonadotropins in patients with breast cancer: a prospective controlled study. J Clin Oncol 16:2612-2613CrossRefPubMedGoogle Scholar
  49. 49.
    Chen C (1986) Pregnancy after human oocyte cryopreservation. Lancet 1:884-886CrossRefPubMedGoogle Scholar
  50. 50.
    Van Uem JFHM, Siebzehnruebl ER, Schuh B et al (1987) Birth after cryopreservation of unfertilized oocytes. Lancet 1:752-753PubMedGoogle Scholar
  51. 51.
    Chen C (1988) Pregnancies after human oocyte cryopreservation. Ann N Y Acad Sci 541:541-549CrossRefPubMedGoogle Scholar
  52. 52.
    Boiso I, Marti M, Santalo J, Ponsa M, Barri PN, Veiga A (2002) A confocalmicroscopy analysis of the spindle and chromosome configurations of human oocytes cryopreserved at the germinal vesicle and metaphase II stage. Hum Reprod 17:1885-1891CrossRefPubMedGoogle Scholar
  53. 53.
    Cobo A, Rubio C, Gerli S, Ruiz A, Pellicer A, Remohi J (2001) Use of fluorescence in situ hybridization to assess the chromosomal status of embryos obtained from cryopreserved oocytes. Fertil Steril 75:354-360CrossRefPubMedGoogle Scholar
  54. 54.
    Oktay K, Cil AP, Bang H (2006) Efficiency of oocyte cryopreservation: a meta-analysis. Fertil Steril 86:70-80CrossRefPubMedGoogle Scholar
  55. 55.
    Hamre MR, Robison LL, Nesbit ME et al (1987) Effects of radiation on ovarian function in long-term survivors of childhood acute lymphoblastic leukemia: a report from the Childrens Cancer Study Group. J Clin Oncol 5(11):1759-1765PubMedGoogle Scholar
  56. 56.
    Wallace WH, Shalet SM, Hendry JH, Morris-Jones PH, Gattamaneni HR (1989) Ovarian failure following abdominal irradiation in childhood: the radiosensitivity of the human oocyte. Br J Radiol 62(743):995-998CrossRefPubMedGoogle Scholar
  57. 57.
    Papadakis V, Vlachopapadopoulou E, Van Syckle K et al (1999) Gonadal function in young patients successfully treated for Hodgkin disease. Med Pediatr Oncol 32(5):366-372CrossRefPubMedGoogle Scholar
  58. 58.
    Cowles RA, Gewanter RM, Kandel JJ (2007) Ovarian repositioning in pediatric cancer patients: Flexible techniques accommodate pelvic radiation fields. Pediatr Blood Cancer 49(3):339-341CrossRefPubMedGoogle Scholar
  59. 59.
    Thibaud E, Ramirez M, Brauner R et al (1992) Preservation of ovarian function by ovarian transposition performed before pelvic irradiation during childhood. J Pediatr 121(6):880-884CrossRefPubMedGoogle Scholar
  60. 60.
    Meirow D, Nugent D (2001) The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod update 7(6):535-543CrossRefPubMedGoogle Scholar
  61. 61.
    Guerrore Urbano MT (2004) Clinical use of intensity-modulated radiotherapy: part II. Br J Radiol 77:177-182CrossRefGoogle Scholar
  62. 62.
    Ataya K, Rao LV, Lawrence E, Kimmel R (1995) Luteinizing hormone-releasing hormone agonist inhibits cyclophosphamide-induced ovarian follicular depletion in rhesus monkeys. Biol Reprod 52(2):365-372CrossRefPubMedGoogle Scholar
  63. 63.
    Ataya K, Pydyn E, Ramahi-Ataya A, Orton CG (1995) Is radiation-induced ovarian failure in rhesus monkeys preventable by luteinizing hormone-releasing hormone agonists?: preliminary observations. J Clin Endocrinol Metab 80(3):790-795CrossRefPubMedGoogle Scholar
  64. 64.
    Blumenfeld Z, Avivi I, Linn S et al (1996) Prevention of irreversible chemotherapy-induced ovarian damage in young women with lymphoma by a gonadotrophin-releasing hormone agonist in parallel to chemotherapy. Hum reprod 11(8):1620-1626PubMedGoogle Scholar
  65. 65.
    Oktay K, Sonmezer M, Oktem O, Fox K, Emons G, Bang H (2007) Absence of conclusive evidence for the safety and efficacy of gonadotropin-releasing hormone analogue treatment in protecting against chemotherapy-induced gonadal injury. Oncologist 12(9):1055-1066CrossRefPubMedGoogle Scholar
  66. 66.
    Linch DC, Gosden RG, Tulandi T, Tan SL, Hancock SL (2000) Hodgkin’s lymphoma: Choice of Therapy and Late Complications. Hematology Am Soc Hematol Educ Program 205-221Google Scholar
  67. 67.
    Oktem O, Oktay K (2007) Sphingosine-1-phosphate enhances human primordial follicle survival and blocks ovarian apoptosis in vitro. Fertil Steril 88:S270CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kutluk Oktay
    • 1
  • Ozgur Oktem
    • 1
  1. 1.Department of Obstetrics and GynecologyNew York Medical College-Westchester Medical CenterValhallaUSA

Personalised recommendations