Skip to main content

Cytotoxic/Protective Activity of Nitric Oxide in Cancer

  • Chapter
  • First Online:
Nitric Oxide (NO) and Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1054 Accesses

Abstract

Nitric oxide (NO) is an important signaling molecule that plays a significant role in the regulation of cancer biological functions. Accumulating evidences have reported two facets of NO as a possible mediator of cancer development and anti-cancer therapeutics. The paradoxical action of NO in cancer biology depends on concentration, chemical variability, cancer microenvironment, etc. As an anti-cancer therapeutic, NO may be useful as in vivo chemo-sensitizers or radiosensitizers to target chemo- and radioresistant tumors. However, continuous exposure to NO is associated with neoplastic transformation and metastasis through induction of cancer proliferation, invasion, and expression of angiogenic factors. Moreover, recent advances suggest that the expression of iNOS can serve as a prognostic marker. Therefore, an approach to modulate NO production and regulation of signaling pathways for iNOS expression may open up new avenues of research by allowing a potential approach to effective treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acs, G., Zhang, P.J., McGrath, C.M., Acs, P., McBroom, J., Mohyeldin, A., et al. (2003). Hypoxia-inducible erythropoietin signaling in squamous dysplasia and squamous cell carcinoma of the uterine cervix and its potential role in cervical carcinogenesis and tumor progression. Am. J. Pathol. 162, 1789–1806.

    Article  PubMed  CAS  Google Scholar 

  • Albina, J.E. (1995). On the expression of nitric oxide synthase by human macrophages. Why no NO? J. Leukoc. Biol. 58, 643–649.

    CAS  Google Scholar 

  • Alderton, W.K., Cooper, C.E., and Knowles, R.G. (2001). Nitric oxide synthases: structure, function and inhibition. Biochem. J. 357, 593–615.

    Article  PubMed  CAS  Google Scholar 

  • Balkwill, F., Charles, K.A., and Mantovani, A. (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7, 211–217.

    Article  PubMed  CAS  Google Scholar 

  • Berge, D.L., Ridder, M.D., Verovski, V.N., Janssens, M.Y., Monsaert, C., and Storme, G.A. (2001). Chronic hypoxia modulates tumour cell radioresponse through cytokine-inducible nitric oxide synthase. Br. J. Cancer 84, 1122–1125.

    Article  PubMed  CAS  Google Scholar 

  • Chartrain, N.A., Geller, D.A., Koty, P.P., Sitrin, N.F., Nussler, A.K., Hoffman, E.P., et al. (1994). Molecular cloning, structure, and chromosomal localization of the human inducible nitric oxide synthase gene. J. Biol. Chem. 269, 6765–6772.

    PubMed  CAS  Google Scholar 

  • Cobbs, C.S., Brenman, J.E., Aldape, K.D., Bredt, D.S., and Israel, M.A. (1995). Expression of nitric oxide synthase in human central nervous system tumors. Cancer Res. 55, 727–730.

    PubMed  CAS  Google Scholar 

  • Crowell, J.A., Steele, V.E., Sigman, C.C., and Fay, J.R. (2003). Is inducible nitric oxide synthase a target for chemoprevention? Mol. Cancer Ther. 2, 815–823.

    PubMed  CAS  Google Scholar 

  • Cui, S., Reichner, J.S., Mateo, R.B., and Albina, J.E. (1994). Activated murine macrophages induce apoptosis in tumor cells through nitric oxide-dependent or -independent mechanisms. Cancer Res. 54, 2462–2467.

    PubMed  CAS  Google Scholar 

  • De Ridder, M., Van Esch, G., Engels, B., Verovski, V., and Storme, G. (2008a). Hypoxic tumor cell radiosensitization: role of the iNOS/NO pathway. Bull. Cancer 95, 282–291.

    PubMed  Google Scholar 

  • De Ridder, M., Verellen, D., Verovski, V., and Storme, G. (2008b). Hypoxic tumor cell radiosensitization through nitric oxide. Nitric Oxide 19, 164–169.

    Article  PubMed  Google Scholar 

  • De Ridder, M., Verovski, V.N., Darville, M.I., Van Den Berge, D.L., Monsaert, C., Eizirik, D.L., and Storme, G.A. (2004). Macrophages enhance the radiosensitizing activity of lipid A: a novel role for immune cells in tumor cell radioresponse. Int J. Radiat. Oncol. Biol. Phys. 60, 598–606.

    PubMed  Google Scholar 

  • de Vera, M.E., Shapiro, R.A., Nussler, A.K., Mudgett, J.S., Simmons, R.L., Morris, S.M., Jr., et al. (1996). Transcriptional regulation of human inducible nitric oxide synthase (NOS2) gene by cytokines: initial analysis of the human NOS2 promoter. Proc. Natl. Acad. Sci. U S A 93, 1054–1059.

    Article  PubMed  Google Scholar 

  • Decker, N.K., Abdelmoneim, S.S., Yaqoob, U., Hendrickson, H., Hormes, J., Bentley, M., et al. (2008). Nitric oxide regulates tumor cell cross-talk with stromal cells in the tumor microenvironment of the liver. Am. J. Pathol. 173, 1002–1012.

    Article  PubMed  CAS  Google Scholar 

  • del Soldato, P., Sorrentino, R., and Pinto, A. (1999). NO-aspirins: a class of new anti-inflammatory and antithrombotic agents. Trends Pharmacol. Sci. 20, 319–323.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, P., Cendan, J.C., Topping, D.B., Moldawer, L.L., MacKay, S., Copeland, E.M., and Lind, D.S. (1996). Tumor cell nitric oxide inhibits cell growth in vitro, but stimulates tumorigenesis and experimental lung metastasis in vivo. J. Surg. Res. 63, 49–52.

    Article  PubMed  CAS  Google Scholar 

  • Ekmekcioglu, S., Tang, C.H. and Grimm, E.A. (2005). NO news is not necessarily good news in cancer. Curr. Cancer Drug Targets 5, 103–115.

    Article  PubMed  CAS  Google Scholar 

  • Elaraj, D.M., Weinreich, D.M., Varghese, S., Puhlmann, M., Hewitt, S.M., Carroll, N.M., et al. (2006). The role of interleukin 1 in growth and metastasis of human cancer xenografts. Clin. Cancer Res. 12, 1088–1096.

    Article  PubMed  CAS  Google Scholar 

  • Farias-Eisner, R., Sherman, M.P., Aeberhard, E., and Chaudhuri, G. (1994). Nitric oxide is an important mediator for tumoricidal activity in vivo. Proc. Natl. Acad. Sci. U S A 91, 9407–9411.

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick, B., Mehibel, M., Cowen, R.L., and Stratford, I.J. (2008). iNOS as a therapeutic target for treatment of human tumors. Nitric Oxide 19, 217–224.

    Article  PubMed  CAS  Google Scholar 

  • Fukumura, D., Kashiwagi, S., and Jain, R.K. (2006). The role of nitric oxide in tumour progression. Nat. Rev. Cancer 6, 521–534.

    Article  PubMed  CAS  Google Scholar 

  • Geller, D.A., Nussler, A.K., Di Silvio, M., Lowenstein, C.J., Shapiro, R.A., Wang, S.C., et al. (1993). Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc. Natl. Acad Sci. U S A 90, 522–526.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, D.C., Landino, L.M., and Marnett, L.J. (1999). Effects of nitric oxide and nitric oxide-derived species on prostaglandin endoperoxide synthase and prostaglandin biosynthesis. FASEB J. 13, 1121–1136.

    PubMed  CAS  Google Scholar 

  • Griffiths, E.A., Pritchard, S.A., Valentine, H.R., Whitchelo, N., Bishop, P.W., Ebert, M.P., et al. (2007). Hypoxia-inducible factor-1alpha expression in the gastric carcinogenesis sequence and its prognostic role in gastric and gastro-oesophageal adenocarcinomas. Br. J. Cancer 96, 95–103.

    Article  PubMed  CAS  Google Scholar 

  • Hofseth, L.J., Hussain, S.P., Wogan, G.N., and Harris, C.C. (2003). Nitric oxide in cancer and chemoprevention. Free Radic. Biol. Med 34, 955–968.

    Article  PubMed  CAS  Google Scholar 

  • Hussain, S.P., He, P., Subleski, J., Hofseth, L.J., Trivers, G.E., Mechanic, L., et al. (2008). Nitric oxide is a key component in inflammation-accelerated tumorigenesis. Cancer Res. 68, 7130–7136.

    Article  PubMed  CAS  Google Scholar 

  • Ibuki, Y. and Goto, R. (1997). Enhancement of NO production from resident peritoneal macrophages by in vitro gamma-irradiation and its relationship to reactive oxygen intermediates. Free Radic. Biol. Med. 22, 1029–1035.

    Article  PubMed  CAS  Google Scholar 

  • Janssens, M.Y., Van den Berge, D.L., Verovski, V.N., Monsaert, C., and Storme, G.A. (1998). Activation of inducible nitric oxide synthase results in nitric oxide-mediated radiosensitization of hypoxic EMT-6 tumor cells. Cancer Res. 58, 5646–5648.

    PubMed  CAS  Google Scholar 

  • Janssens, M.Y., Verovski, V.N., Van den Berge, D.L., Monsaert, C., and Storme, G.A. (1999). Radiosensitization of hypoxic tumour cells by S-nitroso-N-acetylpenicillamine implicates a bioreductive mechanism of nitric oxide generation. Br. J. Cancer 79, 1085–1089.

    Article  PubMed  CAS  Google Scholar 

  • Kamijo, R., Harada, H., Matsuyama, T., Bosland, M., Gerecitano, J., Shapiro, D., et al. (1994). Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science 263, 1612–1615.

    Article  PubMed  CAS  Google Scholar 

  • Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature 441, 431–436.

    Article  PubMed  CAS  Google Scholar 

  • Karin, M. and Greten, F.R. (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol. 5, 749–759.

    Article  PubMed  CAS  Google Scholar 

  • Kavya, R., Saluja, R., Singh, S., and Dikshit, M. (2006). Nitric oxide synthase regulation and diversity: implications in Parkinson’s disease. Nitric Oxide 15, 280–294.

    Article  PubMed  CAS  Google Scholar 

  • Kaza, C.S., Kashfi, K., and Rigas, B. (2002). Colon cancer prevention with NO-releasing NSAIDs. Prostaglandins Other Lipid. Mediat. 67, 107–120.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R., Geiges, M., and Keist, R. (1990). L-arginine-dependent reactive nitrogen intermediates as mediators of tumor cell killing by activated macrophages. Cancer Res. 50, 1421–1425.

    PubMed  CAS  Google Scholar 

  • Kimura, H., Weisz, A., Kurashima, Y., Hashimoto, K., Ogura, T., D’Acquisto, F., et al. (2000). Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood 95, 189–197.

    PubMed  CAS  Google Scholar 

  • Kitagaki, J., Yang, Y., Saavedra, J.E., Colburn, N.H., Keefer, L.K., and Perantoni, A.O. (2009). Nitric oxide prodrug JS-K inhibits ubiquitin E1 and kills tumor cells retaining wild-type p53. Oncogene 28, 619–624.

    Google Scholar 

  • Klimp, A.H., de Vries, E.G., Scherphof, G.L., and Daemen, T. (2002). A potential role of macrophage activation in the treatment of cancer. Crit. Rev. Oncol. Hematol. 44, 143–161.

    Article  PubMed  CAS  Google Scholar 

  • Lagares-Garcia, J.A., Moore, R.A., Collier, B., Heggere, M., Diaz, F., and Qian, F. (2001). Nitric oxide synthase as a marker in colorectal carcinoma. Am. Surg. 67, 709–713.

    PubMed  CAS  Google Scholar 

  • Lala, P.K. and Chakraborty, C. (2001). Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol. 2, 149–156.

    Article  PubMed  CAS  Google Scholar 

  • Lancaster, J.R., Jr. and Xie, K. (2006). Tumors face NO problems? Cancer Res. 66, 6459–6462.

    Article  PubMed  CAS  Google Scholar 

  • Li, C.Q. and Wogan, G.N. (2005). Nitric oxide as a modulator of apoptosis. Cancer Lett. 226, 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Lin, W.J. and Yeh, W.C. (2005). Implication of Toll-like receptor and tumor necrosis factor alpha signaling in septic shock. Shock 24, 206–209.

    Article  PubMed  CAS  Google Scholar 

  • MacKay, R.J. and Russell, S.W. (1986). Protein changes associated with stages of activation of mouse macrophages for tumor cell killing. J. Immunol. 137, 1392–1398.

    PubMed  CAS  Google Scholar 

  • Marsden, P.A., Heng, H.H., Scherer, S.W., Stewart, R.J., Hall, A.V., Shi, X.M., et al. (1993). Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J. Biol. Chem. 268, 17478–17488.

    PubMed  CAS  Google Scholar 

  • Martin, E., Nathan, C., and Xie, Q.W. (1994). Role of interferon regulatory factor 1 in induction of nitric oxide synthase. J. Exp. Med. 180, 977–984.

    Article  PubMed  CAS  Google Scholar 

  • McCann, S.M., Mastronardi, C., de Laurentiis, A., and Rettori, V. (2005). The nitric oxide theory of aging revisited. Ann. N Y Acad. Sci. 1057, 64–84.

    Article  PubMed  CAS  Google Scholar 

  • McIlhatton, M.A., Tyler, J., Burkholder, S., Ruschoff, J., Rigas, B., Kopelovich, L., and Fishel, R. (2007). Nitric oxide-donating aspirin derivatives suppress microsatellite instability in mismatch repair-deficient and hereditary nonpolyposis colorectal cancer cells. Cancer Res. 67, 10966–10975.

    Article  PubMed  CAS  Google Scholar 

  • Mei, J.M., Hord, N.G., Winterstein, D.F., Donald, S.P., and Phang, J.M. ((2000)). Expression of prostaglandin endoperoxide H synthase-2 induced by nitric oxide in conditionally immortalized murine colonic epithelial cells. FASEB J. 14, 1188–1201.

    PubMed  CAS  Google Scholar 

  • Mitchell, J.B., Wink, D.A., DeGraff, W., Gamson, J., Keefer, L.K., and Krishna, M.C. (1993). Hypoxic mammalian cell radiosensitization by nitric oxide. Cancer Res. 53, 5845–5848.

    PubMed  CAS  Google Scholar 

  • Mocellin, S., Rossi, C.R., Pilati, P., and Nitti, D. (2005). Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev. 16, 35–53.

    Article  PubMed  CAS  Google Scholar 

  • Moeller, B.J. and Dewhirst, M.W. (2006). HIF-1 and tumour radiosensitivity. Br. J. Cancer 95, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Ohshima, H., Tatemichi, M., and Sawa, T. (2003). Chemical basis of inflammation-induced carcinogenesis. Arch. Biochem. Biophys. 417, 3–11.

    Article  PubMed  CAS  Google Scholar 

  • Onier, N., Hilpert, S., Reveneau, S., Arnould, L., Saint-Giorgio, V., Exbrayat, J.M., and Jeannin, J.F. (1999). Expression of inducible nitric oxide synthase in tumors in relation with their regression induced by lipid A in rats. Int. J. Cancer 81, 755–760.

    Article  PubMed  CAS  Google Scholar 

  • Pervin, S., Singh, R., Hernandez, E., Wu, G., and Chaudhuri, G. (2007). Nitric oxide in physiologic concentrations targets the translational machinery to increase the proliferation of human breast cancer cells: involvement of mammalian target of rapamycin/eIF4E pathway. Cancer Res. 67, 289–299.

    Article  PubMed  CAS  Google Scholar 

  • Rao, C.V. (2004). Nitric oxide signaling in colon cancer chemoprevention. Mutat. Res. 555, 107–119.

    Article  PubMed  CAS  Google Scholar 

  • Ren, J.L., Pan, J.S., Lu, Y.P., Sun, P., and Han, J. (2009). Inflammatory signaling and cellular senescence. Cell Signal 21, 378–383.

    Google Scholar 

  • Rigas, B. and Kashfi, K. (2004). Nitric-oxide-donating NSAIDs as agents for cancer prevention. Trends Mol. Med. 10, 324–330.

    Article  PubMed  CAS  Google Scholar 

  • Rigas, B. and Kashfi, K. (2005). Cancer prevention: a new era beyond cyclooxygenase-2. J. Pharmacol. Exp. Ther. 314, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Saavedra, J.E., Shami, P.J., Wang, L.Y., Davies, K.M., Booth, M.N., Citro, M.L., and Keefer, L.K. (2000). Esterase-sensitive nitric oxide donors of the diazeniumdiolate family: in vitro antileukemic activity. J. Med. Chem. 43, 261–269.

    Article  PubMed  CAS  Google Scholar 

  • Saura, M., Zaragoza, C., Bao, C., McMillan, A., and Lowenstein, C.J. (1999). Interaction of interferon regulatory factor-1 and nuclear factor kappaB during activation of inducible nitric oxide synthase transcription. J. Mol. Biol. 289, 459–471.

    Article  PubMed  CAS  Google Scholar 

  • Semenza, G.L., Roth, P.H., Fang, H.M., and Wang, G.L. (1994). Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269, 23757–23763.

    PubMed  CAS  Google Scholar 

  • Shami, P.J., Saavedra, J.E., Wang, L.Y., Bonifant, C.L., Diwan, B.A., Singh, S.V., et al. (2003). JS-K, a glutathione/glutathione S-transferase-activated nitric oxide donor of the diazeniumdiolate class with potent antineoplastic activity. Mol. Cancer Ther. 2, 409–417.

    PubMed  CAS  Google Scholar 

  • Siegert, A., Rosenberg, C., Schmitt, W.D., Denkert, C., and Hauptmann, S. (2002). Nitric oxide of human colorectal adenocarcinoma cell lines promotes tumour cell invasion. Br. J. Cancer 86, 1310–1315.

    Article  PubMed  CAS  Google Scholar 

  • Sogawa, K., Numayama-Tsuruta, K., Ema, M., Abe, M., Abe, H., and Fujii-Kuriyama, Y. (1998). Inhibition of hypoxia-inducible factor 1 activity by nitric oxide donors in hypoxia. Proc. Natl. Acad. Sci. U S A 95, 7368–7373.

    Article  PubMed  CAS  Google Scholar 

  • Song, Z.J., Gong, P., and Wu, Y.E. (2002). Relationship between the expression of iNOS, VEGF, tumor angiogenesis and gastric cancer. World J. Gastroenterol. 8, 591–595.

    PubMed  CAS  Google Scholar 

  • Sonveaux, P., Brouet, A., Havaux, X., Gregoire, V., Dessy, C., Balligand, J.L., and Feron, O. (2003). Irradiation-induced angiogenesis through the up-regulation of the nitric oxide pathway: implications for tumor radiotherapy. Cancer Res. 63, 1012–1019.

    PubMed  CAS  Google Scholar 

  • Stepnik, M. (2002). Roles of nitric oxide in carcinogenesis. Protumorigenic effects. Int. J. Occup. Med. Environ. Health 15, 219–227.

    PubMed  Google Scholar 

  • Swietach, P., Vaughan-Jones, R.D., and Harris, A.L. (2007). Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis. Rev. 26, 299–310.

    Article  PubMed  CAS  Google Scholar 

  • Tendler, D.S., Bao, C., Wang, T., Huang, E.L., Ratovitski, E.A., Pardoll, D.A., and Lowenstein, C.J. (2001). Intersection of interferon and hypoxia signal transduction pathways in nitric oxide-induced tumor apoptosis. Cancer Res. 61, 3682–3688.

    PubMed  CAS  Google Scholar 

  • Tesei, A., Ulivi, P., Fabbri, F., Rosetti, M., Leonetti, C., Scarsella, M., et al. (2005). In vitro and in vivo evaluation of NCX 4040 cytotoxic activity in human colon cancer cell lines. J. Transl. Med. 3, 7.

    Article  PubMed  Google Scholar 

  • Thomsen, L.L. and Miles, D.W. (1998). Role of nitric oxide in tumour progression: lessons from human tumours. Cancer Metastasis Rev. 17, 107–118.

    Article  PubMed  CAS  Google Scholar 

  • Verovski, V.N., Van den Berge, D.L., Soete, G.A., Bols, B.L., and Storme, G.A. (1996). Intrinsic radiosensitivity of human pancreatic tumour cells and the radiosensitising potency of the nitric oxide donor sodium nitroprusside. Br. J. Cancer 74, 1734–1742.

    Article  PubMed  CAS  Google Scholar 

  • Williams, J.L., Borgo, S., Hasan, I., Castillo, E., Traganos, F., and Rigas, B. (2001). Nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NSAIDs) alter the kinetics of human colon cancer cell lines more effectively than traditional NSAIDs: implications for colon cancer chemoprevention. Cancer Res. 61, 3285–3289.

    PubMed  CAS  Google Scholar 

  • Wink, D.A., Vodovotz, Y., Cook, J.A., Krishna, M.C., Kim, S., Coffin, D., et al. (1998). The role of nitric oxide chemistry in cancer treatment. Biochemistry (Mosc) 63, 802–809.

    CAS  Google Scholar 

  • Yasuda, H. (2008). Solid tumor physiology and hypoxia-induced chemo/radio-resistance: novel strategy for cancer therapy: nitric oxide donor as a therapeutic enhancer. Nitric Oxide 19, 205–216.

    Article  PubMed  CAS  Google Scholar 

  • Yasuoka, H., Kodama, R., Hirokawa, M., Takamura, Y., Miyauchi, A., Sanke, T., and Nakamura, Y. (2008). CXCR4 expression in papillary thyroid carcinoma: induction by nitric oxide and correlation with lymph node metastasis. BMC Cancer 8, 274.

    Article  PubMed  Google Scholar 

  • Yeh, R.K., Chen, J., Williams, J.L., Baluch, M., Hundley, T.R., Rosenbaum, R.E., et al. (2004). NO-donating nonsteroidal antiinflammatory drugs (NSAIDs) inhibit colon cancer cell growth more potently than traditional NSAIDs: a general pharmacological property? Biochem. Pharmacol. 67, 2197–2205.

    Article  PubMed  CAS  Google Scholar 

  • Ying, L. and Hofseth, L.J. (2007). An emerging role for endothelial nitric oxide synthase in chronic inflammation and cancer. Cancer Res. 67, 1407–1410.

    Article  PubMed  CAS  Google Scholar 

  • Zembala, M., Siedlar, M., Marcinkiewicz, J., and Pryjma, J. (1994). Human monocytes are stimulated for nitric oxide release in vitro by some tumor cells but not by cytokines and lipopolysaccharide. Eur. J. Immunol. 24, 435–439.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hun-Taeg Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Jo, EK., Pae, HO., Lee, Y.C., Chung, HT. (2010). Cytotoxic/Protective Activity of Nitric Oxide in Cancer. In: Bonavida, B. (eds) Nitric Oxide (NO) and Cancer. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1432-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1432-3_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1431-6

  • Online ISBN: 978-1-4419-1432-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics