Dual Role of Nitric Oxide in Cancer Biology

  • Shehla Pervin
  • Rajan Singh
  • Suvajit Sen
  • Gautam Chaudhuri
Chapter
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

Extensive research work performed over the past decades has focused on understanding the role of nitric oxide (NO) in both promoting and preventing cancer. The precise role of NO in tumor biology has been the cause of intense debate. Experimental evidences available in the literature highlight contrasting pro- and anti-tumor effects of NO. It is now becoming clear that concentration- and time-dependent regulation of NO leads to tumor growth, cytostasis, or cell death. It is known that NO participates in various signaling pathways including Ras, extracellular signal-regulated kinases (ERKs), Akt, cyclin D1/retinoblastoma (Rb) as mammalian target of rapamycin (mTOR) that are crucial for tumor cells. NO mediated post-translational modification of key proteins including S-nitrosylation of caspases, tyrosine nitration of mitochondrial manganese superoxide dismutase (MnSOD), or cytochrome c. Various attempts toward developing NO-based cancer therapy are still in primitive stages, and a clear understanding of the levels of NOS expression, its timing, and the concentrations of NO produced in the tumor microenvironment is key to the development of novel strategies for tumor treatment and prevention.

Keywords

Nitric oxide Cancer Mammalian target of rapamycin MAP kinase phosphatase-1 Nω-Hydroxy-l-arginine 

References

  1. Ahn, B. and Ohshima, H. (2001). Suppression of intestinal polyposis in Apc(Min/+) mice by inhibiting nitric oxide production. Cancer Res. 61(23), 8357–8360.PubMedGoogle Scholar
  2. Ambs, S., Bennett, W.P., Merriam, W.G., Ogunfusika, M.O., Oser, S.M., Harrington, A.M., Shields, P.G., Felley-Bosco, E., Hussain, S.P., and Harris, C.C. (1999). Relationship between p53 mutations and inducible nitric oxide synthase expression in human colorectal cancer. J. Natl. Cancer Inst. 6, 91(1), 86–88.CrossRefGoogle Scholar
  3. Ambs, S., Merriam, W.G., Bennett, W.P., Felley-Bosco, E., Ogunfusika, M.O., Oser, S.M., Klein, S., Shields, P.G., Billiar, T.R., and Harris, C.C. (1998a). Frequent nitric oxide synthase-2 expression in human colon adenomas: implication for tumor angiogenesis and colon cancer progression. Cancer Res. 58(2), 334–341.PubMedGoogle Scholar
  4. Ambs, S., Bennett, W.P., Merriam, W.G., Ogunfusika, M.O., Oser, S.M., Khan, M.A., Jones, R.T., and Harris, C.C. (1998b). Vascular endothelial growth factor and nitric oxide synthase expression in human lung cancer and the relation to p53. Br. J. Cancer 78(2), 233–239.PubMedCrossRefGoogle Scholar
  5. Ambs, S., Merriam, W.G., Ogunfusika, M.O., Bennett, W.P., Ishibe, N., Hussain, S.P., Tzeng, E.E., Geller, D.A., Billiar, T.R., and Harris, C.C. (1998c). p53 and vascular endothelial growth factor regulate tumor growth of NOS2-expressing human carcinoma cells. Nat. Med. 4(12), 1371–1376.PubMedCrossRefGoogle Scholar
  6. Azad, N., Vallyathan, V., Wang, L., Tantishaiyakul, V., Stehlik, C., Leonard, S.S., Rojanasakul, Y. (2006). S-nitrosylation of Bcl-2 inhibits its ubiquitin-proteasomal degradation. A novel antiapoptotic mechanism that suppresses apoptosis. J. Biol. Chem. 281(45), 34124–34134.Google Scholar
  7. Beeharry, N., Chambers, J.A., Faragher, R.G., Garnett, K.E., and Green, I.C. (2004). Analysis of cytokine-induced NO-dependent apoptosis using RNA interference or inhibition by 1400 W. Nitric Oxide 10(2), 112–118.PubMedCrossRefGoogle Scholar
  8. Brennan, P.A., Palacios-Callender, M., Umar, T., Hughes, D., Spedding, A.V., Zaki, G.A., and Langdon, J.D. (2000). Correlation between type II nitric oxide synthase and p53 expression in oral squamous cell carcinoma. Br. J. Oral Maxillofac. Surg. 38(6), 627–632.PubMedCrossRefGoogle Scholar
  9. Cantuaria, G., Magalhaes, A., Angioli, R., Mendez, L., Mirhashemi, R., Wang, J., Wang, P., Penalver, M., Averette, H., and Braunschweiger, P. (2000). Antitumor activity of a novel glyco-nitric oxide conjugate in ovarian carcinoma. Cancer 88(2), 381–388.PubMedCrossRefGoogle Scholar
  10. Chao, J.I., Kuo, P.C., and Hsu, T.S. (2004). Down-regulation of survivin in nitric oxide-induced cell growth inhibition and apoptosis of the human lung carcinoma cells. J. Biol. Chem. 279(19), 20267–20276.PubMedCrossRefGoogle Scholar
  11. Chen, T., Nines, R.G., Peschke, S.M., Kresty, L.A., and Stoner, G.D. (2004). Chemopreventive effects of a selective nitric oxide synthase inhibitor on carcinogen-induced rat esophageal tumorigenesis. Cancer Res. 64(10), 3714–3717.PubMedCrossRefGoogle Scholar
  12. Chong, Z.Z., Li, F., and Maiese, K. (2005). Activating Akt and the brain’s resources to drive cellular survival and prevent inflammatory injury. Histol. Histopathol. 20(1), 299–315.PubMedGoogle Scholar
  13. Cobbs, C.S., Brenman, J.E., Aldape, K.D., Bredt, D.S., and Israel, M.A. (1995). Expression of nitric oxide synthase in human central nervous system tumors. Cancer Res. 55(4), 727–730.PubMedGoogle Scholar
  14. Costantini, P., Jacotot, E., Decaudin, D., and Kroemer, G. (2000). Mitochondrion as a novel target of anticancer chemotherapy. J. Natl. Cancer Inst. 92(13), 1042–1053.PubMedCrossRefGoogle Scholar
  15. Dachs, G.U. and Tozer, G.M. (2000). Hypoxia modulated gene expression: angiogenesis, metastasis and therapeutic exploitation. Eur. J. Cancer 36(13 Spec No), 1649–1660.PubMedCrossRefGoogle Scholar
  16. de Wilt, J.H., Manusama, E.R., van Etten, B., van Tiel, S.T., Jorna, A.S., Seynhaeve, A.L., ten Hagen, T.L., and Eggermont, A.M. (2000). Nitric oxide synthase inhibition results in synergistic anti-tumour activity with melphalan and tumour necrosis factor alpha-based isolated limb perfusions. Br. J. Cancer 83(9), 1176–1182.PubMedCrossRefGoogle Scholar
  17. Dhakshinamoorthy, S. and Porter, A.G. (2004). Nitric oxide-induced transcriptional up-regulation of protective genes by Nrf2 via the antioxidant response element counteracts apoptosis of neuroblastoma cells. J. Biol. Chem. 279(19), 20096–20107.PubMedCrossRefGoogle Scholar
  18. Dimmeler, S., Fleming, I., Fisslthaler, B., Hermann, C., Busse, R., and Zeiher, A.M. (1999). Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399(6736), 601–605.PubMedCrossRefGoogle Scholar
  19. Ekmekcioglu, S., Ellerhorst, J., Smid, C.M., Prieto, V.G., Munsell, M., Buzaid, A.C., and Grimm, E.A. (2000). Inducible nitric oxide synthase and nitrotyrosine in human metastatic melanoma tumors correlate with poor survival. Clin. Cancer Res. 6(12), 4768–4775.PubMedGoogle Scholar
  20. Fantl, V., Smith, R., Brookes, S., Dickson, C., and Peters, G. (1993). Chromosome 11q13 abnormalities in human breast cancer. Cancer Surv. 18, 77–94.PubMedGoogle Scholar
  21. Fiore, G., Di Cristo, C., Monti, G., Amoresano, A., Columbano, L., Pucci, P., Cioffi, F.A., Di Cosmo, A., Palumbo, A., and d’Ischia, M. (2006). Tubulin nitration in human gliomas. Neurosci. Lett. 394(1), 57–62.PubMedCrossRefGoogle Scholar
  22. Fukumura, D., Kashiwagi, S., and Jain, R.K. (2006). The role of nitric oxide in tumour progression. Nat. Rev. Cancer 6(7), 521–534.PubMedCrossRefGoogle Scholar
  23. Gasic, G.J., Gasic, T.B., and Stewart, C.C. (1968). Antimetastatic effects associated with platelet reduction. Proc. Natl. Acad. Sci. USA 61(1), 46–52.PubMedCrossRefGoogle Scholar
  24. Gallo, O., Masini, E., Morbidelli, L., Franchi, A., Fini-Storchi, I., Vergari, W.A., and Ziche, M. (1998). Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer. J. Natl. Cancer Inst. 90(8), 587–596.PubMedCrossRefGoogle Scholar
  25. Ganster, R.W., Taylor, B.S., Shao, L., and Geller, D.A. (2001). Complex regulation of human inducible nitric oxide synthase gene transcription by Stat 1 and NF-kappa B. Proc. Natl. Acad. Sci. USA 98(15), 8638–8643.PubMedCrossRefGoogle Scholar
  26. Garbán, H.J. and Bonavida, B. (2001). Nitric oxide disrupts H2O2-dependent activation of nuclear factor kappa B. Role in sensitization of human tumor cells to tumor necrosis factor-alpha -induced cytotoxicity. J. Biol. Chem. 276(12), 8918–8923.PubMedCrossRefGoogle Scholar
  27. Garbán, H.J. and Bonavida, B. (1999). Nitric oxide sensitizes ovarian tumor cells to Fas-induced apoptosis. Gynecol. Oncol. 73(2), 257–264.PubMedCrossRefGoogle Scholar
  28. Goligorsky, M.S., Brodsky, S.V., and Noiri, E. (2004). NO bioavailability, endothelial dysfunction, and acute renal failure: new insights into pathophysiology. Semin. Nephrol. 24(4), 316–323.PubMedCrossRefGoogle Scholar
  29. Gong, L., Pitari, G., Schulz, S., and Waldman, SA. (2004). Nitric oxide signaling: systems integration of oxygen balance in defense of cell integrity. Curr. Opin. Hematol. 11, 7–14.PubMedCrossRefGoogle Scholar
  30. Gratton, J.P., Lin, M.I., Yu, J., Weiss, E.D., Jiang, Z.L., Fairchild, T.A., Iwakiri, Y., Groszmann, R., Claffey, K.P., Cheng, Y.C., and Sessa, W.C. (2003). Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell 4(1), 31–39.PubMedCrossRefGoogle Scholar
  31. Hajri, A., Metzger, E., Vallat, F., Coffy, S., Flatter, E., Evrard, S., Marescaux, J., and Aprahamian, M. (1998). Role of nitric oxide in pancreatic tumour growth: in vivo and in vitro studies. Br. J. Cancer 78(7), 841–849.PubMedCrossRefGoogle Scholar
  32. Hobbs, A.J., Higgs, A., and Moncada, S. (1999). Inhibition of nitric oxide synthase as a potential therapeutic target. Annu. Rev. Pharmacol. Toxicol. 39, 191–220.PubMedCrossRefGoogle Scholar
  33. Hofseth, L.J., Hussain, S.P., Wogan, G.N., and Harris, C.C. (2003). Nitric oxide in cancer and chemoprevention. Free Radic. Biol. Med. 34(8), 955–968.PubMedCrossRefGoogle Scholar
  34. Huerta-Yepez, S., Vega, M., Jazirehi, A., Garban, H., Hongo, F., Cheng, G., and Bonavida, B. (2004). Nitric oxide sensitizes prostate carcinoma cell lines to TRAIL-mediated apoptosis via inactivation of NF-kappa B and inhibition of Bcl-xl expression. Oncogene 23(29), 4993–5003.PubMedCrossRefGoogle Scholar
  35. Hussain, S.P., Hofseth, L.J., and Harris, C.C. (2003). Radical causes of cancer. Nat. Rev. Cancer 3(4), 276–285.PubMedCrossRefGoogle Scholar
  36. Ignarro, L.J. (1989). Endothelium-derived nitric oxide: actions and properties. FASEB J. 3(1), 31–36.PubMedGoogle Scholar
  37. Ignarro, L.J. (1996). Physiology and pathophysiology of nitric oxide. Kidney Int. Suppl. 55, S2.PubMedGoogle Scholar
  38. Jadeski, L.C., Hum, K.O., Chakraborty, C., and Lala, P.K. (2000). Nitric oxide promotes murine mammary tumour growth and metastasis by stimulating tumour cell migration, invasiveness and angiogenesis. Int. J. Cancer. 86(1), 30–39.PubMedCrossRefGoogle Scholar
  39. Jadeski, L.C. and Lala, P.K. (1999). Nitric oxide synthase inhibition by N(G)-nitro-L-arginine methyl ester inhibits tumor-induced angiogenesis in mammary tumors. Am. J. Pathol. 155(4), 1381–1390.PubMedCrossRefGoogle Scholar
  40. Jaiswal, M., LaRusso, N.F., Nishioka, N., Nakabeppu, Y., and Gores, G.J. (2001). Human Ogg1, a protein involved in the repair of 8-oxoguanine, is inhibited by nitric oxide. Cancer Res. 61(17), 6388–6393.PubMedGoogle Scholar
  41. Janes, P.W., Daly, R.J., deFazio, A., and Sutherland, R.L. (1994) Activation of the Ras signalling pathway in human breast cancer cells overexpressing erbB-2. Oncogene. 9(12), 3601–3608.PubMedGoogle Scholar
  42. Juang, S.H., Xie, K., Xu, L., Shi, Q., Wang, Y., Yoneda. J., and Fidler, I.J. (1998). Suppression of tumorigenicity and metastasis of human renal carcinoma cells by infection with retroviral vectors harboring the murine inducible nitric oxide synthase gene. Hum. Gene Ther. 9(6), 845–854.PubMedCrossRefGoogle Scholar
  43. Kawabe, T., Isobe, K.I., Hasegawa, Y., Nakashima, I., and Shimokata, K. (1992). Immunosuppressive activity induced by nitric oxide in culture supernatant of activated rat alveolar macrophages. Immunology 76(1), 72–78.PubMedGoogle Scholar
  44. Kawakami, K., Kawakami, M., and Puri, R.K. (2004). Nitric oxide accelerates interleukin-13 cytotoxin-mediated regression in head and neck cancer animal model. Clin. Cancer Res. 10(15), 5264–5270.PubMedCrossRefGoogle Scholar
  45. Kawamori, T., Takahashi, M., Watanabe, K., Ohta, T., Nakatsugi, S., Sugimura, T., and Wakabayashi, K. (2000). Suppression of azoxymethane-induced colonic aberrant crypt foci by a nitric oxide synthase inhibitor. Cancer Lett. 148(1), 33–37.PubMedCrossRefGoogle Scholar
  46. Kim, Y.M., Son, K., Hong, S.J., Green, A., Chen, J.J., Tzeng, E., Hierholzer, C., and Billiar, T.R. (1998). Inhibition of protein synthesis by nitric oxide correlates with cytostatic activity: nitric oxide induces phosphorylation of initiation factor eIF-2 alpha. Mol. Med. 4(3), 179–190.PubMedGoogle Scholar
  47. Kitano, H., Kitanishi, T., Nakanishi, Y., Suzuki, M., Takeuchi, E., Yazawa, Y., Kitajima, K., Kimura, H., and Tooyama, I. (1999). Expression of inducible nitric oxide synthase in human thyroid papillary carcinomas. Thyroid 9(2), 113–117.PubMedCrossRefGoogle Scholar
  48. Kleinert, H., Schwarz, P.M., and Förstermann, U. (2003). Regulation of the expression of inducible nitric oxide synthase. Biol. Chem. 384(10–11), 1343–1364.PubMedGoogle Scholar
  49. Klotz, T., Bloch, W., Volberg, C., Engelmann, U., and Addicks, K. (1998). Selective expression of inducible nitric oxide synthase in human prostate carcinoma. Cancer 82(10), 1897–1903.PubMedCrossRefGoogle Scholar
  50. Knowles, R.G. and Moncada, S. (1994). Nitric oxide synthases in mammals. Biochem. J. 298(Pt 2), 249–258.PubMedGoogle Scholar
  51. Kolios, G., Valatas, V., and Ward, S.G. (2004). Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle. Immunology 113(4), 427–437.PubMedCrossRefGoogle Scholar
  52. Le, X., Wei, D., Huang, S., Lancaster, J.R. Jr., and Xie, K. (2005). Nitric oxide synthase II suppresses the growth and metastasis of human cancer regardless of its up-regulation of protumor factors. Proc. Natl. Acad. Sci. USA 4,102(24), 8758–8763.CrossRefGoogle Scholar
  53. Lechner, M., Lirk, P., and Rieder, J. (2005). Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin. Cancer Biol. 15(4), 277–289.PubMedCrossRefGoogle Scholar
  54. Li, J. and Billiar, T.R. (1999). The anti-apoptotic actions of nitric oxide in hepatocytes. Cell Death Differ. 6(10), 952–955.PubMedCrossRefGoogle Scholar
  55. Liu, C.Y., Wang, C.H., Chen, T.C., Lin, H.C., Yu, C.T., and Kuo, H.P. (1998). Increased level of exhaled nitric oxide and up-regulation of inducible nitric oxide synthase in patients with primary lung cancer. Br. J. Cancer 78(4), 534–541.PubMedCrossRefGoogle Scholar
  56. Liu, L., Li, H., Underwood, T., Lloyd, M., David, M., Sperl, G., Pamukcu, R., and Thompson, W.J. (2001). Cyclic GMP-dependent protein kinase activation and induction by exisulind and CP461 in colon tumor cells. J. Pharmacol. Exp. Ther. 299(2), 583–592.PubMedGoogle Scholar
  57. Liu, L. and Stamler, J.S. (1999). NO: an inhibitor of cell death. Cell Death Differ. 6(10), 937–942.PubMedCrossRefGoogle Scholar
  58. Loibl, S., von Minckwitz, G., Weber, S., Sinn, H.P., Schini-Kerth, V.B., Lobysheva, I., Nepveu, F., Wolf, G., Strebhardt, K., and Kaufmann, M. (2002). Expression of endothelial and inducible nitric oxide synthase in benign and malignant lesions of the breast and measurement of nitric oxide using electron paramagnetic resonance spectroscopy. Cancer 95(6), 1191–1198.PubMedCrossRefGoogle Scholar
  59. Lu, W. and Schroit, A.J. (2005). Vascularization of melanoma by mobilization and remodeling of preexisting latent vessels to patency. Cancer Res. 65(3), 913–918.PubMedGoogle Scholar
  60. Mannick, J.B., Schonhoff, C., Papeta, N., Ghafourifar, P., Szibor, M., Fang, K., Gaston, B. (2001). S-Nitrosylation of mitochondrial caspases. J. Cell Biol. 154(6), 1111–1116.PubMedCrossRefGoogle Scholar
  61. Marshall, H.E., Merchant, K., and Stamler, J.S. (2000). Nitrosation and oxidation in the regulation of gene expression. FASEB J. 14(13), 1889–1900.PubMedCrossRefGoogle Scholar
  62. Massi, D., Franchi, A., Sardi, I., Magnelli, L., Paglierani, M., Borgognoni, L., Maria Reali, U., and Santucci, M. (2001). Inducible nitric oxide synthase expression in benign and malignant cutaneous melanocytic lesions. J. Pathol. 194(2), 194–200.PubMedCrossRefGoogle Scholar
  63. Matthews, J.R., Botting, C.H., Panico, M., Morris, H.R., and Hay, R.T. (1996). Inhibition of NF-kappaB DNA binding by nitric oxide. Nucleic Acids Res. 24(12), 2236–2242.PubMedCrossRefGoogle Scholar
  64. McDonald, L.J. and Murad, F. (1995). Nitric oxide and cGMP signaling. Adv. Pharmacol. 34, 263–275.PubMedCrossRefGoogle Scholar
  65. Michel, T. and Feron, O. (1997). Nitric oxide synthases: which, where, how, and why? J. Clin. Invest. 100(9), 2146–2152.PubMedCrossRefGoogle Scholar
  66. Mocellin, S., Rossi, C.R., Pilati, P., and Nitti, D. (2005). Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev. 16(1), 35–53.PubMedCrossRefGoogle Scholar
  67. Moilanen, E. and Vapaatalo, H. (1995). Nitric oxide in inflammation and immune response. Ann. Med. 27(3), 359–367.PubMedCrossRefGoogle Scholar
  68. Moncada, S. and Higgs, A. (1993). The L-arginine-nitric oxide pathway. N. Engl. J. Med. 329(27), 2002–2012.PubMedCrossRefGoogle Scholar
  69. Morita, E.H., Ohkubo, T., Kuraoka, I., Shirakawa, M., Tanaka, K., and Morikawa, K. (1996). Implications of the zinc-finger motif found in the DNA-binding domain of the human XPA protein. Genes Cells. 1(5), 437–442.PubMedCrossRefGoogle Scholar
  70. Murad, F. (1994). Regulation of cytosolic guanylyl cyclase by nitric oxide: the NO-cyclic GMP signal transduction system. Adv. Pharmacol. 26, 19–33.PubMedCrossRefGoogle Scholar
  71. Nathan, C. and Xie, Q.W. (1994). Nitric oxide synthases: roles, tolls, and controls. Cell 78(6), 915.PubMedCrossRefGoogle Scholar
  72. Nosho, K., Yamamoto, H., Adachi, Y., Endo, T., Hinoda, Y., and Imai, K. (2005). Gene expression profiling of colorectal adenomas and early invasive carcinomas by cDNA array analysis. Br. J. Cancer 92(7), 1193–1200.PubMedCrossRefGoogle Scholar
  73. Nunokawa, Y. and Tanaka, S. (1992). Interferon-gamma inhibits proliferation of rat vascular smooth muscle cells by nitric oxide generation. Biochem. Biophys. Res. Commun. 188(1), 409–415.PubMedCrossRefGoogle Scholar
  74. Olson, S.Y. and Garbán, H.J. (2008). Regulation of apoptosis-related genes by nitric oxide in cancer. Nitric Oxide 19(2), 170–176.PubMedCrossRefGoogle Scholar
  75. Pan, S.L., Guh, J.H., Peng, C.Y., Wang, S.W., Chang, Y.L., Cheng, F.C., Chang, J.H., Kuo, S.C., Lee, F.Y., and Teng, C.M. (2005). YC-1 [3-(5’-hydroxymethyl-2’-furyl)-1-benzyl indazole] inhibits endothelial cell functions induced by angiogenic factors in vitro and angiogenesis in vivo models. J. Pharmacol. Exp. Ther. 314(1), 35–42.PubMedCrossRefGoogle Scholar
  76. Pandey, P., Kharbanda, S., and Kufe, D. (1995). Association of the DF3/MUC1 breast cancer antigen with Grb2 and the Sos/Ras exchange protein. Cancer Res. 55(18), 4000–4003.PubMedGoogle Scholar
  77. Park, S.W. and Wei, L.N. (2003). Regulation of c-myc gene by nitric oxide via inactivating NF-kappa B complex in P19 mouse embryonal carcinoma cells. J. Biol. Chem. 278(32), 29776–29782.PubMedCrossRefGoogle Scholar
  78. Parsa, A.T. and Holland, E.C. (2004). Cooperative translational control of gene expression by Ras and Akt in cancer. Trends Mol. Med. 10(12), 607–613.PubMedCrossRefGoogle Scholar
  79. Peng, H.B., Libby, P., and Liao, J.K. (1995). Induction and stabilization of I kappa B alpha by nitric oxide mediates inhibition of NF-kappa B. J. Biol. Chem. 270(23), 14214–14219.PubMedCrossRefGoogle Scholar
  80. Perrotta, C., Falcone, S., Capobianco, A., Camporeale, A., Sciorati, C., De Palma, C., Pisconti, A., Rovere-Querini, P., Bellone, M., Manfredi, A.A., and Clementi, E. (2004). Nitric oxide confers therapeutic activity to dendritic cells in a mouse model of melanoma. Cancer Res. 64(11), 3767–3771.PubMedCrossRefGoogle Scholar
  81. Pervin, S., Singh, R., and Chaudhuri, G. (2001a). Nitric oxide-induced cytostasis and cell cycle arrest of a human breast cancer cell line (MDA-MB-231): potential role of cyclin D1. Proc. Natl. Acad. Sci. USA 98(6), 3583–3588.PubMedCrossRefGoogle Scholar
  82. Pervin, S, Singh, R., Gau, C.L., Edamatsu, H., Tamanoi, F., and Chaudhuri, G. (2001b). Potentiation of nitric oxide-induced apoptosis of MDA-MB-468 cells by farnesyltransferase inhibitor: implications in breast cancer. Cancer Res. 61(12), 4701–4706.PubMedGoogle Scholar
  83. Pervin, S., Singh, R., Freije, W.A., and Chaudhuri, G. (2003a). MKP-1-induced dephosphorylation of extracellular signal-regulated kinase is essential for triggering nitric oxide-induced apoptosis in human breast cancer cell lines: implications in breast cancer. Cancer Res. 63(24), 8853–8860.PubMedGoogle Scholar
  84. Pervin, S., Singh, R., and Chaudhuri, G. (2003b). Nitric-oxide-induced Bax integration into the mitochondrial membrane commits MDA-MB-468 cells to apoptosis: essential role of Akt. Cancer Res. 63(17), 5470–5479.PubMedGoogle Scholar
  85. Pervin, S., Singh, R., Hernandez, E., Wu, G., and Chaudhuri, G. (2007). Nitric oxide in physiologic concentrations targets the translational machinery to increase the proliferation of human breast cancer cells: involvement of mammalian target of rapamycin/eIF4E pathway. Cancer Res. 67(1), 289–299.PubMedCrossRefGoogle Scholar
  86. Pervin, S., Tran, A.H., Zekavati, S., Fukuto, J.M., Singh, R., and Chaudhuri, G. (2008a). Increased susceptibility of breast cancer cells to stress mediated inhibition of protein synthesis. Cancer Res. 68(12), 4862–4874.PubMedCrossRefGoogle Scholar
  87. Pervin, S., Singh, R., and Chaudhuri, G. (2008b). Nitric oxide, N omega-hydroxy-L-arginine and breast cancer. Nitric Oxide 19(2), 103–106.PubMedCrossRefGoogle Scholar
  88. Prueitt, R.L., Boersma, B.J., Howe, T.M., Goodman, J.E., Thomas, D.D., Ying, L., Pfiester, C.M., Yfantis, H.G., Cottrell, J.R., Lee, D.H., Remaley, A.T., Hofseth, L.J., Wink, D.A., and Ambs, S. (2007). Inflammation and IGF-I activate the Akt pathway in breast cancer. Int. J. Cancer 120(4), 796–805.PubMedCrossRefGoogle Scholar
  89. Raspollini, M.R., Amunni, G., Villanucci, A., Boddi, V., Baroni, G., Taddei, A., and Taddei, G.L. (2004). Expression of inducible nitric oxide synthase and cyclooxygenase-2 in ovarian cancer: correlation with clinical outcome. Gynecol. Oncol. 92(3), 806–812.PubMedCrossRefGoogle Scholar
  90. Reynaert, N.L., Ckless, K., Korn, S.H., Vos, N., Guala, A.S., Wouters, E.F., van der Vliet, A., and Janssen-Heininger Y.M. (2004). Nitric oxide represses inhibitory kappaB kinase through S-nitrosylation. Proc. Natl. Acad. Sci. USA 101(24), 8945–8950.PubMedCrossRefGoogle Scholar
  91. Ridnour, L.A., Thomas, D.D., Switzer, C., Flores-Santana, W., Isenberg, J.S., Ambs, S., Roberts, D.D., and Wink, D.A. (2008). Molecular mechanisms for discrete nitric oxide levels in cancer. Nitric Oxide 19(2), 73–76.PubMedCrossRefGoogle Scholar
  92. Ridnour, L.A., Windhausen, A.N., Isenberg, J.S., Yeung, N., Thomas, D.D., Vitek, M.P., Roberts, D.D., and Wink, D.A. (2007). Nitric oxide regulates matrix metalloproteinase-9 activity by guanylyl-cyclase-dependent and -independent pathways. Proc. Natl. Acad. Sci. USA 104(43), 16898–16903.PubMedCrossRefGoogle Scholar
  93. Schindler, H. and Bogdan, C. (2001). NO as a signaling molecule: effects on kinases. Int. Immunopharmacol. 1, 1443–1455.PubMedCrossRefGoogle Scholar
  94. Schleiffer, R., Duranton, B., Gossé, F., Bergmann, C., and Raul, F. (2000). Rats. Nitric Oxide 4(6), 583–589.PubMedCrossRefGoogle Scholar
  95. Selleri, C., Maciejewski, J.P., Montuori, N., Ricci, P., Visconte, V., Serio, B., Luciano, L., and Rotoli, B. (2003). Involvement of nitric oxide in farnesyltransferase inhibitor-mediated apoptosis in chronic myeloid leukemia cells. Blood 102(4), 1490–1498.PubMedCrossRefGoogle Scholar
  96. Sessa, W.C. (2004). eNOS at a glance. J. Cell Sci. 117(Pt 12), 2427–2429.PubMedCrossRefGoogle Scholar
  97. Shantz, L.M. (2004). Transcriptional and translational control of ornithine decarboxylase during Ras transformation. Biochem. J. 377(Pt 1), 257–264.PubMedCrossRefGoogle Scholar
  98. Singh, R., Pervin, S., Aviyakulov, N.K., Haykinson, M., Rajavashisth, T., and Chaudhuri, G. (2007). Nω Hydroxy L-Arginine-induced apoptosis in human breast cancer cells: proteomics approach for the identification of key target proteins. J. Invest. Med. 55, S142.CrossRefGoogle Scholar
  99. Singh, R., Pervin, S., and Chaudhuri, G. (2002). Caspase-8-mediated BID cleavage and release of mitochondrial cytochrome c during Nomega-hydroxy-L-arginine-induced apoptosis in MDA-MB-468 cells. Antagonistic effects of L-ornithine. J. Biol. Chem. 277(40), 37630–37636.PubMedCrossRefGoogle Scholar
  100. Singh, R., Pervin, S., Karimi, A., Cederbaum, S., Chaudhuri, G. (2000). Arginase activity in human breast cancer cell lines: N(omega)-hydroxy-L-arginine selectively inhibits cell proliferation and induces apoptosis in MDA-MB-468 cells. Cancer Res. 60(12), 3305–3312.PubMedGoogle Scholar
  101. Stamler, J.S., Lamas, S., and Fang, F.C. (2001). Nitrosylation. the prototypic redox-based signaling mechanism. Cell 106(6), 675–683.Google Scholar
  102. Surh, Y.J., Chun, K.S., Cha, H.H., Han, S.S., Keum, Y.S., Park, K.K., and Lee, S.S. (2001). Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat. Res. 480–481, 243–268.PubMedGoogle Scholar
  103. Swana, H.S., Smith, S.D., Perrotta, P.L., Saito, N., Wheeler, M.A., and Weiss, R.M. (1999). Inducible nitric oxide synthase with transitional cell carcinoma of the bladder. J. Urol. 161(2), 630–634.PubMedCrossRefGoogle Scholar
  104. Tamanoi, F., Gau, C.L., Jiang, C., Edamatsu, H., Kato-Stankiewicz, J. (2001). Protein farnesylation in mammalian cells: effects of farnesyltransferase inhibitors on cancer cells. Cell Mol. Life Sci. 58(11), 1636–1649.PubMedCrossRefGoogle Scholar
  105. Thomas, D.D., Espey, M.G., Ridnour, L.A., Hofseth, L.J., Mancardi, D., Harris, C.C., and Wink, D.A. (2004). Hypoxic inducible factor 1alpha, extracellular signal-regulated kinase, and p53 are regulated by distinct threshold concentrations of nitric oxide. Proc. Natl. Acad. Sci. USA 101(24), 8894–8899.PubMedCrossRefGoogle Scholar
  106. Thomas, D.D., Ridnour, L.A., Isenberg, J.S., Flores-Santana, W., Switzer, C.H., Donzelli, S., Hussain, P., Vecoli, C., Paolocci, N., Ambs, S., Colton, C.A., Harris, C.C., Roberts, D.D., and Wink, D.A. (2008). The chemical biology of nitric oxide: implications in cellular signaling. Free Radic. Biol. Med. 45(1), 18–31.PubMedCrossRefGoogle Scholar
  107. Thomsen, L.L., Lawton, F.G., Knowles, R.G., Beesley, J.E., Riveros-Moreno, V., and Moncada, S. (1994). Nitric oxide synthase activity in human gynecological cancer. Cancer Res. 54(5), 1352–1354.PubMedGoogle Scholar
  108. Thomsen, L.L., Miles, D.W., Happerfield, L., Bobrow, L.G., Knowles, R.G., and Moncada, S. (1995). Nitric oxide synthase activity in human breast cancer. Br. J. Cancer 72(1), 41–44.PubMedCrossRefGoogle Scholar
  109. Thomsen, L.L., and Miles, D.W. (1998). Role of nitric oxide in tumour progression: lessons from human tumours. Cancer Metastasis Rev. 17(1), 107–118.PubMedCrossRefGoogle Scholar
  110. Torreilles, J. (2001). Nitric oxide: one of the more conserved and widespread signaling molecules. Front Biosci. 6, D1161–D1172.PubMedCrossRefGoogle Scholar
  111. Uneda, S., Hata, H., Matsuno, F., Nagasaki, A., Harada, N., Mitsuya, Y., Matsuzaki, H., and Mitsuya, H. (2003). A nitric oxide synthase inhibitor, N(G)-nitro-l-arginine-methyl-ester, exerts potent antiangiogenic effects on plasmacytoma in a newly established multiple myeloma severe combined immunodeficient mouse model. Br. J. Haematol. 120(3), 396–404.PubMedCrossRefGoogle Scholar
  112. Wang, B., Wei, D., Crum, V.E., Richardson, E.L., Xiong, H.H., Luo, Y., Huang, S., Abbruzzese, J.L., and Xie, K. (2003). A novel model system for studying the double-edged roles of nitric oxide production in pancreatic cancer growth and metastasis. Oncogene 22(12), 1771–1782.PubMedCrossRefGoogle Scholar
  113. Weller, R., Billiar, T., and Vodovotz, Y. (2002). Pro- and anti-apoptotic effects of nitric oxide in irradiated keratinocytes: the role of superoxide. Skin Pharmacol. Appl. Skin Physiol. 15(5), 348–352.PubMedCrossRefGoogle Scholar
  114. Wen, J.C., Chaudhuri, G., and Pervin, S. (2006). An inverse interaction between survivin and MAP kinase phosphatase 1 regulates nitric oxide-induced apoptosis. J. Invest Med. 54, S145–S145 (abstract).Google Scholar
  115. Wenzel, U., Kuntz, S., De Sousa, U.J., and Daniel, H. (2003). Nitric oxide suppresses apoptosis in human colon cancer cells by scavenging mitochondrial superoxide anions. Int. J. Cancer. 106(5), 666–675.PubMedCrossRefGoogle Scholar
  116. Wilson, K.T., Fu, S., Ramanujam, K.S., and Meltzer, S.J. (1998). Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett’s esophagus and associated adenocarcinomas. Cancer Res. 58(14), 2929–2934.PubMedGoogle Scholar
  117. Wink, D.A., Vodovotz, Y., Laval, J., Laval, F., Dewhirst, M.W., and Mitchell, J.B. (1998). The multifaceted roles of nitric oxide in cancer. Carcinogenesis 19(5), 711–721.PubMedCrossRefGoogle Scholar
  118. Wu, J., Akaike, T., and Maeda, H. (1998). Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger. Cancer Res. 58(1), 159–165.PubMedGoogle Scholar
  119. Xie, K., Huang, S., Dong, Z., Juang, S.H., Gutman, M., Xie, Q.W., Nathan, C., and Fidler, I.J. (1995). Transfection with the inducible nitric oxide synthase gene suppresses tumorigenicity and abrogates metastasis by K-1735 murine melanoma cells. J. Exp. Med. 181(4), 1333–1343.PubMedCrossRefGoogle Scholar
  120. Xie, K., Huang, S., Dong, Z., Juang, S.H., Wang, Y., and Fidler, I.J. (1997). Destruction of bystander cells by tumor cells transfected with inducible nitric oxide (NO) synthase gene. J. Natl. Cancer Inst. 89(6), 421–427.PubMedCrossRefGoogle Scholar
  121. Xie, K. and Huang, S. (2003). Contribution of nitric oxide-mediated apoptosis to cancer metastasis inefficiency. Free Radic. Biol. Med. 34(8), 969–986.PubMedCrossRefGoogle Scholar
  122. Yamamoto, T., Terada, N., Seiyama, A., Nishizawa, Y., Akedo, H., and Kosaka, H. (1998). Increase in experimental pulmonary metastasis in mice by L-arginine under inhibition of nitric oxide production by NG-nitro-L-arginine methyl ester. Int. J. Cancer 75(1), 140–144.PubMedCrossRefGoogle Scholar
  123. Yeo, E.J., Chun, Y.S., Cho, Y.S., Kim, J., Lee, J.C., Kim, M.S., and Park, J.W. (2003) YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J. Natl. Cancer Inst. 95(7), 516–525.PubMedCrossRefGoogle Scholar
  124. Zhang, H.J., Zhao, W., Venkataraman, S., Robbins, M.E., Buettner, G.R., Kregel, K.C., and Oberley, L.W. (2002). Activation of matrix metalloproteinase-2 by overexpression of manganese superoxide dismutase in human breast cancer MCF-7 cells involves reactive oxygen species. J. Biol. Chem. 277(23), 20919–20926.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  • Shehla Pervin
    • 1
  • Rajan Singh
    • 2
    • 3
  • Suvajit Sen
    • 4
  • Gautam Chaudhuri
    • 4
  1. 1.Division of EndocrinologyCharles Drew School of Medicine and ScienceLos AngelesUSA
  2. 2.Department of Obstetrics and GynecologyDavid Geffen School of Medicine at UCLALos AngelesUSA
  3. 3.Internal MedicineCharles Drew University of Medicine and ScienceLos AngelesUSA
  4. 4.Department of Obstetrics and GynecologyDavid Geffen School of Medicine at UCLA, Jonsson Comprehensive Cancer CenterLos AngelesUSA

Personalised recommendations