(S,R)-3-Phenyl-4,5-dihydro-5-isoxazole acetic acid–Nitric Oxide (GIT-27NO) – New Dress for Nitric Oxide Mission

  • Sanja Mijatovic
  • Danijela Maksimovic-Ivanic
  • Marco Donia
  • Stanislava Stosic-Grujicic
  • Gianni Garotta
  • Yousef Al-Abed
  • Ferdinando Nicoletti
Part of the Cancer Drug Discovery and Development book series (CDD&D)


Nonsteroidal-anti-inflammatory drugs modified by covalent attachment of nitric oxide (NO) have been recognized as compounds with antitumor properties. By adopting this approach the new compound GIT-27NO was synthesized at GaNiAl Immunotherapeutics Inc. (Wilmington, Delaware, USA) on the basis of the anti-inflammatory isoxazoline derivative VGX-1027. In contrast to the usual modification, i.e., connection via a spacer molecule, GIT-27NO was generated by direct addition of a releasing NO moiety. Contrary to the parental compound which is completely inefficient as an antitumor drug, the modified compound acquired strong anticancer potential. The drug reduced the growth of various cell lines in vitro as well as some solid localized and even metastatic tumors in vivo. Decreased viability of tumor cells was caused by induction of different types of programmed cell death whereas accidental cell death was a secondary event. The outcome of the drug treatment was independent of the type of intracellular response, since the absence or inactivation of key executive mediators of apoptosis, like p53 or caspases, did not affect the death signal triggered by GIT-27NO. Furthermore, cells made resistant to apoptotic stimuli are sensitive to GIT-27NO as well. Although the drug efficacy is explicitly related to NO liberation, GIT-27NO did not function as a simple exogenous donor. Signal for NO release came from cells, and further events included the generation of ROS, RNS and subsequent nitration of tyrosine residues, caspase inhibition, or decreased activity of the YY1 repressor. The drug effect on the MAP signaling pathway was heterogeneous and defined by the cell specificity, the plasticity of the agent’s action, its high efficacy, and low toxicity and suggests that GIT-27NO is a candidate for anticancer drug of the future.


Cancer Cell death Nitric oxide MAP kinases GIT-27NO 



This work was supported by the Serbian Ministry of Science (Grant 143029).


  1. Abraham, M.C., and Shaham, S. (2004). Death without caspases, caspases without death. Trends Cell Biol. 14, 184–193.PubMedCrossRefGoogle Scholar
  2. Adams, C., McCarthy, H.O., Coulter, J.A., Worthington, J., Murphy, C., Robson, T., and Hirst, D.G. (2009). Nitric oxide synthase gene therapy enhances the toxicity of cisplatin in cancer cells. Gene Med. 2, 160–168.Google Scholar
  3. Arbabi, S., and Maier, R.V. (2002). Mitogen-activated protein kinases. Crit. Care Med. 30, 74–79.CrossRefGoogle Scholar
  4. Bak, A.W., McKnight, W., Li, P., Del Soldato, P., Calignano, A., Cirino, G., and Wallace, J.L. (1998). Cyclooxygenase-independent chemoprevention with an aspirin derivative in a rat model of colonic adenocarcinoma. Life Sci. 62, 367–373.CrossRefGoogle Scholar
  5. Bilir, A., Altinoz, M.A., Erkan, M., Ozmen, V., and Aydiner, A. (2001). Autophagy and nuclear changes in FM3A breast tumor cells after epirubicin, medroxyprogesterone and tamoxifen treatment in vitro. Pathobiology 69, 120–126.PubMedCrossRefGoogle Scholar
  6. Blaise, G.A., Gauvin, D., Gangal, M., and Authier, S. (2005). Nitric oxide, cell signaling and cell death. Toxicology 208, 177–192.PubMedCrossRefGoogle Scholar
  7. Bogdan, C. (2001). Nitric oxide and the regulation of gene expression. Trends Cell Biol. 11, 66–75.PubMedCrossRefGoogle Scholar
  8. Bonavida, B., Khineche, S., Huerta-Yepez, S., and Garban, H. (2006). Therapeutic potential of nitric oxide in cancer. Drug Resist. Updat. 9, 157–173.PubMedCrossRefGoogle Scholar
  9. Boutros, T., Chevet E., and Metrakos, P. (2008). Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol. Rev. 60(3), 261–310.PubMedCrossRefGoogle Scholar
  10. Bras, M., Queenan, B., and Susin, S.A. (2005). Programmed cell death via mitochondria: different modes of dying. Biochemistry (Mosc.) 70, 231–239.CrossRefGoogle Scholar
  11. Chan, T.A. (2002). Nonsteroidal anti-inflammatory drugs, apoptosis, and colon-cancer chemoprevention. Lancet Oncol. 3, 166–174.PubMedCrossRefGoogle Scholar
  12. Chan, T.A., Morin, P.J., Vogelstein, B., and Kinzler, K.W. (1998). Mechanisms underlying nonsteroidal anti-inflammatory drug-mediated apoptosis. Proc. Natl. Acad. Sci. USA 95, 681–686.PubMedCrossRefGoogle Scholar
  13. Davis, R.J. (2000). Signal transduction by the JNK group of MAP kinases. Cell 103, 239–252.PubMedCrossRefGoogle Scholar
  14. de Bruin, E.C., and Medema, J.P. (2008). Apoptosis and non-apoptotic deaths in cancer development and treatment response. Cancer Treat. Rev. 34(8), 737–749.PubMedCrossRefGoogle Scholar
  15. Ding, J.W., Wang, K., Brems, J.J., Gamelli, R.L. (2004). Protection against concanavalin A-induced hepatocyte apoptosis by molsidomine is time-dependent. J. Am. Coll. Surg. 198(1), 67–77.PubMedCrossRefGoogle Scholar
  16. Donia, M., Mijatovic, S., Maksimovic-Ivanic, D., Miljkovic, D., Mangano, K., Tumino, S., Biondi, A., Basile, F., Al-Abed ,Y., Stosic-Grujicic, S., and Nicoletti, F. (2009). The novel NO-donating compound GIT-27NO inhibits in vivo growth of human prostate cancer cells and prevents murine immunoinflammatory hepatitis. Eur. J. Pharmacol. 615, 228–233.Google Scholar
  17. Dube, C., Rostom, A., Lewin, G., Tsertsvadze, A., Barrowman, N., Code, C., Sampson, M., and Moher, D. (2007). The use of aspirin for primary prevention of colorectal cancer: a systematic review prepared for the U.S. Preventive Services Task Force. Ann. Intern. Med. 146, 365–375.PubMedGoogle Scholar
  18. Dunlap, T. (2008). Nitrates and NO–NSAIDs in cancer chemoprevention and therapy: in vitro evidence querying the NO donor functionality. Nitric Oxide 19, 115–124.PubMedCrossRefGoogle Scholar
  19. Fiers, W., Beyaert, R., Declercq, W., and Vandenabeele, P. (1999). More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18, 7719–7730.PubMedCrossRefGoogle Scholar
  20. Fink, S.L., and Cookson, B.T. (2005). Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 73, 1907–1916.PubMedCrossRefGoogle Scholar
  21. Fiorucci, S., Santucci, L., Antonelli, E., Distrutti, E., Del Sero, G., Morelli, O., Romani, L., Federici, B., Del Soldato, P., and Morelli, A. (2000). NO-aspirin protects from T cell-mediated liver injury by inhibiting caspase-dependent processing of Th1-like cytokines. Gastroenterology 118, 404–421.PubMedCrossRefGoogle Scholar
  22. Fu, X., Ji, R., and Dam, J. (2009). Acute, subacute toxicity and genotoxic effect of Bio-Quinone Q10 in mice and rats. Regul. Toxicol. Pharmacol. 53, 1–5.Google Scholar
  23. Fukumura, D., Kashiwagi, S., and Jain, R.K. (2006). The role of nitric oxide in tumour progression. Nat. Rev. Cancer 6, 521–534.PubMedCrossRefGoogle Scholar
  24. Gabriel, B., Sureau, F., Casselyn, M., Teissie, J., and Petit, P.X. (2003). Retroactivepathway involving mitochondria in electroloaded cytochrome c-induced apoptosis. Protective properties of Bcl-2 and Bcl-XL. Exp. Cell Res. 289, 195–210.Google Scholar
  25. Gao, J., Liu, X., and Rigas, B. (2005). Nitric oxide-donating aspirin induces apoptosisin human colon cancer cells through induction of oxidative stress. Proc. Natl. Acad. Sci. U S A 102, 17207–17212.PubMedCrossRefGoogle Scholar
  26. Garba’n, H.J., and Bonavida, B. (2001). Nitric oxide inhibits the transcription repressor Yin-Yang 1 binding activity at the silencer region of the Fas Promoter: a pivotal role for nitric oxide in the upregulation of fas geneexpression in human tumor cells. J. Immunol. 167, 75–81.Google Scholar
  27. Gordon, S., Akopyan, G., Garban, H., and Bonavida, B. (2006). Transcription factor YY1: structure, function, and therapeutic implications in cancer biology. Oncogene 25, 1125–1142.PubMedCrossRefGoogle Scholar
  28. Gorka, M., Daniewski, W.M., Gajkowska, B., Lusakowska, E., Godlewski, M.M., and Motyl, T. (2005). Autophagy is the dominant type of programmed cell death in breast cancer MCF-7 cells exposed to AGS 115 and EFDAC, new sesquiterpene analogs of paclitaxel. Anticancer Drugs 16, 777–788.PubMedCrossRefGoogle Scholar
  29. Gozuacik, D., and Kimchi, A. (2004). Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23, 2891–2906.PubMedCrossRefGoogle Scholar
  30. Grilli, M., Pizzi, M., Memo, M., and Spano, P. (1996). Neuroprotection by aspirin and sodium salicylate through blockade of NF-kappaB activation. Science 274, 1383–1385.PubMedCrossRefGoogle Scholar
  31. Handy, D.E., and Loscalzo, J. (2006). Nitric oxide and posttranslational modification of the vascular proteome: S-nitrosation of reactive thiols. Arterioscler. Thromb. Vasc. Biol. 26, 1207–1214.PubMedCrossRefGoogle Scholar
  32. Hasselblatt, P., Rath, M., Komnenovic, V., Zatloukal, K., and Wagner, E.F. (2007). Hepatocyte survival in acute hepatitis is due to c-Jun/AP-1-dependent expression of inducible nitric oxide synthase. Proc. Natl. Acad. Sci. USA. 23, 104(43), 17105–17110.CrossRefGoogle Scholar
  33. House, A.A., Silva Oliveira, S., and Ronco, C. (2007). Anti-inflammatory drugs and the kidney. Int. J. Artif. Organs. 30, 1042–1046.Google Scholar
  34. Huerta-Yepez, S., Vega, M., Escoto-Chavez, S.E., Murdock, B., Sakai, T., Baritaki, S., and Bonavida, B. (2009). Nitric oxide sensitizes tumor cells to TRAIL-induced apoptosis via inhibition of the DR5 transcription repressor Yin Yang 1. Nitric Oxide 20(1), 39–52.PubMedCrossRefGoogle Scholar
  35. Huguenin, S., Vacherot, F., Fleury-Feith, J., Riffaud, J.P., Chopin, D.K., Bolla, M., and Jaurand, M.C. (2005). Evaluation of the antitumoral potential of different nitric oxide-donating non-steroidal anti-inflammatory drugs (NO-NSAIDs) on human urological tumor cell lines. Cancer Lett. 218, 163–170.PubMedCrossRefGoogle Scholar
  36. Iyer, A.K., Azad, N., Wang, L., and Rojanasakul, Y. (2008). Role of S-nitrosylation in apoptosis resistance and carcinogenesis. Nitric Oxide 19, 146–151.PubMedCrossRefGoogle Scholar
  37. Jana N.R. (2008). NSAIDs and apoptosis. Cell Mol. Life Sci. 65(9), 1295–1301.PubMedCrossRefGoogle Scholar
  38. Kanzawa, T., Germano, I.M., Komata, T., Ito, H., Kondo, Y., and Kondo, S. (2004). Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 11, 448–457.PubMedCrossRefGoogle Scholar
  39. Kanzawa, T., Kondo, Y., Ito, H., Kondo, S., and Germano I. (2003). Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res. 63, 2103–2108.PubMedGoogle Scholar
  40. Kashfi, K., and Rigas, B. (2007). The mechanism of action of nitric oxide-donating aspirin. Biochem. Biophys. Res. Commun. 358, 1096–1101.PubMedCrossRefGoogle Scholar
  41. Kashfi, K., Ryan, Y., Qiao, L. L., Williams, J. L., Chen, J., Del Soldato, P., Traganos, F., and Rigas, B. (2002). Nitric oxide-donating nonsteroidal anti-inflammatory drugs inhibit the growth of various cultured human cancer cells: evidence of a tissue type-independent effect. J. Pharmacol. Exp. Ther. 303, 1273–1282.PubMedCrossRefGoogle Scholar
  42. Keeble, J.E., and Moore, P.K. (2002). Pharmacology and potential therapeutic applications of nitric oxide-releasing non-steroidal anti-inflammatory and related nitric oxide-donating drugs. Br. J. Pharmacol. 137, 295–310.PubMedCrossRefGoogle Scholar
  43. Kim, R., Emi, M., Tanabe, K., Murakami, S., Uchida, Y., and Arihiro, K. (2006). Regulation and interplay of apoptotic and non-apoptotic cell death. J. Pathol. 208, 319–326.PubMedCrossRefGoogle Scholar
  44. Kopp, E., and Ghosh, S. (1994). Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265, 956–959.PubMedCrossRefGoogle Scholar
  45. Krysko, D.V., Vanden Berghe, T., D’Herde, K., and Vandenabeele, P. (2008). Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 44, 205–221.PubMedCrossRefGoogle Scholar
  46. Lage, H. (2008). An overview of cancer multidrug resistance: a still unsolved problem. Cell Mol. Life Sci. 65, 3145–3167.PubMedCrossRefGoogle Scholar
  47. Lanas, A. (2008). Role of nitric oxide in the gastrointestinal tract. Arthritis Res. Ther. 10 Suppl 2:S4.PubMedCrossRefGoogle Scholar
  48. Laskin, J.D., Heck, D.E., Gardner, C.R., and Laskin, D.L. (2001). Prooxidant and antioxidant functions of nitric oxide in liver toxicity. Antioxid Redox Signal 3(2), 261–271.PubMedCrossRefGoogle Scholar
  49. Leon, L., Jeannin, J.F., and Bettaieb, A. (2008). Post-translational modifications induced by nitric oxide (NO): implication in cancer cells apoptosis. Nitric Oxide 19, 77–83.PubMedCrossRefGoogle Scholar
  50. Levine, B., and Yuan, J.J. (2005). Autophagy in cell death: an innocent convict? Clin. Invest. 115, 2679–2688.CrossRefGoogle Scholar
  51. Liedtke, C., Groger, N., Manns, M.P., and Trautwein, C. (2003). The human caspase-8 promoter sustains basal activity through SP1 and ETS-like transcription factors and can be up-regulated by a p53-dependent mechanism. J. Biol. Chem. 278, 27593–27604.PubMedCrossRefGoogle Scholar
  52. Lim, H.Y., Joo, H.J., Choi, J.H, Yi, J.W., Yang, M.S., Cho, D.Y., Kim, H.S., Nam, D.K., Lee, K.B., and Kim, H.C. (2000). Increased expression of cyclooxygenase-2 protein in human gastric carcinoma. Clin. Cancer Res. 6, 519–525.PubMedGoogle Scholar
  53. Liu, X., Zou, H., Slaughter, C., and Wang, X. (1997). DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175–184.PubMedCrossRefGoogle Scholar
  54. Maksimovic-Ivanic, D., Mijatovic, S., Harhaji, L., Miljkovic, D., Dabideen, D., Fan Cheng, K., Mangano, K., Malaponte, G., Al-Abed, Y., Libra, M., Garotta, G., Nicoletti, F., and Stosic-Grujicic, S. (2008). Anticancer properties of the novel nitric oxide-donating compound (S,R)-3-phenyl-4,5-dihydro-5-isoxazole acetic acid-nitric oxide in vitro and in vivo. Mol. Cancer Ther. 7, 510–520.PubMedCrossRefGoogle Scholar
  55. Mangano, K., Sardesai N.Y., Quattrocchi, C., Mazzon, E., Cuzzocrea, S., Bendtzen, K., Meroni, P.L., Kim J.J., and Nicoletti F. (2008a). Effects of the immunomodulator, VGX-1027, in endotoxin-induced uveitis in Lewis rats. Br. J. Pharmacol. 155, 722–730.PubMedCrossRefGoogle Scholar
  56. Mangano, K., Sardesai, N., D’Alcamo, M., Libra, M., Malaguarnera, L., Donia, M., Bendtzen, K., Meroni, P., and Nicoletti, F. (2008b). In vitro inhibition of enterobacteria-reactive CD4+CD25- T cells and suppression of immunoinflammatory colitis in mice by the novel immunomodulatory agent VGX-1027. Eur. J. Pharmacol. 586, 313–321.PubMedCrossRefGoogle Scholar
  57. Martínez-Ruiz, A., and Lamas, S. (2004). S-nitrosylation: a potential new paradigm in signal transduction. Cardiovasc. Res. 62, 43–52.PubMedCrossRefGoogle Scholar
  58. Mijatovic, S., Maksimovic-Ivanic, D., Mojic, M., Malaponte, G., Libra, M., Cardile, V., Miljkovic, D., Harhaji, L., Dabideen, D., Cheng, K.F., Bevelacqua, Y., Donia, M., Garotta, G., Al-Abed, Y., Stosic-Grujicic, S., and Nicoletti, F. (2008). Novel nitric oxide-donating compound (S,R)-3-phenyl-4,5-dihydro-5-isoxazole acetic acid-nitric oxide (GIT-27NO) induces p53 mediated apoptosis in human A375 melanoma cells. Nitric Oxide 19, 177–183.PubMedCrossRefGoogle Scholar
  59. Mijatovic, S., Maksimovic-Ivanic, D., Timotijevic, G., Miljkovic, D., Donia, M., Libra, M., Coco, M., McCubrey, J., Al-Abed, Y., Korac, A., Stosic-Grujicic, S., and Nicoletti, F. (2010). Induction of caspase-independent apoptotic-like cell death of mouse mammary tumor TA3Ha cells in vitro and reduction of their lethality in vivo by the novel chemotherapeutic agent GIT-27NO. Free Radic. Biol. Med. [Epub ahead of print]Google Scholar
  60. Mijatovic, S., Maksimovic-Ivanic, D., Radovic, J., Miljkovic, Dj., Harhaji, Lj., Vuckovic, O., Stosic-Grujicic, S., Mostarica Stojkovic, M., and Trajkovic, V. (2005). Anti-glioma action of aloe emodin: the role of ERK inhibition. Cell Mol. Life Sci. 62, 589–598.PubMedCrossRefGoogle Scholar
  61. Nadkar, A., Pungaliya, C., Drake, K., Zajac, E., Singhal, S.S., and Awasthi, S. (2006). Therapeutic resistance in lung cancer. Expert Opin. Drug Metab. Toxicol. 2, 753–777.PubMedCrossRefGoogle Scholar
  62. Okada, H., and Mak, T.W. (2004). Pathways of apoptotic and non-apoptotic death in tumour cells. Nat. Rev. Cancer 4, 592–603.PubMedCrossRefGoogle Scholar
  63. Oliveri, M., Daga, A., Cantoni, C., Lunardi, C., Millo, R., and Puccetti, A. (2001). DNase I mediates internucleosomal DNA degradation in human cells undergoing drug-induced apoptosis. Eur. J. Immunol. 31, 743–751.PubMedCrossRefGoogle Scholar
  64. Ouyang, N., Williams, J.L., Tsioulias, G.J., Gao, J., Iatropoulos, M. J., Kopelovich, L., Kashfi, K., and Rigas, B. (2006). Nitric oxide-donating aspirin prevents pancreatic cancer in a hamster tumor model. Cancer Res. 66, 4503–4511.PubMedCrossRefGoogle Scholar
  65. Paglin, S., Hollister, T., Delohery, T., Hacket, N., McMahill, M., Sphicas, E., Domingo, D., and Yahalom, J. (2001). A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res. 61, 439–444.PubMedGoogle Scholar
  66. Puntoni, M.D. Zanardi, M.S., and Decensi, A. (2008). Inflammation and cancer prevention. Ann. Oncol. 19(Suppl7), 225–229.Google Scholar
  67. Rigas, B., and Kashfi, K. (2004). Nitric-oxide-donating NSAIDs as agents for cancer prevention. Trends Mol. Med. 10, 324–330.PubMedCrossRefGoogle Scholar
  68. Rigas, B., and Williams, J.L. (2008). NO-donating NSAIDs and cancer: an overview with a note on whether NO is required for their action. Nitric Oxide 19, 199–204.PubMedCrossRefGoogle Scholar
  69. Roninson, I.B., Broude, E.V., and Chang, B.D. (2001). If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist. Updat. 4, 303–313.PubMedCrossRefGoogle Scholar
  70. Scartozzi, M., Galizia, E., Freddari, F., Berardi, R., Cellerino,R., and Cascinu, S. (2004). Molecular biology of sporadic gastric cancer: prognostic indicators and novel therapeutic approaches. Cancer Treat. Rev. 30, 451–459.PubMedCrossRefGoogle Scholar
  71. Scripture, C.D., and Figg, W.D. (2006). Drug interactions in cancer therapy. Nat. Rev. Cancer 6, 546–558.PubMedCrossRefGoogle Scholar
  72. Seger, R., and Krebs, E.G. (1995). The MAPK signaling cascade. FASEB J. 9, 726–735.PubMedGoogle Scholar
  73. Soydan, A.S., Gaffen, J.D., Weech, P.K., Tremblay, N.M., Kargman, S., O’Neill, G., Bennett, A., and Tavares, I.A. (1997). Cytosolic phospholipase A2, cyclo-oxygenases and arachidonate in human stomach tumours. Eur. J. Cancer 33, 1508–1512.PubMedCrossRefGoogle Scholar
  74. Stojanovic, I., Cuzzocrea, S., Mangano, K., Mazzon, E., Miljkovic, D., Wang, M., Donia, M., Al Abed, Y., Kim, J., Nicoletti, F., Stosic-Grujicic, S., and Claesson. M. (2007). In vitro, ex vivo and in vivo immunopharmacological activities of the isoxazoline compound VGX-1027: modulation of cytokine synthesis and prevention of both organ-specific and systemic autoimmune diseases in murine models. Clin. Immunol. 123, 311–323.PubMedCrossRefGoogle Scholar
  75. Stosic-Grujicic, S., Cvetkovic, I., Mangano, K., Fresta, M., Maksimovic-Ivanic, D., Harhaji, L., Popadic, D., Momcilovic, M., Miljkovic, D., Kim, J., Al-Abed, Y., and Nicoletti, F. (2007). A potent immunomodulatory compound, (S,R)-3-phenyl-4,5-dihydro-5-isoxazole acetic acid, prevents spontaneous and accelerated forms of autoimmune diabetes in NOD mice and inhibits the immunoinflammatory diabetes induced by multiple low doses of streptozotocin in CBA/H mice. J. Pharmacol. Exp. Ther. 320, 1038–1049.PubMedCrossRefGoogle Scholar
  76. Tuteja, N., Chandra, M., Tuteja, R., and Misra, M.K.J. (2004). Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology. Biomed. Biotechnol. 2004, 227–237.CrossRefGoogle Scholar
  77. Vega, M.I., Jazirehi, A.R., Huerta-Yepez, S., and Bonavida B. (2005). Rituximab-induced inhibition of YY1 and Bcl-xL expression in ramos non-Hodgkin’s lymphoma cell line via inhibition of NF-κB activity: role of YY1 and Bcl-xL in fas resistance and chemoresistance, respectively. J. Immunol. 175, 2174–2183.PubMedGoogle Scholar
  78. Vogel, V.G. (2000). Breast cancer prevention: a review of current evidence. C. A. Cancer J. Clin. 50, 156–170.CrossRefGoogle Scholar
  79. Wallace, J.L., and Vong, L. (2008). NSAID-induced gastrointestinal damage and the design of GI-sparing NSAIDs. Curr. Opin. Investig. Drugs 9(11), 1151–1156.PubMedGoogle Scholar
  80. Wang, S., Wang, W., Wesley, R.A., and Danner, R.L. (1999). A Sp1 binding site of the tumor necrosis factor alpha promoter functions as a nitric oxide response element. J. Biol. Chem. 274, 33190–33193.PubMedCrossRefGoogle Scholar
  81. Wang, W.H., Huang, J.Q., Zheng, G.F., Lam, S.K., Karlberg, J., and Wong, B.C. (2003). Non-steroidal anti-inflammatory drug use and the risk of gastric cancer: a systematic review and meta-analysis. J. Natl. Cancer Inst. 95, 1784–1791.PubMedCrossRefGoogle Scholar
  82. Wiseman, H., and Halliwell, B. (1996). Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem. J. 313, 17–29.PubMedGoogle Scholar
  83. Yin, M.J., Yamamoto, Y., and Gaynor, R.B. (1998). The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 396, 77–80.PubMedCrossRefGoogle Scholar
  84. Zhang, L., Chang, C.J., Bacus, S.S., and Hung, M.C. (1995). Suppressed transformation and induced differentiation of HER-2/neu-overexpressing breast cancer cells by emodin. Cancer Res. 55, 3890–3896.PubMedGoogle Scholar
  85. Zhivotovsky, B. (2004). Apoptosis, necrosis and between. Cell Cycle 3, 64–66.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  • Sanja Mijatovic
    • 1
  • Danijela Maksimovic-Ivanic
    • 1
  • Marco Donia
    • 2
  • Stanislava Stosic-Grujicic
    • 1
  • Gianni Garotta
    • 3
  • Yousef Al-Abed
    • 4
  • Ferdinando Nicoletti
    • 5
  1. 1.Department of Immunology, Institute for Biological Research “Sinisa Stankovic,”Belgrade UniversityBelgradeSerbia
  2. 2.Department of Biomedical SciencesUniversity of CataniaCataniaItaly
  3. 3.GaNiAl Immunotherapeutics Inc.WilmingtonUSA
  4. 4.Laboratory of Medicinal ChemistryNorth Shore Long Island Jewish Health SystemNew Hyde ParkUSA
  5. 5.Department of Biomedical SciencesUniversity of CataniaCataniaItaly

Personalised recommendations