Skip to main content

Nitric Oxide: Monotherapy or Sensitiser to Conventional Cancer Treatments?

  • Chapter
  • First Online:
  • 1047 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Nitric oxide is a small molecule with enormous untapped potential in cancer therapy. It is involved in regulating many of the pathways that define the malignant phenotype, and its expression within tumours has now been shown to affect the growth of tumours and their response to conventional therapies. NO has clear anticancer potential as a single agent in colon, liver and thyroid tumours growing as xenografts whether delivered by donor drugs or gene therapy. It is also showing promise, as a single agent in a clinical trial in prostate cancer. However, there is considerable evidence that NO alters the way that cells repair DNA damage, so it is not surprising that it has shown efficacy in combination with chemotherapy and radiotherapy. Significant enhancement has been reported in experimental models of human colon, prostate and ovarian cancer, and a clinical trial in lung cancer in combination with cisplatin and vinorelbine has shown an impressive prolongation of survival. NO has low toxicity to normal tissues and can easily be administered using donor agents, characteristics that make it well suited to cancer therapy in an adjuvant setting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams, C., McCarthy, H.O., Coulter, J.A., Worthington, J., Murphy, C., Robson, T., and Hirst, D.G. (2008). Nitric oxide synthase gene therapy enhances the toxicity of cisplatin in cancer cells. J. Gene Med. (Dec 8) (Epub ahead of print).

    Google Scholar 

  • Adams, D.J., Levesque, M.C., Weinberg, J.B., Smith, K.L., Flowers, J.L., Moore, J., Colvin, O.M., and Silber, R. (2001). Nitric oxide enhancement of fludarabine cytotoxicity for B-CLL lymphocytes. Leukemia: Official J. Leukemia Soc. Am. Leukemia Res. Fund, U.K 15(12), 1852–1859.

    Article  CAS  Google Scholar 

  • Aranda, M. and Pearl, R.G. (2000). Inhaled nitric oxide and pulmonary vasoreactivity. J. Clin. Monot. Comp. 16(5–6), 393–401.

    Article  CAS  Google Scholar 

  • Azizzadeh, B., Yip, H.T., Blackwell, K.E., Horvath, S., Calcaterra, T.C., Buga, G.M., Ignarro, L.J., and Wang, M.B. (2001). Nitric oxide improves cisplatin cytotoxicity in head and neck squamous cell carcinoma. The Laryngoscope 111(11 Pt 1), 1896–1900.

    Article  PubMed  CAS  Google Scholar 

  • Berge, D.L., Ridder, M.D., Verovski, V.N., Janssens, M.Y., Monsaert, C., and Storme, G.A. (2001). Chronic hypoxia modulates tumour cell radioresponse through cytokine-inducible nitric oxide synthase. Br. J. Cancer 84(8), 1122–1125.

    Article  PubMed  CAS  Google Scholar 

  • Berka, V., Yeh, H.C., Gao, D., Kiran, F., and Tsai, A.L. (2004). Redox function of tetrahydrobiopterin and effect of L-arginine on oxygen binding in endothelial nitric oxide synthase. Biochemistry 43(41), 13137–13148.

    Article  PubMed  CAS  Google Scholar 

  • Bonavida, B., Baritaki, S., Huerta-Yepez, S., Vega, M.I., Chatterjee, D., and Yeung, K. (2008). Novel therapeutic applications of nitric oxide donors in cancer: Roles in chemo- and immunosensitization to apoptosis and inhibition of metastases. Nitric Oxide: Biol. Chem. / Official J. Nitric Oxide Soc. 19(2), 152–157.

    Article  CAS  Google Scholar 

  • Bonavida, B., Khineche, S., Huerta-Yepez, S., and Garban, H. (2006). Therapeutic potential of nitric oxide in cancer. Drug Resistance Updates: Rev. Comment. Antimicrob. Anticanc. Chemother. 9(3), 157–173.

    CAS  Google Scholar 

  • Bratasz, A., Selvendiran, K., Wasowicz, T., Bobko, A., Khramtsov, V.V., Ignarro, L.J., and Kuppusamy, P. (2008). NCX-4040, a nitric oxide-releasing aspirin, sensitizes drug resistant human ovarian xenograft tumors to cisplatin by depletion of cellular thiols. J. Transl. Med. 26(6), 9.

    Article  Google Scholar 

  • Brown, J.M. (1982). The mechanisms of cytotoxicity and chemosensitization by misonidazole and other nitroimidazoles. Int. J. Radiat. Oncol. Biol. Phys. 8(3–4), 675–682.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J.M. (2007). Tumor hypoxia in cancer therapy. Methods in Enzymology 435, 297–321.

    Article  PubMed  CAS  Google Scholar 

  • Butler, A.R. and Russell, J.P. (2005). Vasodilators for biological research nitric oxide donors. In Wang, P.G., Cai, T.B., and Taniguchi, N. (eds) (pp. 203–231). Weihelm: Wiley-VCH.

    Google Scholar 

  • Chen, L., Zhang, Y., Kong, X., Lan, E., Huang, Z., Peng, S., Kaufman, D.L., and Tian, J. (2008). Design, synthesis, and antihepatocellular carcinoma activity of nitric oxide releasing derivatives of oleanolic acid. J. Med. Chem. 51(15), 4834–4838.

    Article  PubMed  CAS  Google Scholar 

  • Cook, J.A., Krishna, M.C., Pacelli, R., DeGraff, W., Liebmann, J., Mitchell, J.B., Russo, A., and Wink, D.A. (1997). Nitric oxide enhancement of melphalan-induced cytotoxicity. Br. J. Cancer 76(3), 325–334.

    Article  PubMed  CAS  Google Scholar 

  • Coulter, J.A., McCarthy, H.O., Worthington, J., Robson, T., Scott, S., and Hirst, D.G. (2008a). The radiation-inducible pE9 promoter driving inducible nitric oxide synthase radiosensitizes hypoxic tumour cells to radiation. Gene Ther. 15(7), 495–503.

    Article  PubMed  CAS  Google Scholar 

  • Coulter, J.A., McCarthy, H.O., Xiang, J., Roedl, W., Wagner, E., Robson, T., and Hirst, D.G. (2008b). Nitric oxide – A novel therapeutic for cancer. Nitric Oxide: Biology and Chemistry / Official Journal of the Nitric Oxide Society 19(2), 192–198.

    Article  CAS  Google Scholar 

  • Denekamp, J. (1989). Physiological hypoxia and its influence on radiotherapy. In The Biological Basis of Radiotherapy. In Steel, G.G., Adams, G.E., and Horwich, A. (eds.) (2nd edn.) Amsterdam: Elsevier Science.

    Google Scholar 

  • De Ridder, M, Verellen, D, Verovski, V, Storme, G. (2008). Hypoxic tumor cell radiosensitization through nitric oxide. Nitric Oxide 19(2), 164–169.

    Article  PubMed  Google Scholar 

  • Durand, R.E. and Biaglow, J.E. (1977). Radiosensitization of hypoxic cells of an in vitro tumor model by respiratory inhibitors. Radiat. Res. 69(2), 359–366.

    Article  PubMed  CAS  Google Scholar 

  • el-Deiry, W.S., Tokino, T., Velculescu, V.E., Levy, D.B., Parsons, R., Trent, J.M., Lin, D., Mercer, W.E., Kinzler, K.W., and Vogelstein, B. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75(4), 817–825.

    Article  PubMed  CAS  Google Scholar 

  • Evig, C.B., Kelley, E.E., Weydert, C.J., Chu, Y., Buettner, G.R., and Burns, C.P. (2004). Endogenous production and exogenous exposure to nitric oxide augment doxorubicin cytotoxicity for breast cancer cells but not cardiac myoblasts. Nitric Oxide: Biol. Chem. / Official J. Nitric Oxide Soc. 10(3), 119–129.

    Article  CAS  Google Scholar 

  • Frederiksen, L.J., Siemens, D.R., Heaton, J.P., Maxwell, L.R., Adams, M.A., and Graham, C.H. (2003). Hypoxia induced resistance to doxorubicin in prostate cancer cells is inhibited by low concentrations of glyceryl trinitrate. J. Urol. 170(3), 1003–1007.

    Article  PubMed  CAS  Google Scholar 

  • Frederiksen, L.J., Sullivan, R., Maxwell, L.R., Macdonald-Goodfellow, S.K., Adams, M.A., Bennett, B.M., Siemens, D.R., and Graham, C.H. (2007). Chemosensitization of cancer in vitro and in vivo by nitric oxide signaling. Clin. Canc. Res.: An Official J. Am. Asso. Canc. Res. 13(7), 2199–2206.

    Article  CAS  Google Scholar 

  • Frerart, F., Sonveaux, P., Rath, G., Smoos, A., Meqor, A., Charlier, N., Jordan, B.F. et al. (2008). The acidic tumor microenvironment promotes the reconversion of nitrite into nitric oxide: Towards a new and safe radiosensitizing strategy. Clin. Canc. Res.: An Official J. Am. Asso. Canc. Res. 14(9), 2768–2774.

    Article  CAS  Google Scholar 

  • Gao, Y.T., Roman, L.J., Martasek, P., Panda, S.P., Ishimura, Y., and Masters, B.S. (2007). Oxygen metabolism by endothelial nitric-oxide synthase. J. Biol. Chem. 282(39), 28557–28565.

    Article  PubMed  CAS  Google Scholar 

  • Gautier, C., van Faassen, E., Mikula, I., Martasek, P., and Slama-Schwok, A. (2006). Endothelial nitric oxide synthase reduces nitrite anions to NO under anoxia. Biochem. Biophys. Res. Commun. 341(3), 816–821.

    Article  PubMed  CAS  Google Scholar 

  • Gerweck, L.E. and Seetharaman, K. (1996). Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer. Cancer Res. 56(6), 1194–1198.

    PubMed  CAS  Google Scholar 

  • Gottesman, M.M., Fojo, T., and Bates, S.E. (2002). Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev.Cancer 2(1), 48–58.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, R.J., Makepeace, C.M., Hur, W.J., and Song, C.W. (1996). Radiosensitization of hypoxic tumor cells in vitro by nitric oxide. Int. J. Radiat. Oncol. Biol. Phys. 36(2), 377–383.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, J.T. and Lipp, H.P. (2003). Toxicity of platinum compounds. Expet. Opin. Pharmacother. 4(6), 889–901.

    Article  CAS  Google Scholar 

  • Heigold, S., Sers, C., Bechtel, W., Ivanovas, B., Schafer, R., and Bauer, G. (2002). Nitric oxide mediates apoptosis induction selectively in transformed fibroblasts compared to nontransformed fibroblasts. Carcinogenesis 23(6), 929–941.

    Article  PubMed  CAS  Google Scholar 

  • Hibbs, J.B., Jr., Taintor, R.R., Vavrin, Z., and Rachlin, E.M. (1988). Nitric oxide: A cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun. 157(1), 87–94.

    Article  PubMed  CAS  Google Scholar 

  • Hirst, D.G. and Robson, T. (2007). Nitrosative stress in cancer therapy. Front. Biosci. 12, 3406–3418.

    Article  PubMed  CAS  Google Scholar 

  • Howard-Flanders, P. (1957). Effect of nitric oxide on the radiosensitivity of bacteria. Nature 180(4596), 1191–1192.

    Article  PubMed  CAS  Google Scholar 

  • Huerta, S, Baay-Guzman, G, Gonzalez-Bonilla, C.R., Livingston, E.H., Huerta-Yepez, S., Bonavida, B. (2009). In vitro and in vivo sensitization of SW620 metastatic colon cancer cells to CDDP-induced apoptosis by the nitric oxide donor DETANONOate: Involvement of AIF. Nitric Oxide 20(3), 182–194.

    Google Scholar 

  • Irani, K., Xia, Y., Zweier, J.L., Sollott, S.J., Der, C.J., Fearon, E.R., Sundaresan, M., Finkel, T., and Goldschmidt-Clermont, P.J. (1997). Mitogenic signaling mediated by oxidants in ras-transformed fibroblasts. Science 275(5306), 1649–1652.

    Article  PubMed  CAS  Google Scholar 

  • Iyengar, R., Stuehr, D.J., and Marletta, M.A. (1987). Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: Precursors and role of the respiratory burst. Proc. Natl. Acad. Sci. U S A 84(18), 6369–6373.

    Article  PubMed  CAS  Google Scholar 

  • Janssens, M.Y., Van den Berge, D.L., Verovski, V.N., Monsaert, C., and Storme, G.A. (1998). Activation of inducible nitric oxide synthase results in nitric oxide-mediated radiosensitization of hypoxic EMT-6 tumor cells. Cancer Res. 58(24), 5646–5648.

    PubMed  CAS  Google Scholar 

  • Jordan, B.F., Gregoire, V., Demeure, R.J., Sonveaux, P., Feron, O., O’Hara, J., Vanhulle, V.P., Delzenne, N., and Gallez, B. (2002). Insulin increases the sensitivity of tumors to irradiation: Involvement of an increase in tumor oxygenation mediated by a nitric oxide-dependent decrease of the tumor cells oxygen consumption. Cancer Res. 62(12), 3555–3561.

    PubMed  CAS  Google Scholar 

  • Jung, I.D., Lee, J.S., Yun, S.Y., Park, C.G., Han, J.W., Lee, H.W., and Lee, H.Y. (2002). Doxorubicin inhibits the production of nitric oxide by colorectal cancer cells. Arch. Pharm. Res. 25(5), 691–696.

    Article  PubMed  CAS  Google Scholar 

  • Kashfi, K., Ryan, Y., Qiao, L.L., Williams, J.L., Chen, J., Del Soldato, P. et al. (2002). Nitric oxide-donating nonsteroidal anti-inflammatory drugs inhibit the growth of various cultured human cancer cells: evidence of a tissue type-independent effect. J. Pharmacol. Exp. Therapeut. 303(3), 1273–1282.

    Article  CAS  Google Scholar 

  • Kiziltepe, T., Hideshima, T., Ishitsuka, K., Ocio, E.M., Raje, N., Catley, L., Li, C.Q. et al. (2007). JS-K, a GST-activated nitric oxide generator, induces DNA double-strand breaks, activates DNA damage response pathways, and induces apoptosis in vitro and in vivo in human multiple myeloma cells. Blood 110(2), 709–18.

    Article  PubMed  CAS  Google Scholar 

  • Konovalova, N.P., Goncharova, S.A., Volkova, L.M., Rajewskaya, T.A., Eremenko, L.T., and Korolev, A.M. (2003). Nitric oxide donor increases the efficiency of cytostatic therapy and retards the development of drug resistance. Nitric Oxide: Biol. Chem. / Official J. Nitric Oxide Soc. 8(1), 59–64.

    Article  CAS  Google Scholar 

  • Kurimoto, M., Endo, S., Hirashima, Y., Hamada, H., Ogiichi, T., and Takaku, A. (1999). Growth inhibition and radiosensitization of cultured glioma cells by nitric oxide generating agents. J. NeuroOncol. 42(1), 35–44.

    Article  PubMed  CAS  Google Scholar 

  • Kursa, M., Walker, G.F., Roessler, V., Ogris, M., Roedl, W., Kircheis, R., and Wagner, E. (2003). Novel shielded transferrin-polyethylene glycol-polyethylenimine/DNA complexes for systemic tumor-targeted gene transfer. Bioconjugate Chem. 14(1), 222–231.

    Article  CAS  Google Scholar 

  • Lancaster, J.R., Jr. (1997). A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide: Biol. Chem. / Official J. Nitric Oxide Soc. 1(1), 18–30.

    Article  CAS  Google Scholar 

  • Laval, F. and Wink, D.A. (1994). Inhibition by nitric oxide of the repair protein, O6-methylguanine-DNA-methyltransferase. Carcinogenesis 15(3), 443–447.

    Article  PubMed  CAS  Google Scholar 

  • Lechner, M., Lirk, P., and Rieder, J. (2005). Inducible nitric oxide synthase (iNOS) in tumor biology: The two sides of the same coin. Sem. Canc. Biol. 15(4), 277–289.

    Article  CAS  Google Scholar 

  • Leonetti, C., Scarsella, M., Zupi, G., Zoli, W., Amadori, D., Medri, L., Fabbri, F. et al. (2006). Efficacy of a nitric oxide-releasing nonsteroidal anti-inflammatory drug and cytotoxic drugs in human colon cancer cell lines in vitro and xenografts. Mol. Canc. Therapeut. 5(4), 919–926.

    Article  CAS  Google Scholar 

  • Li, L.M., Kilbourn, R.G., Adams, J., and Fidler, I.J. (1991). Role of nitric oxide in lysis of tumor cells by cytokine-activated endothelial cells. Cancer Res. 51(10), 2531–2535.

    PubMed  CAS  Google Scholar 

  • Li, L.M., Nicolson, G.L., and Fidler, I.J. (1991). Direct in vitro lysis of metastatic tumor cells by cytokine-activated murine vascular endothelial cells. Cancer Res. 51(1), 245–254.

    PubMed  CAS  Google Scholar 

  • Maragos, C.M., Wang, J.M., Hrabie, J.A., Oppenheim, J.J., and Keefer, L.K. (1993). Nitric oxide/nucleophile complexes inhibit the in vitro proliferation of A375 melanoma cells via nitric oxide release. Cancer Res. 53(3), 564–568.

    PubMed  CAS  Google Scholar 

  • Matthews, N.E., Adams, M.A., Maxwell, L.R., Gofton, T.E., and Graham, C.H. (2001). Nitric oxide-mediated regulation of chemosensitivity in cancer cells. J. Natl. Canc. Inst. 93(24), 1879–1885.

    Article  CAS  Google Scholar 

  • McCarthy, H.O., Coulter, J.A., Robson, T., and Hirst, D.G. (2008). Gene therapy via inducible nitric oxide synthase: A tool for the treatment of a diverse range of pathological conditions. J. Pharm. Pharmacol. 60(8), 999–1017.

    Article  PubMed  CAS  Google Scholar 

  • McCormick, C.C., Li, W.P., and Calero, M. (2000). Oxygen tension limits nitric oxide synthesis by activated macrophages. Biochem. J. 350(Pt 3), 709–716.

    Article  PubMed  CAS  Google Scholar 

  • Miller, M.R. and Megson, I.L. (2007). Recent developments in nitric oxide donor drugs. Br. J. Pharmacol. 151(3), 305–321.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, J.B., Cook, J.A., Krishna, M.C., DeGraff, W., Gamson, J., Fisher, J., Christodoulou, D., and Wink, D.A. (1996). Radiation sensitisation by nitric oxide releasing agents. Br. J. Cancer. Supplement 27, S181–184.

    CAS  Google Scholar 

  • Mitchell, J.B., DeGraff, W., Kim, S., Cook, J.A., Gamson, J., Christodoulou, D., Feelisch, M., and Wink, D.A. (1998). Redox generation of nitric oxide to radiosensitize hypoxic cells. International J. Radiat. Oncol. Biol. Phys. 42(4), 795–798.

    Article  CAS  Google Scholar 

  • Mitchell, J.B., Wink, D.A., DeGraff, W., Gamson, J., Keefer, L.K., and Krishna, M.C. (1993). Hypoxic mammalian cell radiosensitization by nitric oxide. Cancer Res. 53(24), 5845–5848.

    PubMed  CAS  Google Scholar 

  • Mocellin, S., Bronte, V., and Nitti, D. (2007). Nitric oxide, a double edged sword in cancer biology: Searching for therapeutic opportunities. Med. Res. Rev. 27(3), 317–352.

    Article  PubMed  CAS  Google Scholar 

  • Munzel, T. (2008). Recent findings on nitrates: Their action, bioactivation and development of tolerance. Deutsche Medizinische Wochenschrift (1946) 133(44), 2277–2282.

    Article  CAS  Google Scholar 

  • Ovegaard, J. (2007). Hypoxic radiosensitization: Adored and ignored. J. Clin. Oncol. 10, 25(26), 4066–4074.

    Article  Google Scholar 

  • Pacher, P., Beckman, J.S., and Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87(1), 315–424.

    Article  PubMed  CAS  Google Scholar 

  • Postovit, L.M., Adams, M.A., Lash, G.E., Heaton, J.P., and Graham, C.H. (2004). Nitric oxide-mediated regulation of hypoxia-induced B16F10 melanoma metastasis. Int. J. Cancer. J. Int. Du Cancer 108(1), 47–53.

    CAS  Google Scholar 

  • Ren, Z., Kar, S., Wang, Z., Wang, M., Saavedra, J.E., and Carr, B.I. (2003). JS-K, a novel non-ionic diazeniumdiolate derivative, inhibits hep 3B hepatoma cell growth and induces c-jun phosphorylation via multiple MAP kinase pathways. J. Cell. Physiol. 197(3), 426–434.

    Article  PubMed  CAS  Google Scholar 

  • Riganti, C., Miraglia, E., Viarisio, D., Costamagna, C., Pescarmona, G., Ghigo, D., and Bosia, A. (2005). Nitric oxide reverts the resistance to doxorubicin in human colon cancer cells by inhibiting the drug efflux. Cancer Res. 65(2), 516–525.

    PubMed  CAS  Google Scholar 

  • Royle, J.S., Ross, J.A., Ansell, I., Bollina, P., Tulloch, D.N., and Habib, F.K. (2004). Nitric oxide donating nonsteroidal anti-inflammatory drugs induce apoptosis in human prostate cancer cell systems and human prostatic stroma via caspase-3. J. Urol. 172(1), 338–344.

    Article  PubMed  Google Scholar 

  • Santucci, L., Mencarelli, A., Renga, B., Pasut, G., Veronese, F., Zacheo, A., Germani, A., and Fiorucci, S. (2006). Nitric oxide modulates proapoptotic and antiapoptotic properties of chemotherapy agents: The case of NO-pegylated epirubicin. FASEB J.: Official Pub. Fed. Am. Soc. Exp. Biol. 20(6), 765–767.

    CAS  Google Scholar 

  • Seimens, D.R., Heaton, J., Adams, C., Graham, C. (2007). A phase I/II pilot trial of low-dose, sustained release GTN for prostate cancer patients with recurrence after primary therapy , Nitric Oxide 17, S15.

    Article  Google Scholar 

  • Shami, P.J., Sauls, D.L., and Weinberg, J.B. (1998). Schedule and concentration-dependent induction of apoptosis in leukemia cells by nitric oxide. Leukemia: Official J. Leukemia Soc. Am., Leukemia Res. Fund, U.K 12(9), 1461–1466.

    Article  CAS  Google Scholar 

  • Simeone, A.M., McMurtry, V., Nieves-Alicea, R., Saavedra, J.E., Keefer, L.K., Johnson, M.M., and Tari, A.M. (2008). TIMP-2 mediates the anti-invasive effects of the nitric oxide-releasing prodrug JS-K in breast cancer cells. Breast Cancer Res.: BCR 10(3) R44.

    Article  PubMed  Google Scholar 

  • Soler, M.N., Bobe, P., Benihoud, K., Lemaire, G., Roos, B.A., and Lausson, S. (2000). Gene therapy of rat medullary thyroid cancer by naked nitric oxide synthase II DNA injection. J. Gene Med. 2(5), 344–352.

    Article  PubMed  CAS  Google Scholar 

  • Stuehr, D.J. and Nathan, C.F. (1989). Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J.Exp. Med. 169(5), 1543–1555.

    Article  PubMed  CAS  Google Scholar 

  • Tesei, A., Ulivi, P., Fabbri, F., Rosetti, M., Leonetti, C., Scarsella, M., Zupi, G., Amadori, D., Bolla, M., and Zoli, W. (2005). In vitro and in vivo evaluation of NCX 4040 cytotoxic activity in human colon cancer cell lines. J. Transl. Med. 3(1), 7.

    Article  PubMed  Google Scholar 

  • Thatcher, G.R., Nicolescu, A.C., Bennett, B.M., and Toader, V. (2004). Nitrates and NO release: Contemporary aspects in biological and medicinal chemistry. Free Rad. Biol. Med. 37(8), 1122–1143.

    Article  PubMed  CAS  Google Scholar 

  • Vanin, A.F., Bevers, L.M., Slama-Schwok, A., and van Faassen, E.E. (2007). Nitric oxide synthase reduces nitrite to NO under anoxia. Cell. Mol. Life Sci.: CMLS 64(1), 96–103.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Zalcenstein, A., and Oren, M. (2003). Nitric oxide promotes p53 nuclear retention and sensitizes neuroblastoma cells to apoptosis by ionizing radiation. Cell Death Differ. 10(4), 468–476.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z., Cook, T., Alber, S., Liu, K., Kovesdi, I., Watkins, S.K., Vodovotz, Y., Billiar, T.R., and Blumberg., D. (2004). Adenoviral gene transfer of the human inducible nitric oxide synthase gene enhances the radiation response of human colorectal cancer associated with alterations in tumor vascularity. Cancer Res. 64(4), 1386–1395.

    Article  PubMed  CAS  Google Scholar 

  • Wardman, P. (2007a). Chemical radiosensitizers for use in radiotherapy. Clin. Oncol. (Royal College of Radiologists (Great Britain)) 19(6), 397–417.

    Article  CAS  Google Scholar 

  • Wardman, P. (2007b). Chemical radiosensitizers for use in radiotherapy. Clin Oncol (R Coll Radiol) 19(6), 397–417.

    Google Scholar 

  • Wardman, P., Rothkamm, K., Folkes, L.K., Woodcock, M., and Johnston, P.J. (2007). Radiosensitization by nitric oxide at low radiation doses. Radiat. Res. 167(4), 475–484.

    Article  PubMed  CAS  Google Scholar 

  • Williams, J.L., Borgo, S., Hasan, I., Castillo, E., Traganos, F., and Rigas, B. (2001). Nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NSAIDs) alter the kinetics of human colon cancer cell lines more effectively than traditional NSAIDs: Implications for colon cancer chemoprevention. Cancer Res. 61(8), 3285–3289.

    PubMed  CAS  Google Scholar 

  • Wink, D.A., Cook, J.A., Christodoulou, D., Krishna, M.C., Pacelli, R., Kim, S., DeGraff, W. et al. (1997). Nitric oxide and some nitric oxide donor compounds enhance the cytotoxicity of cisplatin. Nitric Oxide: Biol. Chem. / Official J. Nitric Oxide Soc. 1(1), 88–94.

    Article  CAS  Google Scholar 

  • Wink, D.A., Kasprzak, K.S., Maragos, C.M., Elespuru, R.K., Misra, M., Dunams, T.M., Cebula, T.A., Koch, W.H., Andrews, A.W., and Allen, J.S. (1991). DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254(5034), 1001–1003.

    Article  PubMed  CAS  Google Scholar 

  • Worthington, J., Robson, T., Murray, M., O’Rourke, M., Keilty, G., and Hirst, D.G. (2000). Modification of vascular tone using iNOS under the control of a radiation-inducible promoter. Gene Ther. 7(13), 1126–1131.

    Article  PubMed  CAS  Google Scholar 

  • Worthington, J., Robson, T., O’Keeffe, M., and Hirst, D.G. (2002). Tumour cell radiosensitization using constitutive (CMV) and radiation inducible (WAF1) promoters to drive the iNOS gene: A novel suicide gene therapy. Gene Ther. 9(4), 263–269.

    Article  PubMed  CAS  Google Scholar 

  • Worthington, J., Robson, T., Scott, S., and Hirst, D. (2005). Evaluation of a synthetic CArG promoter for nitric oxide synthase gene therapy of cancer. Gene Ther. 12(19), 1417–1423.

    Article  PubMed  CAS  Google Scholar 

  • Yasuda, H., Nakayama, K., Watanabe, M., Suzuki, S., Fuji, H., Okinaga, S., Kanda, A. et al. (2006b). Nitroglycerin treatment may enhance chemosensitivity to docetaxel and carboplatin in patients with lung adenocarcinoma. Clin. Cancer Res.: An Official J. Am. Asso. Cancer Res. 12(22), 6748–6757.

    Article  CAS  Google Scholar 

  • Yasuda, H., Yamaya, M., Nakayama, K., Sasaki, T., Ebihara, S., Kanda, A., Asada, M. et al. (2006a). Randomized phase II trial comparing nitroglycerin plus vinorelbine and cisplatin with vinorelbine and cisplatin alone in previously untreated stage IIIB/IV non-small-cell lung cancer. J. Clin. Oncol.: Official J. Am. Soc. Clin. Oncol. 24(4), 688–694.

    Article  CAS  Google Scholar 

  • Zhang, Z., Naughton, D., Winyard, P.G., Benjamin, N., Blake, D.R., and Symons, M.C. (1998). Generation of nitric oxide by a nitrite reductase activity of xanthine oxidase: A potential pathway for nitric oxide formation in the absence of nitric oxide synthase activity. Biochem. Biophy. Res. Commun. 249(3), 767–772.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Hirst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Hirst, D.G., Robson, T. (2010). Nitric Oxide: Monotherapy or Sensitiser to Conventional Cancer Treatments?. In: Bonavida, B. (eds) Nitric Oxide (NO) and Cancer. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1432-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1432-3_21

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1431-6

  • Online ISBN: 978-1-4419-1432-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics