Skip to main content

A Role for eNOS in Oncogenic Ras-Driven Cancer

  • Chapter
  • First Online:
Nitric Oxide (NO) and Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1066 Accesses

Abstract

Nitric oxide (NO) is a highly diffusible gas that is generated by the family of nitric oxide synthases and is increasingly associated with tumorigenesis. While both pro- and anti-tumorigenic properties have been ascribed to NO signaling, recent evidence suggests that eNOS or endothelial nitric oxide synthase promotes tumor formation through its effects on proliferation, cell survival, and angiogenesis. In this chapter we discuss recent evidence that eNOS promotes tumorigenic growth through the activation of the Ras family of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Soud, H.M., Yoho, L.L., and Stuehr, D.J. (1994). Calmodulin controls neuronal nitric-oxide synthase by a dual mechanism. Activation of intra- and interdomain electron transfer. J. Biol. Chem. 269(51), 32047–32050.

    CAS  Google Scholar 

  • Alderton, W.K., Cooper, C.E., and Knowles, R.G. (2001). Nitric oxide synthases: Structure, function and inhibition. Biochem. J. 357(Pt 3), 593–615.

    Article  PubMed  CAS  Google Scholar 

  • Balmain, A., Ramsden, M. Bowden, G.T., and Smith, J. (1984). Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas. Nature 307(5952), 658–660.

    Article  PubMed  CAS  Google Scholar 

  • Bos, J.L. (1989). Ras oncogenes in human cancer: A review. Cancer Res. 49(17), 4682–4689.

    PubMed  CAS  Google Scholar 

  • Bredt, D.S. and Snyder, S.H. (1990). Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. USA 87(2), 682–685.

    Article  PubMed  CAS  Google Scholar 

  • Brenman, J.E., Chao, D.S., Gee, S.H., McGee, A.W., Craven, S.E., Santillano, D.R., Wu, Z., Huang, F., Xia, H., Peters, M.F., Froehner, S.C., and Bredt, D.S. (1996). Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84(5), 757–767.

    Article  PubMed  CAS  Google Scholar 

  • Broholm, H., Braendstrup, O., and Lauritzen, M. (2001). Nitric oxide synthase expression of oligodendrogliomas. Clin. Neuropathol. 20(6), 233–238.

    PubMed  CAS  Google Scholar 

  • Broholm, H., Rubin, I., Kruse, A., Braendstrup, O., Schmidt, K., Skriver, E.B.., and Lauritzen, M. (2003). Nitric oxide synthase expression and enzymatic activity in human brain tumors. Clin. Neuropathol. 22(6), 273–281.

    PubMed  CAS  Google Scholar 

  • Campbell, P.M. and Der, C.J. (2004). Oncogenic Ras and its role in tumor cell invasion and metastasis. Semin. Cancer Biol. 14(2), 105–114.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z.P., Mitchelhill, K.I., Michell, B.J., Stapleton, D., Rodriguez-Crespo, I., Witters, L.A., Power, D.A., Ortiz de Montellano, P.R., and Kemp, B.E. (1999). AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett. 443(3), 285–289.

    Article  PubMed  CAS  Google Scholar 

  • Clavreul, N., Bachschmid, M.M., Hou, X., Shi, C., Idrizovic, A., Ido, Y., Pimentel, D., and Cohen, R.A. (2006). S-glutathiolation of p21ras by peroxynitrite mediates endothelial insulin resistance caused by oxidized low-density lipoprotein. Arterioscler., Thromb. Vasc. Biol. 26(11), 2454–2461.

    Article  CAS  Google Scholar 

  • Cobbs, C.S., Brenman, J.E., Aldape, K.D., Bredt, D.S., and Israel, M.A. (1995). Expression of nitric oxide synthase in human central nervous system tumors. Cancer Res. 55(4), 727–730.

    PubMed  CAS  Google Scholar 

  • Colasanti, M., Cavalieri, E., Persichini, T., Mollace, V., Mariotto, S., Suzuki, H., and Lauro, G.M. (1997). Bacterial lipopolysaccharide plus interferon-gamma elicit a very fast inhibition of a Ca2+-dependent nitric-oxide synthase activity in human astrocytoma cells. J. Biol. Chem. 272(12), 7582–7585.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, C.E., Patel, R.P., Brookes, P.S., and Darley-Usmar, V.M. (2002). Nanotransducers in cellular redox signaling: modification of thiols by reactive oxygen and nitrogen species. Trends Biochem. Sci. 27(10), 489–492.

    Article  PubMed  CAS  Google Scholar 

  • Davis, K.L., Martin, E., Turko, I.V., and Murad, F. (2001). Novel effects of nitric oxide. Annu. Rev. Pharmacol. Toxicol. 41, 203–236.

    Article  PubMed  CAS  Google Scholar 

  • Denninger, J.W. and Marletta, M.A. (1999). Guanylate cyclase and the .NO/cGMP signaling pathway. Biochim. Biophys. Acta 1411(2–3), 334–350.

    PubMed  CAS  Google Scholar 

  • Dimmeler, S., Fleming, I., Fisslthaler, B., Hermann, C., Busse, R., and Zeiher, A.M. (1999). Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399(6736), 601–605.

    Article  PubMed  CAS  Google Scholar 

  • Dodd, F., Limoges, M., Boudreau, R.T., Rowden, G., Murphy, P.R., and Too, C.K. (2000). L-arginine inhibits apoptosis via a NO-dependent mechanism in Nb2 lymphoma cells. J. Cell Biochem. 77(4), 624–634.

    Article  PubMed  CAS  Google Scholar 

  • Doi, C., Noguchi, Y., Marat, D., Saito, A., Fukuzawa, K., Yoshikawa, T., Tsuburaya, A., and Ito, T. (1999). Expression of nitric oxide synthase in gastric cancer. Cancer Lett. 144(2), 161–167.

    Article  PubMed  CAS  Google Scholar 

  • Duda, D.G., Fukumura, D., and Jain, R.K. (2004). Role of eNOS in neovascularization: NO for endothelial progenitor cells. Trends Mol. Med. 10(4), 143–145.

    Article  PubMed  CAS  Google Scholar 

  • Eng, C. 2003. PTEN: one gene, many syndromes. Hum. Mutat. 22(3), 183–198.

    Article  PubMed  CAS  Google Scholar 

  • Engelman, J.A., Luo, J., and Cantley, L.C. (2006). The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 7(8), 606–619.

    Article  PubMed  CAS  Google Scholar 

  • Fukumura, D., Gohongi, T., Kadambi, A., Izumi, Y., Ang, J., Yun, C.O., Buerk, D.G., Huang, P.L., and Jain, R.K. (2001). Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc. Natl. Acad. Sci. U S A 98(5), 2604–2609.

    Article  PubMed  CAS  Google Scholar 

  • Fukumura, D., Kashiwagi, S., and Jain, R.K. (2006). The role of nitric oxide in tumour progression. Nat. Rev. Cancer 6(7), 521–534.

    Article  PubMed  CAS  Google Scholar 

  • Fulton, D., Babbitt, R., Zoellner, S., Fontana, J., Acevedo, L., McCabe, T.J., Iwakiri, Y., and Sessa, W.C. (2004). Targeting of endothelial nitric-oxide synthase to the cytoplasmic face of the Golgi complex or plasma membrane regulates Akt- versus calcium-dependent mechanisms for nitric oxide release. J. Biol. Chem. 279(29): 30349–57.

    Article  PubMed  CAS  Google Scholar 

  • Fulton, D., Fontana, J., Sowa, G., Gratton, J.P., Lin, M., Li, K.X., Michell, B., Kemp, B.E., Rodman, D., and Sessa, W.C. (2002). Localization of endothelial nitric-oxide synthase phosphorylated on serine 1179 and nitric oxide in Golgi and plasma membrane defines the existence of two pools of active enzyme. J. Biol. Chem. 277(6), 4277–4284.

    Article  PubMed  CAS  Google Scholar 

  • Fulton, D., Gratton, J.P., McCabe, T.J., Fontana, J., Fujio, Y., Walsh, K., Franke, T.F., Papapetropoulos, A., and Sessa, W.C. (1999). Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399(6736), 597–601.

    Article  PubMed  CAS  Google Scholar 

  • Gachhui, R., Abu-Soud, H.M., Ghosha, D.K., Presta, A., Blazing, M.A., Mayer, B., George, S.E., and Stuehr, D.J. (1998). Neuronal nitric-oxide synthase interaction with calmodulin-troponin C chimeras. J. Biol. Chem. 273(10), 5451–5454.

    Article  PubMed  CAS  Google Scholar 

  • Gachhui, R., Presta, A., Bentley, D.F., Abu-Soud, H.M., McArthur, R., Brudvig, G., Ghosh, D.K., and Stuehr, D.J. (1996). Characterization of the reductase domain of rat neuronal nitric oxide synthase generated in the methylotrophic yeast Pichia pastoris. Calmodulin response is complete within the reductase domain itself. J. Biol. Chem. 271(34), 20594–20602.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, E., Kou, R., Lin, A.J., Golan, D.E., and Michel, T. (2002). Subcellular targeting and agonist-induced site-specific phosphorylation of endothelial nitric-oxide synthase. J. Biol. Chem. 277(42), 39554–39560.

    Article  PubMed  CAS  Google Scholar 

  • Gratton, J.P., Lin, M.I., Yu, J., Weiss, E.D., Jiang, Z.L., Fairchild, T.A., Iwakiri, Y., Groszmann, R., Claffey, K.P., Cheng, Y.C., and Sessa, W.C. (2003). Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell 4(1), 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, W.C., Counter, C.M., Lundberg, A.S., Beijersbergen, R.L., Brooks, M.W., and Weinberg, R.A. (1999). Creation of human tumour cells with defined genetic elements. Nature 400(6743), 464–468.

    Article  PubMed  CAS  Google Scholar 

  • Hamad, N.M., Elconin, J.H., Karnoub, A.E., Bai, W., Rich, J.N., Abraham, R.T., Der, C.J., and Counter, C.M. (2002). Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev. 16(16), 2045–2057.

    Article  PubMed  CAS  Google Scholar 

  • Hennessy, B.T., Smith, D.L., Ram, P.T., Lu, Y., and Mills, G.B. (2005). Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov. 4(12), 988–1004.

    Article  PubMed  CAS  Google Scholar 

  • Hess, D.T., Matsumoto, A., Kim, S.O., Marshall, H.E., and Stamler, J.S. (2005). Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell Biol. 6(2), 150–166.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, T., Yoshinaga, K., Suzuki, A., Sakurada, A., Ohmori, H., and Horii, A. (2000). Anticorresponding mutations of the KRAS and PTEN genes in human endometrial cancer. Oncol. Rep. 7(3), 567–570.

    PubMed  CAS  Google Scholar 

  • Iversen, O.H. 1991. The skin tumorigenic and carcinogenic effects of different doses, numbers of dose fractions and concentrations of 7,12-dimethylbenz[a]anthracene in acetone applied on hairless mouse epidermis. Possible implications for human carcinogenesis. Carcinogenesis 12(3), 493–502.

    Article  PubMed  CAS  Google Scholar 

  • Iwata, S., Nakagawa, K., Harada, H., Oka, Y., Kumon, Y., and Sakaki, S. (1999). Endothelial nitric oxide synthase expression in tumor vasculature is correlated with malignancy in human supratentorial astrocytic tumors. Neurosurg. 45(1), 24–28; discussion 29.

    Article  CAS  Google Scholar 

  • Jaffrey, S.R. and Snyder, S.H. (2001). The biotin switch method for the detection of S-nitrosylated proteins. Sci. STKE 2001(86), PL1.

    Article  Google Scholar 

  • Ji, Y., Akerboom, T.P., Sies, H., and Thomas, J.A. (1999). S-nitrosylation and S-glutathiolation of protein sulfhydryls by S-nitroso glutathione. Arch. Biochem. Biophys. 362(1), 67–78.

    Article  PubMed  CAS  Google Scholar 

  • Jones, M.K., Tsugawa, K., Tarnawski, A.S., and Baatar, D. (2004). Dual actions of nitric oxide on angiogenesis: possible roles of PKC, ERK, and AP-1. Biochem. Biophys. Res. Commun. 318(2), 520–528.

    Article  PubMed  CAS  Google Scholar 

  • Karakas, B., Bachman, K.E., and Park, B.H., (2006). Mutation of the PIK3CA oncogene in human cancers. Br. J. Cancer 94(4), 455–459.

    Article  PubMed  CAS  Google Scholar 

  • Kashiwagi, S., Izumi, Y., Gohongi, T., Demou, Z.N., Xu, L., Huang, P.L., Buerk, D.G., Munn, L.L., Jain, R.K., and Fukumura, D. (2005). NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels. J. Clin. Invest. 115(7), 1816–1827.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki, K., Smith, Jr., R.S., Hsieh, C.M., Sun, J., Chao, J., and Liao, J.K. (2003). Activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway mediates nitric oxide-induced endothelial cell migration and angiogenesis. Mol. Cell Biol. 23(16), 5726–5737.

    Article  PubMed  CAS  Google Scholar 

  • Kemp, C.J., Burns, P.A., Brown, K., Nagase, H., and Balmain, A. (1994). Transgenic approaches to the analysis of ras and p53 function in multistage carcinogenesis. Cold Spring Harb. Symp. Quant. Biol. 59, 427–434.

    Article  PubMed  CAS  Google Scholar 

  • Kiss, H., Schneeberger, C., Tschugguel, W., Lass, H., Huber, J.C., Husslein, P., and Knofler, M. (1998). Expression of endothelial (type III) nitric oxide synthase in cytotrophoblastic cell lines: regulation by hypoxia and inflammatory cytokines. Placenta 19(8), 603–611.

    Article  PubMed  CAS  Google Scholar 

  • Klotz, T., Bloch, W., Jacobs, G., Niggemann, S., Engelmann, U., and Addicks, K. (1999). Immunolocalization of inducible and constitutive nitric oxide synthases in human bladder cancer. Urology 54(3), 416–419.

    Article  PubMed  CAS  Google Scholar 

  • Knowles, R.G. and Moncada, S. (1994). Nitric oxide synthases in mammals. Biochem. J. 298( Pt 2), 249–258.

    PubMed  CAS  Google Scholar 

  • Kruse, A., Broholm, H., Rubin, I., Schmidt, K., and Lauritzen, M., (2002). Nitric oxide synthase activity in human pituitary adenomas. Acta Neurol. Scand. 106(6), 361–366.

    Article  PubMed  CAS  Google Scholar 

  • Lander, H.M., Hajjar, D.P., Hempstead, B.L., Mirza, U.A., Chait, B.T., Campbell, S., and Quilliam, L.A. (1997). A molecular redox switch on p21(ras). Structural basis for the nitric oxide-p21(ras) interaction. J. Biol. Chem. 272(7), 4323–4326.

    Article  PubMed  CAS  Google Scholar 

  • Lander, H.M., Milbank, A.J., Tauras, J.M., Hajjar, D.P., Hempstead, B.L., Schwartz, G.D., Kraemer, R.T., Mirza, U.A., Chait, B.T., Burk, S.C., and Quilliam, L.A. (1996). Redox regulation of cell signalling. Nature 381(6581), 380–381.

    Article  PubMed  CAS  Google Scholar 

  • Lechner, M., Lirk, P., and Rieder, J. (2005). Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin. Cancer Biol. 15(4), 277–289.

    Article  PubMed  CAS  Google Scholar 

  • Lim, K.H., Ancrile, B.B., Kashatus, D.F., and Counter, C.M. (2008). Tumour maintenance is mediated by eNOS. Nature 452(7187), 646–649.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Z., Chen, S., Ye, C., and Zhu, S. (2003). Nitric oxide synthase expression in human bladder cancer and its relation to angiogenesis. Urol. Res. 31(4), 232–235.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J., Garcia-Cardena, G., and Sessa, W.C. (1995). Biosynthesis and palmitoylation of endothelial nitric oxide synthase: mutagenesis of palmitoylation sites, cysteines-15 and/or -26, argues against depalmitoylation-induced translocation of the enzyme. Biochemistry 34(38), 12333–12340.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J., Hughes, T.E., and Sessa, W.C. (1997). The first 35 amino acids and fatty acylation sites determine the molecular targeting of endothelial nitric oxide synthase into the Golgi region of cells: a green fluorescent protein study. J. Cell Biol. 137(7), 1525–1535.

    Article  PubMed  CAS  Google Scholar 

  • Loibl, S., von Minckwitz, G., Weber, S., Sinn, H.P., Schini-Kerth, V.B., Lobysheva, I., Nepveu, F., Wolf, G., Strebhardt, K., and Kaufmann, M. (2002). Expression of endothelial and inducible nitric oxide synthase in benign and malignant lesions of the breast and measurement of nitric oxide using electron paramagnetic resonance spectroscopy. Cancer 95(6), 1191–1198.

    Article  PubMed  CAS  Google Scholar 

  • Luo, J., Manning, B.D., and Cantley, L.C. (2003). Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4(4), 257–262.

    Article  PubMed  CAS  Google Scholar 

  • Mannick, J.B., Schonhoff, C., Papeta, N., Ghafourifar, P., Szibor, M., Fang, K., and Gaston, B. (2001). S-Nitrosylation of mitochondrial caspases. J. Cell Biol. 154(6), 1111–1116.

    Article  PubMed  CAS  Google Scholar 

  • Mao, J.H., To, M.D., Perez-Losada, J., Wu, D., Del Rosario, R., and Balmain, A. (2004). Mutually exclusive mutations of the Pten and ras pathways in skin tumor progression. Genes Dev. 18(15), 1800–1805.

    Article  PubMed  CAS  Google Scholar 

  • Martin, J.H., Begum, S., Alalami, O., Harrison, A., and Scott, K.W. (2000). Endothelial nitric oxide synthase: correlation with histologic grade, lymph node status and estrogen receptor expression in human breast cancer. Tumour Biol. 21(2), 90–97.

    Article  PubMed  CAS  Google Scholar 

  • McCabe, T.J., Fulton, D., Roman, L.J., and Sessa, W.C. (2000). Enhanced electron flux and reduced calmodulin dissociation may explain “calcium-independent” eNOS activation by phosphorylation. J. Biol. Chem. 275(9), 6123–6128.

    Article  PubMed  CAS  Google Scholar 

  • Michel, T. (1999). Targeting and translocation of endothelial nitric oxide synthase. Braz. J. Med. Biol. Res. 32(11), 1361–1366.

    Article  PubMed  CAS  Google Scholar 

  • Michell, B.J., Griffiths, J.E., Mitchelhill, K.I., Rodriguez-Crespo, I., Tiganis, T., Bozinovski, S., de Montellano, P.R., Kemp, B.E., and Pearson, R.B. (1999). The Akt kinase signals directly to endothelial nitric oxide synthase. Curr. Biol. 9, 845–848.

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi, M., Nutt, C.L., Mohapatra, G., and Louis, D.N. (2004). Genetic alterations of phosphoinositide 3-kinase subunit genes in human glioblastomas. Brain Pathol. 14(4), 372–377.

    Article  PubMed  CAS  Google Scholar 

  • Mortensen, K., Holck, S., Christensen, I.J., Skouv, J., Hougaard, D.M., Blom, J., and Larsson, L.I. (1999a). Endothelial cell nitric oxide synthase in peritumoral microvessels is a favorable prognostic indicator in premenopausal breast cancer patients. Clin. Cancer Res. 5(5), 1093–1097.

    PubMed  CAS  Google Scholar 

  • Mortensen, K.,Skouv, J., Hougaard, D.M., and Larsson, L.I. (1999b). Endogenous endothelial cell nitric-oxide synthase modulates apoptosis in cultured breast cancer cells and is transcriptionally regulated by p53. J. Biol. Chem. 274(53), 37679–37684.

    Article  PubMed  CAS  Google Scholar 

  • Murohara, T., Asahara, T., Silver, M., Bauters, C., Masuda, H., Kalka, C., Kearney, M., Chen, D., Symes, J.F., Fishman, M.C., Huang, P.L., and Isner, J.M. (1998). Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J. Clin. Invest. 101(11), 2567–2578.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, P.R., Limoges, M., Dodd, F., Boudreau, R.T., and Too, C.K. (2001). Fibroblast growth factor-2 stimulates endothelial nitric oxide synthase expression and inhibits apoptosis by a nitric oxide-dependent pathway in Nb2 lymphoma cells. Endocrinology 142(1), 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Namkoong, S., Lee, S.J., Kim, C.K., Kim, Y.M., Chung, H.T., Lee, H., Han, J.A., Ha, K.S., and Kwon, Y.G. (2005). Prostaglandin E2 stimulates angiogenesis by activating the nitric oxide/cGMP pathway in human umbilical vein endothelial cells. Exp. Mol. Med. 37(6), 588–600.

    PubMed  CAS  Google Scholar 

  • Nussler, A.K., Gansauge, S., Gansauge, F., Fischer, U., Butzer, U., Kremsner, P.G., and Beger, H.G. (1998). Overexpression of endothelium-derived nitric oxide synthase isoform 3 in the vasculature of human pancreatic tumor biopsies. Langenbecks Arch. Surg. 383(6), 474–480.

    Article  PubMed  CAS  Google Scholar 

  • O’Hayer, K.M. and Counter, C.M. (2006). A genetically defined normal somatic human cell system to study ras oncogenesis in vitro and in vivo. Methods Enzymol. 407, 637–647.

    Article  PubMed  Google Scholar 

  • Oliveira, C.J., Schindler, F., Ventura, A.M., Morais, M.S., Arai, R.J., Debbas, V., Stern, A., and Monteiro, H.P. (2003). Nitric oxide and cGMP activate the Ras-MAP kinase pathway-stimulating protein tyrosine phosphorylation in rabbit aortic endothelial cells. Free Radic. Biol. Med. 35(4), 381–396.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, D.W., Wang, T.L., Samuels, Y., Bardelli, A., Cummins, J.M., DeLong, L., Silliman, N., Ptak, J., Szabo, S., Willson, J.K., Markowitz, S., Kinzler, K.W., Vogelstein, B., Lengauer, C., and Velculescu, V.E. (2005). Colorectal cancer: mutations in a signalling pathway. Nature 436(7052), 792.

    Article  PubMed  CAS  Google Scholar 

  • Quintanilla, M., Brown, K., Ramsden, M., and Balmain, A. (1986). Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature 322(6074), 78–80.

    Article  PubMed  CAS  Google Scholar 

  • Raines, K.W., Cao, G.L., Lee, E.K., Rosen, G.M., and Shapiro, P. (2006). Neuronal nitric oxide synthase-induced S-nitrosylation of H-Ras inhibits calcium ionophore-mediated extracellular-signal-regulated kinase activity. Biochem. J. 397(2), 329–336.

    Article  PubMed  CAS  Google Scholar 

  • Rajnakova, A., Goh, P.M., Chan, S.T., Ngoi, S.S., Alponat, A., and Moochhala, S., (1997). Expression of differential nitric oxide synthase isoforms in human normal gastric mucosa and gastric cancer tissue. Carcinogenesis 18(9), 1841–1845.

    Article  PubMed  CAS  Google Scholar 

  • Rangarajan, A., Hong, S.J., Gifford, A., and Weinberg, R.A. (2004). Species- and cell type-specific requirements for cellular transformation. Cancer Cell 6(2), 171–183.

    Article  PubMed  CAS  Google Scholar 

  • Ridnour, L.A., Isenberg, J.S., Espey, M.G., Thomas, D.D., Roberts, D.D., and Wink, D.A. (2005). Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc. Natl. Acad. Sci. U S A 102(37), 13147–13152.

    Article  PubMed  CAS  Google Scholar 

  • Salerno, J.C., Harris, D.E., Irizarry, K., Patel, B., Morales, A.J., Smith, S.M., Martasek, P., Roman, L.J., Masters, B.S., Jones, C.L., Weissman, B.A., Lane, P., Liu, Q., and Gross, S.S. (1997). An autoinhibitory control element defines calcium-regulated isoforms of nitric oxide synthase. J. Biol. Chem. 272(47), 29769–29777.

    Article  PubMed  CAS  Google Scholar 

  • Samuels, Y. and Velculescu, V.E. (2004). Oncogenic Mutations of PIK3CA in Human Cancers. Cell Cycle 3(10), 1221–1224.

    Google Scholar 

  • Shang, Z.J., Li, Z.B., and Li, J.R. (2006). In vitro effects of nitric oxide synthase inhibitor L-NAME on oral squamous cell carcinoma: a preliminary study. Int. J. Oral Maxillofac. Surg. 35(6), 539–543.

    Article  PubMed  Google Scholar 

  • Stallmeyer, B., Anhold, M., Wetzler, C., Kahlina, K., Pfeilschifter, J., and Frank, S. (2002). Regulation of eNOS in normal and diabetes-impaired skin repair: implications for tissue regeneration. Nitric Oxide 6(2), 168–177.

    Article  PubMed  CAS  Google Scholar 

  • Stern, M.C. and Conti,C.J. (1996). Genetic susceptibility to tumor progression in mouse skin carcinogenesis. Prog. Clin. Biol. Res. 395, 47–55.

    PubMed  CAS  Google Scholar 

  • Takahashi, M., Fukuda, K., Ohata, T., Sugimura, T., and Wakabayashi, K. (1997). Increased expression of inducible and endothelial constitutive nitric oxide synthases in rat colon tumors induced by azoxymethane. Cancer Res. 57(7), 1233–1237.

    PubMed  CAS  Google Scholar 

  • Taylor, S.J., Resnick, R.J., and Shalloway, D. (2001). Nonradioactive determination of Ras-GTP levels using activated ras interaction assay. Methods Enzymol. 333, 333–342.

    Article  PubMed  CAS  Google Scholar 

  • Tong, X. and Li, H. (2004). eNOS protects prostate cancer cells from TRAIL-induced apoptosis. Cancer Lett. 210(1), 63–71.

    Article  PubMed  CAS  Google Scholar 

  • Tsao, H., Zhang, X., Fowlkes, K., and Haluska, F.G. (2000). Relative reciprocity of NRAS and PTEN/MMAC1 alterations in cutaneous melanoma cell lines. Cancer Res. 60(7), 1800–1804.

    PubMed  CAS  Google Scholar 

  • Tschugguel, W., Knogler, W., Czerwenka, K., Mildner, M., Weninger, W., Zeillinger, R., and Huber, J.C. (1996). Presence of endothelial calcium-dependent nitric oxide synthase in breast apocrine metaplasia. Br. J. Cancer 74(9), 1423–1426.

    Article  PubMed  CAS  Google Scholar 

  • Tse, G.M., Wong, F.C., Tsang, A.K., Lee, C.S., Lui, P.C., Lo, A.W., Law, B.K., Scolyer, R.A., Karim, R.Z., and Putti, T.C. (2005). Stromal nitric oxide synthase (NOS) expression correlates with the grade of mammary phyllodes tumour. J. Clin. Pathol. 58(6), 600–604.

    Article  PubMed  CAS  Google Scholar 

  • Tu, Y.T., Tao, J., Liu, Y.Q., Li, Y., Huang, C.Z., Zhang, X.B., and Lin, Y. (2006). Expression of endothelial nitric oxide synthase and vascular endothelial growth factor in human malignant melanoma and their relation to angiogenesis. Clin. Exp. Dermatol. 31(3), 413–418.

    Article  PubMed  Google Scholar 

  • Vogelstein, B. and Kinzler, K.W. (1993). The multistep nature of cancer. Trends Genet. 9(4), 138–141.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., Shi, G.G., Yao, J.C., Gong, W., Wei, D., Wu, T.T., Ajani, J.A., Huang, S., and Xie, K. (2005). Expression of endothelial nitric oxide synthase correlates with the angiogenic phenotype of and predicts poor prognosis in human gastric cancer. Gastric Cancer 8(1), 18–28.

    Article  PubMed  CAS  Google Scholar 

  • Weller, R., Schwentker, A., Billiar, T.R., and Vodovotz, Y. (2003). Autologous nitric oxide protects mouse and human keratinocytes from ultraviolet B radiation-induced apoptosis. Am. J. Physiol. Cell Physiol. 284(5), C1140–1148.

    PubMed  CAS  Google Scholar 

  • Weninger, W., Rendl, M., Pammer, J., Mildner, M., Tschugguel, W., Schneeberger, C., Sturzl, M., and Tschachler, E. (1998). Nitric oxide synthases in Kaposi’s sarcoma are expressed predominantly by vessels and tissue macrophages. Lab. Invest. 78(8), 949–955.

    PubMed  CAS  Google Scholar 

  • Xie, Q. and Nathan, C. (1994). The high-output nitric oxide pathway: role and regulation. J. Leukoc. Biol. 56(5), 576–582.

    PubMed  CAS  Google Scholar 

  • Xie, Q.W., Cho, H.J., Calaycay, J., Mumford, R.A., Swiderek, K.M., Lee, T.D., Ding, A., Troso, T., and Nathan, C. (1992). Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256(5054), 225–228.

    Article  PubMed  CAS  Google Scholar 

  • Yagihashi, N., Kasajima, H., Sugai, S., Matsumoto, K., Ebina, Y., Morita, T., Murakami, T., and Yagihashi, S. (2000). Increased in situ expression of nitric oxide synthase in human colorectal cancer. Virchows Archiv 436(2), 109–114.

    Article  PubMed  CAS  Google Scholar 

  • Ying, L. and Hofseth, L.J. (2007). An emerging role for endothelial nitric oxide synthase in chronic inflammation and cancer. Cancer Res. 67(4), 1407–1410.

    Article  PubMed  CAS  Google Scholar 

  • Zaragoza, C., Soria, E., Lopez, E., Browning, D., Balbin, M., Lopez-Otin, C., and Lamas, S. (2002). Activation of the mitogen activated protein kinase extracellular signal-regulated kinase 1 and 2 by the nitric oxide-cGMP-cGMP-dependent protein kinase axis regulates the expression of matrix metalloproteinase 13 in vascular endothelial cells. Mol. Pharmacol. 62(4), 927–935.

    Article  PubMed  CAS  Google Scholar 

  • Zeillinger, R., Tantscher, E., Schneeberger, C., Tschugguel, W., Eder, S., Sliutz, G., and Huber, J.C. (1996). Simultaneous expression of nitric oxide synthase and estrogen receptor in human breast cancer cell lines. Breast Cancer Res. Treat. 40(2), 205–207.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Counter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Kashatus, D.F., Counter, C.M. (2010). A Role for eNOS in Oncogenic Ras-Driven Cancer. In: Bonavida, B. (eds) Nitric Oxide (NO) and Cancer. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1432-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1432-3_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1431-6

  • Online ISBN: 978-1-4419-1432-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics