Skip to main content

Sensitizing Effect of Nitric Oxide to Cytotoxic Stimuli

  • Chapter
  • First Online:
  • 1037 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

During irradiation of tumor tissue NO is released by myeloid cells, tumor cells, endothelial cells, and other stromal cells. By reacting with oxygen radicals NO will inflict tumor cell damage that will be added to the direct effect of DNA damage.

The relative role of the NO secreting cells during radiotherapy is not well studied and further knowledge in this field could help optimize dose and timing in order to achieve maximal tumor cell death. The use of NO donors during radiotherapy could possibly further potentiate these effects.

Release of nitric oxide and other cytotoxic molecules has been shown to mediate some of the secondary effects of chemotherapeutic agents. It is also obvious that release of nitric oxide can potentiate the cytotoxic effects of chemotherapeutic agents either by direct synergistic cytotoxic effects or by increase of blood supply and vascular permeability.

The induction of cytotoxicity by NO in vivo can boost T-cell responses by partially degrading tumor cells and thus facilitate antigen presentation of APC. Furthermore NO is essential in the early stages of T-cell activation. However prolonged secretion of NO can also induce tolerance and/or immunosuppression, which will dampen the anti-tumor immunity. Consequently, the combination of immunotherapy with NO-modulating approaches has to be specifically tailored, considering the tumor type, immunization timetable, and the suppressive network present in the tumor tissue.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahn, J., Ambrosone, C.B., Kanetsky, P.A., Tian, C., Lehman, T.A., Kropp, S., Helmbold, I., von, F.D., Haase,W., Sautter-Bihl, M.L., Wenz, F., and Chang-Claude, J. (2006). Polymorphisms in genes related to oxidative stress (CAT, MnSOD, MPO, and eNOS) and acute toxicities from radiation therapy following lumpectomy for breast cancer. Clin. Cancer Res. 12, 7063–7070.

    Article  PubMed  CAS  Google Scholar 

  • Aiello, S., Noris, M., Piccinini, G., Tomasoni, S., Casiraghi, F., Bonazzola, S., Mister, M., Sayegh, M.H., and Remuzzi, G. (2000). Thymic dendritic cells express inducible nitric oxide synthase and generate nitric oxide in response to self- and alloantigens. J. Immunol. 164, 4649–4658.

    PubMed  CAS  Google Scholar 

  • Badn,W., Kalliomaki, S., Widegren, B., and Sjogren, H.O. (2006). Low-dose combretastatin A4 phosphate enhances the immune response of tumor hosts to experimental colon carcinoma. Clin. Cancer Res. 12, 4714–4719.

    Article  PubMed  CAS  Google Scholar 

  • Badn, W., Visse, E., Darabi, A., Smith, K.E., Salford, L.G., and Siesjo, P. (2007). Postimmunization with IFN-gamma-secreting glioma cells combined with the inducible nitric oxide synthase inhibitor mercaptoethylguanidine prolongs survival of rats with intracerebral tumors. J. Immunol. 179, 4231–4238.

    PubMed  CAS  Google Scholar 

  • Blumenthal, R.D., Sharkey, R.M., Kashi, R., Sides, K., Stein, R., and Goldenberg, D.M. (1997). Changes in tumor vascular permeability in response to experimental radioimmunotherapy: a comparative study of 11 xenografts. Tumour. Biol. 18, 367–377.

    Article  PubMed  CAS  Google Scholar 

  • Bogdan, C., Rollinghoff, M., and Diefenbach, A. (2000a). Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr. Opin. Immunol. 12, 64–76.

    Article  PubMed  CAS  Google Scholar 

  • Bogdan, C., Rollinghoff, M., and Diefenbach, A. (2000b). The role of nitric oxide in innate immunity. Immunol. Rev. 173, 17–26.

    Article  PubMed  CAS  Google Scholar 

  • Bonavida, B., Baritaki, S., Huerta-Yepez, S., Vega, M.I., Chatterjee, D., and Yeung, K. (2008). Novel therapeutic applications of nitric oxide donors in cancer: roles in chemo- and immunosensitization to apoptosis and inhibition of metastases. NitricOxide 19, 152–157.

    CAS  Google Scholar 

  • Brennan, P.A., Mackenzie, N., and Quintero, M. (2005). Hypoxia-inducible factor 1alpha in oral cancer. J. Oral Pathol. Med. 34, 385–389.

    Article  PubMed  CAS  Google Scholar 

  • Brito, C., Naviliat, M., Tiscornia, A.C., Vuillier, F., Gualco, G., Dighiero, G., Radi, R., and Cayota, A.M. (1999). Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death. J. Immunol. 162, 3356–3366.

    PubMed  CAS  Google Scholar 

  • Bronte, V., Kasic, T., Gri, G., Gallana, K., Borsellino, G., Marigo, I., Battistini, L., Iafrate, M., Prayer-Galetti, T., Pagano, F., and Viola, A. (2005). Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J. Exp. Med. 201, 1257–1268.

    Article  PubMed  CAS  Google Scholar 

  • Chabner, B.A. and Roberts, T.G., Jr. (2005). Timeline: Chemotherapy and the war on cancer. Nat. Rev. Cancer 5, 65–72.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C., Lee, W.H., Zhong, L., and Liu, C.P. (2006). Regulatory T cells can mediate their function through the stimulation of APCs to produce immunosuppressive nitric oxide. J. Immunol. 176, 3449–3460.

    PubMed  CAS  Google Scholar 

  • Chen, H.H., Su, W.C., Chou, C.Y., Guo, H.R., Ho, S.Y., Que, J., and Lee, W.Y. (2005). Increased expression of nitric oxide synthase and cyclooxygenase-2 is associated with poor survival in cervical cancer treated with radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 63, 1093–1100.

    Article  PubMed  CAS  Google Scholar 

  • Cifone, M.G., D’Alo, S., Parroni, R., Millimaggi, D., Biordi, L., Martinotti, S., and Santoni, A. (1999). Interleukin-2-activated rat natural killer cells express inducible nitric oxide synthase that contributes to cytotoxic function and interferon-gamma production. Blood 93, 3876–3884.

    PubMed  CAS  Google Scholar 

  • Davis, D.W., Weidner, D.A., Holian, A., and McConkey, D.J. (2000). Nitric oxide-dependent activation of p53 suppresses bleomycin-induced apoptosis in the lung. J. Exp. Med. 192, 857–869.

    Article  PubMed  CAS  Google Scholar 

  • De, S.C., Serafini, P., Marigo, I., Dolcetti, L., Bolla, M., Del, S.P., Melani, C., Guiducci, C., Colombo, M.P., Iezzi, M., Musiani, P., Zanovello, P., and Bronte, V. (2005). Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc. Natl. Acad. Sci. USA 102, 4185–4190.

    Article  Google Scholar 

  • Drake,C.G., Doody, A.D., Mihalyo, M.A., Huang, C.T., Kelleher, E., Ravi, S., Hipkiss, E.L., Flies, D.B., Kennedy, E.P., Long, M., McGary, P.W., Coryell, L., Nelson, W.G., Pardoll, D.M., and Adler, A.J. (2005). Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen. Cancer Cell 7, 239–249.

    Article  PubMed  CAS  Google Scholar 

  • Dugast, A.S., Haudebourg, T., Coulon, F., Heslan, M., Haspot, F., Poirier, N., Vuillefroy de, S.R., Usal, C., Smit, H., Martinet, B., Thebault, P., Renaudin, K., and Vanhove, B. (2008). Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion. J. Immunol. 180, 7898–7906.

    PubMed  CAS  Google Scholar 

  • Dupuis, M., De, J. I., Tremblay, M.L., and Duplay, P. (2003). Gr-1+ myeloid cells lacking T cell protein tyrosine phosphatase inhibit lymphocyte proliferation by an IFN-gamma- and nitric oxide-dependent mechanism. J. Immunol. 171, 726–732.

    PubMed  CAS  Google Scholar 

  • Frerart, F., Sonveaux, P., Rath, G., Smoos, A., Meqor, A., Charlier, N., Jordan, B.F., Saliez, J., Noel, A., Dessy, C., Gallez, B., and Feron, O. (2008). The acidic tumor microenvironment promotes the reconversion of nitrite into nitric oxide: towards a new and safe radiosensitizing strategy. Clin. Cancer Res. 14, 2768–2774.

    Article  PubMed  CAS  Google Scholar 

  • Hagemann, T., Lawrence, T., McNeish, I., Charles, K.A., Kulbe, H., Thompson, R.G., Robinson, S.C. and Balkwill, F.R. (2008). “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J. Exp. Med. 205, 1261–1268.

    Article  PubMed  CAS  Google Scholar 

  • Handsley, M.M. and Edwards, D.R. (2005). Metalloproteinases and their inhibitors in tumor angiogenesis. Int. J. Cancer 115, 849–860.

    Article  PubMed  CAS  Google Scholar 

  • Hegardt, P., Widegren, B., Li, L., Sjogren, B., Kjellman, C., Sur, I., and Sjogren, H.O. (2001). Nitric oxide synthase inhibitor and IL-18 enhance the anti-tumor immune response of rats carrying an intrahepatic colon carcinoma. Cancer Immunol. Immunother. 50, 491–501.

    Article  PubMed  CAS  Google Scholar 

  • Hegardt, P., Widegren, B., and Sjogren, H.O. (2000). Nitric-oxide-dependent systemic immunosuppression in animals with progressively growing malignant gliomas. Cell Immunol. 200, 116–127.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, R.A., Mahidhara, R.S., Wolf-Johnston, A.S., Lu, L., Thomson, A.W., and Simmons, R.L. (2002). Differential modulation of CD4 and CD8 T-cell proliferation by induction of nitric oxide synthesis in antigen presenting cells. Transplantation 74, 836–845.

    Article  PubMed  CAS  Google Scholar 

  • Hong, J.H., Chiang, C.S., Campbell, I.L., Sun, J.R., Withers, H.R., and McBride, W.H. (1995). Induction of acute phase gene expression by brain irradiation. Int. J. Radiat. Oncol. Biol. Phys. 33, 619–626.

    Article  PubMed  CAS  Google Scholar 

  • Ibiza, S., Perez-Rodriguez, A., Ortega, A., Martinez-Ruiz, A., Barreiro, O., Garcia-Dominguez, C.A., Victor, V.M., Esplugues, J.V., Rojas, J.M., Sanchez-Madrid, F., and Serrador, J.M. (2008). Endothelial nitric oxide synthase regulates N-Ras activation on the Golgi complex of antigen-stimulated T cells. Proc. Natl. Acad. Sci. USA 105, 10507–10512.

    Article  PubMed  CAS  Google Scholar 

  • Ibiza, S., Victor, V.M., Bosca, I., Ortega, A., Urzainqui, A., O'Connor, J.E., Sanchez-Madrid, F., Esplugues, J.V., and Serrador, J.M. (2006). Endothelial nitric oxide synthase regulates T cell receptor signaling at the immunological synapse. Immunity. 24, 753–765.

    Article  PubMed  CAS  Google Scholar 

  • Janssens, M.Y., Van den Berge, D.L., Verovski, V.N., Monsaert, C., and Storme, G.A. (1998). Activation of inducible nitric oxide synthase results in nitric oxide-mediated radiosensitization of hypoxic EMT-6 tumor cells. Cancer Res. 58, 5646–5648.

    PubMed  CAS  Google Scholar 

  • Jayasurya, A., Dheen, S.T., Yap, W.M., Tan, N.G., Ng, Y.K., and Bay, B.H. (2003). Inducible nitric oxide synthase and bcl-2 expression in nasopharyngeal cancer: correlation with outcome of patients after radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 56, 837–845.

    Article  PubMed  CAS  Google Scholar 

  • Jeannin, J.F., Leon, L., Cortier, M., Sassi, N., Paul, C., and Bettaieb, A. (2008). Nitric oxide-induced resistance or sensitization to death in tumor cells. NitricOxide 19, 158–163.

    CAS  Google Scholar 

  • Johansson, A.C., Hegardt, P., Janelidze, S., Visse, E., Widegren, B., and Siesjo, P. (2002). Enhanced expression of iNOS intratumorally and at the immunization site after immunization with IFNgamma-secreting rat glioma cells. J. Neuroimmunol. 123, 135–143.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, B.F., Beghein, N., Aubry, M., Gregoire, V., and Gallez, B. (2003). Potentiation of radiation-induced regrowth delay by isosorbide dinitrate in FSaII murine tumors. Int. J. Cancer 103, 138–141.

    Article  PubMed  CAS  Google Scholar 

  • Jyothi, M.D. and Khar, A. (1999). Induction of nitric oxide production by natural killer cells: its role in tumor cell death. NitricOxide. 3, 409–418.

    CAS  Google Scholar 

  • Kalechman, Y., Shani, A., Dovrat, S., Whisnant, J.K., Mettinger, K., Albeck, M., and Sredni, B. (1996). The antitumoral effect of the immunomodulator AS101 and paclitaxel (Taxol) in a murine model of lung adenocarcinoma. J. Immunol. 156, 1101–1109.

    PubMed  CAS  Google Scholar 

  • Koblish, H.K., Hunter, C.A., Wysocka, M., Trinchieri, G., and Lee, W.M. (1998). Immune suppression by recombinant interleukin (rIL)-12 involves interferon gamma induction of nitric oxide synthase 2 (iNOS) activity: inhibitors of NO generation reveal the extent of rIL-12 vaccine adjuvant effect. J. Exp. Med. 188, 1603–1610.

    Article  PubMed  CAS  Google Scholar 

  • Koncz, A., Pasztoi, M., Mazan, M., Fazakas, F., Buzas, E., Falus, A., and Nagy, G. (2007). Nitric oxide mediates T cell cytokine production and signal transduction in histidine decarboxylase knockout mice. J. Immunol. 179, 6613–6619.

    PubMed  CAS  Google Scholar 

  • Konovalova, N.P., Goncharova, S.A., Volkova, L.M., Rajewskaya, T.A., Eremenko, L.T., and Korolev, A.M. (2003). Nitric oxide donor increases the efficiency of cytostatic therapy and retards the development of drug resistance. NitricOxide 8, 59–64.

    CAS  Google Scholar 

  • Kusmartsev, S.A., Li, Y., and Chen, S.H. (2000). Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J. Immunol. 165, 779–785.

    PubMed  CAS  Google Scholar 

  • Liebmann, J., DeLuca, A.M., Coffin, D., Keefer, L.K., Venzon, D., Wink, D.A., and Mitchell,J.B. (1994). In vivo radiation protection by nitric oxide modulation. Cancer Res. 54, 3365–3368.

    PubMed  CAS  Google Scholar 

  • MacMicking, J., Xie, Q.W., and Nathan, C. (1997). Nitric oxide and macrophage function. Annu. Rev. Immunol. 15, 323–350.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, H., Hayashi, S., Hatashita, M., Shioura, H., Ohtsubo, T., Kitai, R., Ohnishi, T., Yukawa, O., Furusawa, Y., and Kano, E. (2000). Induction of radioresistance to accelerated carbon-ion beams in recipient cells by nitric oxide excreted from irradiated donor cells of human glioblastoma. Int. J. Radiat. Biol. 76, 1649–1657.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, N.E., Adams, M.A., Maxwell, L.R., Gofton, T.E., and Graham, C.H. (2001). Nitric oxide-mediated regulation of chemosensitivity in cancer cells. J. Natl. Cancer Inst. 93, 1879–1885.

    Article  PubMed  CAS  Google Scholar 

  • Mazzoni, A., Bronte, V., Visintin, A., Spitzer, J.H., Apolloni, E., Serafini, P., Zanovello, P., and Segal, D.M. (2002). Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J. Immunol. 168, 689–695.

    PubMed  CAS  Google Scholar 

  • Millet, A., Bettaieb, A., Renaud, F., Prevotat, L., Hammann, A., Solary, E., Mignotte, B., and Jeannin, J.F. (2002). Influence of the nitric oxide donor glyceryl trinitrate on apoptotic pathways in human colon cancer cells. Gastroenterology 123, 235–246.

    Article  PubMed  CAS  Google Scholar 

  • Mocellin, S., Rossi, C.R., Pilati, P., and Nitti, D. (2005). Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev. 16, 35–53.

    Article  PubMed  CAS  Google Scholar 

  • Moulian, N., Truffault, F., Gaudry-Talarmain, Y.M., Serraf, A., and Berrih-Aknin, S. (2001). In vivo and in vitro apoptosis of human thymocytes are associated with nitrotyrosine formation. Blood 97, 3521–3530.

    Article  PubMed  CAS  Google Scholar 

  • Narang, H. and Krishna, M. (2008). Effect of nitric oxide donor and gamma irradiation on MAPK signaling in murine peritoneal macrophages. J. Cell Biochem. 103, 576–587.

    Article  PubMed  CAS  Google Scholar 

  • Nathan, C.F., Murray, H.W., Wiebe, M.E., and Rubin, B.Y. (1983). Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J. Exp. Med. 158, 670–689.

    Article  PubMed  CAS  Google Scholar 

  • Nathan, C.F., Prendergast, T.J., Wiebe, M.E., Stanley, E.R., Platzer, E., Remold, H.G., Welte, K., Rubin, B.Y., and Murray, H.W. (1984). Activation of human macrophages. Comparison of other cytokines with interferon-gamma. J. Exp. Med. 160, 600–605.

    Article  PubMed  CAS  Google Scholar 

  • Ng, Q.S., Goh, V., Milner, J., Stratford, M.R., Folkes, L.K., Tozer, G.M., Saunders, M.I., and Hoskin, P.J. (2007). Effect of nitric-oxide synthesis on tumour blood volume and vascular activity: a phase I study. Lancet Oncol. 8, 111–118.

    Article  PubMed  CAS  Google Scholar 

  • Niedbala, W., Cai, B., Liu, H., Pitman, N., Chang, L., and Liew, F.Y. (2007). Nitric oxide induces CD4+CD25+ Foxp3 regulatory T cells from CD4+CD25 T cells via p53, IL-2, and OX40. Proc. Natl. Acad. Sci. USA 104, 15478–15483.

    Article  PubMed  CAS  Google Scholar 

  • Niedbala, W., Wei, X.Q., Campbell, C., Thomson, D., Komai-Koma, M., and Liew, F.Y. (2002). Nitric oxide preferentially induces type 1 T cell differentiation by selectively up-regulating IL-12 receptor beta 2 expression via cGMP. Proc. Natl. Acad. Sci. USA 99, 16186–16191.

    Article  PubMed  CAS  Google Scholar 

  • Niedbala, W., Wei, X.Q., Piedrafita, D., Xu, D., and Liew, F.Y. (1999). Effects of nitric oxide on the induction and differentiation of Th1 cells. Eur. J. Immunol. 29, 2498–2505.

    Article  PubMed  CAS  Google Scholar 

  • Oka, K., Suzuki, Y., Iida, H., and Nakano, T. (2003). Pd-ECGF positivity correlates with better survival, while iNOS has no predictive value for cervical carcinomas treated with radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 57, 217–221.

    Article  PubMed  CAS  Google Scholar 

  • Perrotta, C., Bizzozero, L., Falcone, S., Rovere-Querini, P., Prinetti, A., Schuchman, E.H., Sonnino, S., Manfredi, A.A., and Clementi, E. (2007). Nitric oxide boosts chemoimmunotherapy via inhibition of acid sphingomyelinase in a mouse model of melanoma. Cancer Res. 67, 7559–7564.

    Article  PubMed  CAS  Google Scholar 

  • Perrotta, C., Falcone, S., Capobianco, A., Camporeale, A., Sciorati, C., De, P.C., Pisconti, A., Rovere-Querini, P., Bellone, M., Manfredi, A.A., and Clementi, E. (2004). Nitric oxide confers therapeutic activity to dendritic cells in a mouse model of melanoma. Cancer Res. 64, 3767–3771.

    Article  PubMed  CAS  Google Scholar 

  • Peschos, D., Damala, C., Stefanou, D., Tsanou, E., Assimakopoulos, D., Vougiouklakis, T., Charalabopoulos, K., and Agnantis, N.J. (2006). Expression of matrix metalloproteinase-9 (gelatinase B) in benign, premalignant and malignant laryngeal lesions. Histol. Histopathol. 21, 603–608.

    PubMed  CAS  Google Scholar 

  • Postovit, L.M., Adams, M.A., Lash, G.E., Heaton, J.P., and Graham, C.H. (2004). Nitric oxide-mediated regulation of hypoxia-induced B16F10 melanoma metastasis. Int. J. Cancer 108, 47–53.

    Article  PubMed  CAS  Google Scholar 

  • Ren, G., Su, J., Zhao, X., Zhang, L., Zhang, J., Roberts, A.I., Zhang, H., Das, G., and Shi, Y. (2008). Apoptotic cells induce immunosuppression through dendritic cells: critical roles of IFN-gamma and nitric oxide. J. Immunol. 181, 3277–3284.

    PubMed  CAS  Google Scholar 

  • Rigas, B. and Williams, J.L. (2002). NO-releasing NSAIDs and colon cancer chemoprevention: a promising novel approach (Review). Int. J. Oncol. 20, 885–890.

    PubMed  CAS  Google Scholar 

  • Rosenberg, S.A., Yang, J.C., and Restifo, N.P. (2004). Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10, 909–915.

    Article  PubMed  CAS  Google Scholar 

  • Samdani, A.F., Kuchner, E.B., Rhines, L., Adamson, D.C., Lawson, C., Tyler, B., Brem, H., Dawson, V.L., and Dawson, T.M. (2004). Astroglia induce cytotoxic effects on brain tumors via a nitric oxide-dependent pathway both in vitro and in vivo. Neurosurgery 54, 1231–1237.

    Article  PubMed  Google Scholar 

  • Sato, K., Ozaki, K., Oh, I., Meguro, A., Hatanaka, K., Nagai, T., Muroi, K., and Ozawa, K. (2007). Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109, 228–234.

    Article  PubMed  CAS  Google Scholar 

  • Serafini, P., Meckel, K., Kelso, M., Noonan, K., Califano, J., Koch, W., Dolcetti, L., Bronte, V., and Borrello, I. (2006). Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J. Exp. Med. 203, 2691–2702.

    Article  PubMed  CAS  Google Scholar 

  • Shao, C., Aoki, M., and Furusawa, Y. (2004). Bystander effect in lymphoma cells vicinal to irradiated neoplastic epithelial cells: nitric oxide is involved. J. Radiat. Res. (Tokyo) 45, 97–103.

    Article  CAS  Google Scholar 

  • Shao, C., Folkard, M., Michael, B.D., and Prise, K.M. (2005). Bystander signaling between glioma cells and fibroblasts targeted with counted particles. Int. J. Cancer 116, 45–51.

    Article  PubMed  CAS  Google Scholar 

  • Shao, C., Folkard, M., and Prise, K.M. (2008). Role of TGF-beta1 and nitric oxide in the bystander response of irradiated glioma cells. Oncogene 27, 434–440.

    Article  PubMed  CAS  Google Scholar 

  • Shinoda, J. and Whittle, I.R. (2001). Nitric oxide and glioma: a target for novel therapy? Br. J. Neurosurg. 15, 213–220.

    Article  PubMed  CAS  Google Scholar 

  • Shinohara, H., Bucana, C.D., Killion, J.J., and Fidler, I.J. (2000). Intensified regression of colon cancer liver metastases in mice treated with irinotecan and the immunomodulator JBT 3002. J. Immunother. 23, 321–331.

    Article  PubMed  CAS  Google Scholar 

  • Sonveaux, P., Brouet, A., Havaux, X., Gregoire, V., Dessy, C., Balligand, J.L., and Feron, O. (2003). Irradiation-induced angiogenesis through the up-regulation of the nitric oxide pathway: implications for tumor radiotherapy. Cancer Res. 63, 1012–1019.

    PubMed  CAS  Google Scholar 

  • Sonveaux, P., Dessy, C., Brouet, A., Jordan, B.F., Gregoire, V., Gallez, B., Balligand, J.L., and Feron, O. (2002). Modulation of the tumor vasculature functionality by ionizing radiation accounts for tumor radiosensitization and promotes gene delivery. FASEB J. 16, 1979–1981.

    PubMed  CAS  Google Scholar 

  • Stuehr, D.J., Gross, S.S., Sakuma, I., Levi, R., and Nathan, C.F. (1989). Activated murine macrophages secrete a metabolite of arginine with the bioactivity of endothelium-derived relaxing factor and the chemical reactivity of nitric oxide. J. Exp. Med. 169, 1011–1020.

    Article  PubMed  CAS  Google Scholar 

  • Stuehr, D.J. and Nathan, C.F. (1989). Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J. Exp. Med. 169, 1543–1555.

    Article  PubMed  CAS  Google Scholar 

  • Valmori, D., Dutoit, V., Lienard, D., Rimoldi, D., Pittet, M.J., Champagne, P., Ellefsen, K., Sahin, U., Speiser, D., Lejeune, F., Cerottini, J.C., and Romero, P. (2000). Naturally occurring human lymphocyte antigen-A2 restricted CD8+ T-cell response to the cancer testis antigen NY-ESO-1 in melanoma patients. Cancer Res. 60, 4499–4506.

    PubMed  CAS  Google Scholar 

  • van der Veen, R.C., Dietlin, T.A., Dixon, G.J., and Gilmore, W. (2000). Macrophage-derived nitric oxide inhibits the proliferation of activated T helper cells and is induced during antigenic stimulation of resting T cells. Cell Immunol. 199, 43–49.

    Article  PubMed  Google Scholar 

  • van der Veen, R.C., Dietlin, T.A., and Hofman, F.M. (2003). Tissue expression of inducible nitric oxide synthase requires IFN-gamma production by infiltrating splenic T cells: more evidence for immunosuppression by nitric oxide. J. Neuroimmunol. 145, 86–90.

    Article  PubMed  Google Scholar 

  • Vig, M., Srivastava, S., Kandpal, U., Sade, H., Lewis, V., Sarin, A., George, A., Bal, V., Durdik, J.M., and Rath, S. (2004). Inducible nitric oxide synthase in T cells regulates T cell death and immune memory. J. Clin. Invest. 113, 1734–1742.

    PubMed  CAS  Google Scholar 

  • Virag, L., Scott, G.S., Cuzzocrea, S., Marmer, D., Salzman, A.L., and Szabo, C. (1998). Peroxynitrite-induced thymocyte apoptosis: the role of caspases and poly (ADP-ribose) synthetase (PARS) activation. Immunology 94, 345–355.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Zalcenstein, A., and Oren, M. (2003). Nitric oxide promotes p53 nuclear retention and sensitizes neuroblastoma cells to apoptosis by ionizing radiation. Cell Death. Differ. 10, 468–476.

    Article  PubMed  CAS  Google Scholar 

  • Weyerbrock, A., Walbridge, S., Pluta, R.M., Saavedra, J.E., Keefer, L.K., and Oldfield, E.H. (2003). Selective opening of the blood-tumor barrier by a nitric oxide donor and long-term survival in rats with C6 gliomas. J. Neurosurg. 99, 728–737.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, S., Bell, H.S., Shinoda, J., Holmes, M.C., Wharton, S.B., and Whittle, I.R. (2002). Glioma tumourgenicity is decreased by iNOS knockout: experimental studies using the C6 striatal implantation glioma model. Br. J. Neurosurg. 16, 567–572.

    PubMed  CAS  Google Scholar 

  • Yamazaki, T., Akiba, H., Koyanagi, A., Azuma, M., Yagita, H., and Okumura, K. (2005). Blockade of B7-H1 on macrophages suppresses CD4+ T cell proliferation by augmenting IFN-gamma-induced nitric oxide production. J. Immunol. 175, 1586–1592.

    PubMed  CAS  Google Scholar 

  • Yasuda, H. (2008). Solid tumor physiology and hypoxia-induced chemo/radio-resistance: novel strategy for cancer therapy: nitric oxide donor as a therapeutic enhancer. Nitric Oxide. 19, 205–216.

    CAS  Google Scholar 

  • Yin, D., Wang, X., Konda, B.M., Ong, J.M., Hu, J., Sacapano, M.R., Ko, M.K., Espinoza, A.J., Irvin, D.K., Shu, Y., and Black, K.L. (2008). Increase in brain tumor permeability in glioma-bearing rats with nitric oxide donors. Clin. Cancer Res. 14, 4002–4009.

    Article  PubMed  CAS  Google Scholar 

  • Zagozdzon, R., Giermasz, A., Golab, J., Stoklosa, T., Jalili, A., and Jakobisiak, M. (1999). The potentiated antileukemic effects of doxorubicin and interleukin-12 combination are not dependent on nitric oxide production. Cancer Lett. 147, 67–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Siesjö .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Siesjö, P. (2010). Sensitizing Effect of Nitric Oxide to Cytotoxic Stimuli. In: Bonavida, B. (eds) Nitric Oxide (NO) and Cancer. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1432-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1432-3_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1431-6

  • Online ISBN: 978-1-4419-1432-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics