Skip to main content

Microelectronic Packaging Trends and the Role of Nanotechnology

  • Chapter
  • First Online:
Electrochemical Nanotechnologies

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

The microelectronic packaging industry is undergoing major changes to keep pace with the ever-increasing demands imposed by high performing chips and by end-use system applications. Solutions using advanced materials for microprocessor interconnect scaling and chip package interconnects, novel concepts in heat management systems, and improvements in package substrates continue to drive major packaging efforts. Advances in electrochemical technologies have played an important role in the evolution of such solutions for miniaturization of microelectronic devices and packages. Indeed, since the development of through-mask plating for thin film heads in the1960s and 1970s, an enormous amount of industrial and academic R&D effort has positioned electrochemical processing among the most sophisticated processing technologies employed in the microelectronics industry today [1–4]. Electrochemical processing is perhaps better understood than some of the dry processing technologies used in the microelectronics industry. Compared to other competing dry processing technologies, it has emerged as a more environmentally-friendly and cost-effective fabrication method. Electrochemical processing has, thus, become an integral part of advanced wafer processing fabs and an enabling technology for nanofabrication [5]. As the electronics industry faces the challenges of extending Moore’s law, electrochemical processing is expected to continue to enable further miniaturization of high-performance chip interconnects, packages, and printed circuit boards. Evolving novel approaches to electrochemical processing using nano-materials and nano-fabrication techniques have started to make tremendous impact on further miniaturization of high performance devices and packages. A detailed discussion of different facets of technology advances in electronic packaging is difficult to present in the limited space of this chapter. The current chapter, therefore, makes an effort to capture some of the key developments in microelectronic packaging while highlighting the impact of electrochemical processing. Also included is a brief discussion of some of the foreseeable applications of nano-materials and nano-structures in advanced packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Romankiw LT, Croll I, Hatzakis M (1970) IEEE Trans Magn 6:729

    Article  Google Scholar 

  2. Romankiw LT (1997) Electrochim Acta 42:2985

    Article  Google Scholar 

  3. Osaka T (1997) Electrochim Acta 42:3015

    Article  CAS  Google Scholar 

  4. Datta M, Landolt D (2000) Electrochim Acta 45:2535

    Article  CAS  Google Scholar 

  5. Datta M (2003) Electrochim Acta 48:2975

    Article  CAS  Google Scholar 

  6. Rymaszewski EJ, Tummala RR, Watari T (1997). In: Tummala RR, Rymaszewski EJ, Klopfenstein AG (eds) Microelectronic packaging handbook, part I, 2nd edn. Chapman and Hall, New York

    Google Scholar 

  7. Tummala RR, Garrou P, Gupta T, Kuramoto N, Niwa K, Shimda Y, Terasawa M (1999). In: Tummala RR, Rymaszewski EJ, Klopfenstein AG (eds) Microelectronic packaging handbook, part II, 2nd edn. Kluwer Academic Publishers, Boston

    Google Scholar 

  8. D.P. Seraphim, D.E. Barr, W.T. Chen, G.P. Schmitt, and R.R. Tummala (1997). In: Tummala RR, Rymaszewski EJ, Klopfenstein AG (eds) Microelectronic packaging handbook, part III, 2nd edn. Chapman and Hall, New York

    Google Scholar 

  9. Datta M (2005). In: Datta M, Osaka T, Schultze WJ (eds) Microelectronic packaging, CRC Press, pp 3–27

    Google Scholar 

  10. Edelstein DC (1997). Tech Dig IEEE Intl electron devices conference, 773, 1997; IBM Res Mag, No. 4, 16

    Google Scholar 

  11. Datta M. In: Krongleb S, Bonhote C, Osaka T, Kitamoto Y (eds) Proceedings, 8th Intl. symposium on magnetic materials processes and devices, Electrochem Soc, NJ, PV2004-23, pp 126–143

    Google Scholar 

  12. Basol BM (2004) J Electrochem Soc 151:C765–C771

    Article  Google Scholar 

  13. Hu C, Gignac L, Rosenberg R, Liniger E, Rubino J, Sambucetti C, Domenicucci A, Chen X, Stamper AK (2002) Appl Phys Lett 81:1782–1784

    Article  CAS  Google Scholar 

  14. Dubin VM, Lopatin S, Kohn A, Petrov N, Eizenberg M, Shacham-Diamand Y (2004). In: Datta M, Osaka T, Schultze WJ (eds) Microelectronic packaging, CRC Press, pp 65–110

    Google Scholar 

  15. Kohn A, Eizenberg M, Shacham-Diamand Y, Israel B, Sverdlor Y (2001) Microelectronic Eng 155:297–303

    Article  Google Scholar 

  16. Nakano H, Itabashi T, Akahoshi H (2005) J Electrochem Soc 152(3):C163–C166

    Article  Google Scholar 

  17. Moon P, Dubin V, Johnston S, Leu J, Raol K, Wu C (2003). Proc IEDM, IEEE Intl, pp 35.1.1–35.1.4

    Google Scholar 

  18. Hu C, Gignac L, Liniger E, Herst B, Rath DL, Chen ST, Kaldor S, Simon A, Wang W-T (2003) Appl Phys Lett 83:869

    Article  CAS  Google Scholar 

  19. Lee B, Ivanov I (2009). In: Shacham-Diamand Y, Osaka T, Datta M, Ohba T (eds) (2009) Advanced nanoscale ULSI interconnects: fundamentals and applications, Springer

    Google Scholar 

  20. Datta M (2004). In: Datta M, Osaka T, Schultze WJ (eds) Microelectronic packaging, CRC Press, pp 167–200

    Google Scholar 

  21. Datta M, Shenoy RV, Jahnes C, Andricacos PC, Horkans J, Dukovic JO, Romankiw LT, Roeder J, Deligianni H, Nye H, Agarwala B, Tong HM, Totta PA (1995) J Electrochem Soc 142:3779

    Article  CAS  Google Scholar 

  22. Gruber PA, Belanger L, Brouillete GP, Danovitch DH, Landreville JL, Naugle DT, Oberson VA, Shi DY, Tessler CL, Turgeon MR (2005) IBM J Res Dev 49(4/5):621

    Article  CAS  Google Scholar 

  23. Gruber PA, Budd RA, Buchwalter SL, Shi DY, Busby JA, Grant JJ, Giri AP, Knickerbocker SH, Longworth HP, Naugle DT. Abstract #1634, 120th ECS meeting, Oct. 29–Nov. 3, 2006, Cancun, Mexico

    Google Scholar 

  24. Datta M, Emory D, Huang T-L, Joshi SM, King CA, Ma Z, Marieb T, McKeag M, Suh D, Yang S. US Patent No. 6,740,427, May 25, 2004

    Google Scholar 

  25. Datta M, Emory D, Joshi S, Menezes S, Suh D. US patent no. 6,853,076, February 8, 2005

    Google Scholar 

  26. Moon P, Zhiyong Ma, Datta M. US patent no. 6,703,069, March 9, 2004

    Google Scholar 

  27. Pecht MG, Nguyen LT (1999). In: Tummala RR, Rymaszewski EJ, Klopfenstein AG (eds) Microelectronic packaging handbook, part II, 2nd edn. Kluwer Academic Publishers, Boston

    Google Scholar 

  28. Breedis JT (1986). J Metals AIME 48

    Google Scholar 

  29. Van Tiburg GC (1984) Plat Surf Finish 71(6):78

    Google Scholar 

  30. Houma H, Mizushima S (1984) Met Finish 82(1):47

    Google Scholar 

  31. Schelling PK, Shi L, Goodson KE (2005). Materials Today, 30–35

    Google Scholar 

  32. Parasher RS, Chang J-Y, Sauciuc I, Narasimhan S, Chou D, Chrysler G, Myers A, Prstic S, Hu C (2005). Intel Technol J 9(04)

    Google Scholar 

  33. Datta, M, Lin E, Choi H, McMaster M, Brewer R, Werner D, Hom J, Upadhya G, Gopalakrishnan S, Rebarber F (2007). Transactions of the Electrochemical Society, 6(8): 13–31

    Google Scholar 

  34. Brewer R, Upadhaya G, Zhou P, McMaster M, Tsao P. US patent # 7,188,662, March 13, 2007

    Google Scholar 

  35. Wei BQ, Vajtai R, Ajayan PM (2001) Appl Phys Lett 79(8):1172–1174

    Article  CAS  Google Scholar 

  36. Collins PG, Hersam M, Arnold M, Martel R, Avouris Ph (2001) Phys Review Lett 86(14):3128–3131

    Article  CAS  Google Scholar 

  37. Kreupl F, Graham AP, Duesberg GS, Steinhogl W, Lieban M, Unger E, Honlein W (2002) Microelectronic Eng 64:399–408

    Article  CAS  Google Scholar 

  38. Li J, Ye Q, Cassell A, Ng HT, Stevens R, Han J, Meyyappan M (2003) Appl Phys Lett 82(15):2491–2493

    Article  CAS  Google Scholar 

  39. Ngo Q, Cruden BA, Casselle AM, Sims G, Meyyappan M, Li J, Yang CY (2004) Nano Lett 4(12):2403–2407

    Article  CAS  Google Scholar 

  40. Arai S, Endo M (2004) Electrochem Solid State Lett 7(3):C25–C26

    Article  Google Scholar 

  41. Dubin VM (1992) J Electrochem Soc 139:633

    Article  CAS  Google Scholar 

  42. Li J, You S, O’Keefe MJ, O’Keefe TJ (2006) J Elecrochem Soc 153(10):C722–C727

    Article  Google Scholar 

  43. Lee H-Y, Duh J-G (2006) J Electronic Met 35(3):494–503

    Article  CAS  Google Scholar 

  44. Shen J, Liu YC, Han YJ, Gao HX (2006) J Electronic Metals 33(8):1672–1679

    Article  Google Scholar 

  45. Xu J, Fisher TS (2006) Int J Heat Mass Transf 49:1658–1666

    Article  CAS  Google Scholar 

  46. Eastman JA, Choi SVS, Li S, Yu W, Thompson LJ (2001) Appl Phys Lett 78(6):718–720

    Article  CAS  Google Scholar 

  47. Xuan Y, Li Q (2000) Int J Heat Fluid Flow 21:58–64

    Article  CAS  Google Scholar 

  48. Marquis FDS, Chibante LPF (2005). JOM 57(12):32–43

    Google Scholar 

  49. Butler P (2006) The packaging professional. 6–7

    Google Scholar 

  50. Tuckerman DB, Pease RFW (1981) IEEE Electron Dev Lett 2(5):126–129

    Article  Google Scholar 

  51. Kandilkar SG, Grande WJ (2003) Heat Transf Eng 24(1):3–17

    Article  Google Scholar 

  52. Marthinuss J, Hall G (2004). Electronics Cooling

    Google Scholar 

  53. Park JW, Ruch D, Wirtz RA. American Association of Aeronautics and Astronautics, AIAA, 2002-0208, 1–9

    Google Scholar 

  54. Datta M, McMaster M, Brewer R, Zhou P, Tsao P, Upadhaya G, Munch M. Patent pending

    Google Scholar 

  55. Boomsa K, Poulikakos D, Zwick F (2003) Mech Mater 35:1161–1176

    Article  Google Scholar 

  56. Shin H-C, Dong J, Liu M (2003) Adv Mater 15(19):1610–1614

    Article  CAS  Google Scholar 

  57. Furberg R (2006) Enhanced boiling heat transfer from a novel nano-dendritic microporous copper structure, licentiate thesis, KTH School of Industrial Engineering & Management, Department of Energy Technology, Stockholm

    Google Scholar 

  58. Rowe DM (1995) CRC handbook of thermoelectrics. CRC Press, London

    Book  Google Scholar 

  59. Yim WM, Rosi FD (1972) J Solid State Electron 15:1131–1140

    Google Scholar 

  60. Yoo BY, Huang C-K, Lim JR, Herman J, Ryan MA, Fleurial J-P, Myung NV (2005) Electrochim Acta 50:4371–4377

    Article  CAS  Google Scholar 

  61. Hicks LD, Drwsselhaus MS (1997) Phys Rev B47:631

    Google Scholar 

  62. Huang L, Wang W, Murphy MC (1999) Microsystem Technol 6:1–5

    Article  CAS  Google Scholar 

  63. Li L, Yang Y, Huang X, Li G, Zhang L (2006) Nanotechnology 17:1706–1712

    Article  CAS  Google Scholar 

  64. Sander MS, Prieto AL, Gronsky R, Sands T, Stacy AM (2002) Adv Mater 14(9):665–667

    Article  CAS  Google Scholar 

  65. Purkyastha A, Lupo F, Kim S, Borca-Tasciuc T, Ramnath G (2006) Adv Mater Des 18:496–500

    Article  Google Scholar 

  66. Menke EJ, Li Q, Penner RM (2004) Nano Lett 4(10):2009–2014

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhav Datta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Datta, M. (2010). Microelectronic Packaging Trends and the Role of Nanotechnology. In: Osaka, T., Datta, M., Shacham-Diamand, Y. (eds) Electrochemical Nanotechnologies. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1424-8_14

Download citation

Publish with us

Policies and ethics