Skip to main content

Field and Experimental Approaches to the Study of Locomotor Ontogeny in Propithecus verreauxi

  • Chapter
  • First Online:
Primate Locomotion

Abstract

In this chapter, we use field-behavioral, morphometric, and laboratory-based data to demonstrate complex links among morphology, performance, and fitness. Although Propithecus verreauxi become “ecological adults” at a very young age, skeletal growth of Propithecus is slow. This incongruity creates a challenge for a small, developing animal to move efficiently when traveling along the same pathways with larger adults. To explore the effects of this disparity, we quantified the relationships among postcranial morphology, behavior, and fitness in an ontogenetic sample of wild Propithecus and subsequently tested functional relationships in the laboratory. Juvenile Propithecus exhibit growth allometries and functional changes in locomotion related to decreasing emphasis on pedal grasping and increasing emphasis on thigh-powered leaping. Whereas adult Propithecus use their long, muscular thigh and leg segments to increase leaping distance and reduce collisional costs during galloping on the ground, juvenile Propithecus increase angular excursions and acceleration and use a hopping gait on the ground that reduces the number of collisions. We show how this juvenile locomotor strategy and other aspects of the “locomotor phenotype” are associated with fitness. Understanding how variation in morphology influences variation in performance throughout ontogeny and the consequences of these associations on fitness should be a major focus of both field and laboratory studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

COM:

center of mass

RMA regression:

reduced major axis regression

References

  • Adamczyk PG, Collins SH, and Kuo AD (2006). The advantages of a rolling foot in human walking. J Exp Biol 209(20):3953–3963.

    Article  PubMed  Google Scholar 

  • Arnold SJ (1983) Morphology, performance, and fitness. Am Zool 23:347–361.

    Google Scholar 

  • Baumgartner RE, Wunderlich RE, Schmitt D (2009) Collisional biomechanics during sifaka bipedalism. Proceedings of the Annual Meeting of the Society of Integrative and Comparative Biology P3.63.

    Google Scholar 

  • Bishop KL, Pai AK, Schmitt D (2008) Whole body mechanics of stealthy walking in cats. PLoS ONE 3(11).

    Google Scholar 

  • Blickhan R, Full RJ (1993) Mechanical work in terrestrial locomotion. In: Biewener AA (ed), Biomechanics: Structures and Systems. Oxford University Press, New York, pp 75–96.

    Google Scholar 

  • Bock WJ (1965) The role of adaptive mechanisms in the origin of higher levels of organization. Systematic Zoology 14(4):272–287.

    Article  PubMed  CAS  Google Scholar 

  • Bock WJ, von Wahlert G (1965) Adaptation and the form-function complex. Evolution 19(3):269–299.

    Article  Google Scholar 

  • Carrier DR (1996) Ontogenetic limits on locomotor performance. Physiol Zool 69(3):467–488.

    Google Scholar 

  • Cavagna GA (1975) Force platforms as ergometers. J Appl Physiol 39:174–179.

    PubMed  CAS  Google Scholar 

  • Clutton-Brock TH, Harvey PH (1979) Comparison and adaptation. Proc R Soc Lond B 205(1161):547–565.

    Article  PubMed  CAS  Google Scholar 

  • Crompton RH, Sellers WI, Gunther MM (1993) Energetic efficiency and ecology as selective factors in the saltatory adaptation of prosimian primates. Proc R Soc Lond B 253(1339):41–45.

    Article  Google Scholar 

  • Deaner RO, Platt ML (2003) Reflexive social attention in monkeys and humans. Curr Biol 13(18):1609.

    Article  PubMed  CAS  Google Scholar 

  • Demes B, Jungers WL, Fleagle JG, Wunderlich RE, Richmond BG, Lemelin P (1996) Body size and leaping kinematics in Malagasy vertical clingers and leapers. J Hum Evol 31:385–399.

    Article  Google Scholar 

  • Demes B, Fleagle JG, Lemelin P (1998) Myological correlates of prosimian leaping. J Hum Evol 34: 385–399.

    Article  PubMed  CAS  Google Scholar 

  • Doran DM (1992) The ontogeny of chimpanzee and pygmy chimpanzee locomotor behavior: a case study of paedomorphism and its behavioral correlates. J Hum Evol 23(2):139–157.

    Article  Google Scholar 

  • Doran DM (1997) Ontogeny of locomotion in mountain gorillas and chimpanzees. J Hum Evol 32: 323–344.

    Article  PubMed  CAS  Google Scholar 

  • Dunbar DC, Badam GL (2000) Locomotion and posture during terminal branch feeding. Int J Primatol 21(4):649.

    Article  Google Scholar 

  • Eaglen RH (1985) Behavioral correlates of tooth eruption in Madagascar lemurs. Am J Phys Anthropol 66:307–315.

    Article  Google Scholar 

  • Fleagle JG (1976) Locomotion and posture of Malayan siamang and implications for hominoid evolution. Folia Primatol 26(4):245–269.

    Article  PubMed  CAS  Google Scholar 

  • Gebo DL (1985) The nature of the primate grasping foot. Am J Phys Anthropol 67:269–277.

    Article  Google Scholar 

  • Godfrey LR, Samonds KE, Jungers WL, Sutherland MR, Irwin MT (2004) Ontogenetic Correlates of diet in Malagasy lemurs. Am J Phys Anthropol 123(3):250.

    Article  PubMed  CAS  Google Scholar 

  • Griffin TM, Main RP, Farley CT (2004) Biomechanics of quadrupedal walking: how do four-legged animals achieve inverted pendulum-like movements? J Exp Biol 207(20):3545.

    Article  PubMed  Google Scholar 

  • Harvey PH, Clutton-Brock TH (1985) Life history variation in primates. Evolution 39:559–581.

    Article  Google Scholar 

  • Herrel A, Gibb AC (2006) Ontogeny of performance in vertebrates. Phys Biochem Zool 79(1):1.

    Article  Google Scholar 

  • Hurov JR (1991) Rethinking primate locomotion: What can we learn from development? J Motor Behav 23:211.

    Article  CAS  Google Scholar 

  • Janson CH, Van Schaik CP (1993) Ecological risk aversion in juvenile primates: slow and steady wins the race. In: Perreira ME, Fairbanks LA (eds), Juvenile Primates. Oxford University Press, New York, pp. 57–76.

    Google Scholar 

  • Joffe TH (1997) Social pressures have selected for an extended juvenile period in primates. J Hum Evol 32(6):593.

    Article  PubMed  CAS  Google Scholar 

  • Kappeler PM, Schaffler L (2008) The lemur syndrome unresolved: extreme male reproductive skew in sifakas (Propithecus verreauxi), a sexually monomorphic primate with female dominance. Behav Ecol Sociobiol 62:1007–1015.

    Article  Google Scholar 

  • Kilkenny P (2004) Ground reaction forces during bipedalism in Propithecus verreauxi. Master’s thesis, James Madison University.

    Google Scholar 

  • Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37: 1210–1226.

    Article  Google Scholar 

  • Lawler RR (2006) Sifaka positional behavior: ontogenetic and quantitative genetic approaches. Am J Phys Anthropol 131:261–271.

    Article  PubMed  Google Scholar 

  • Lawler RR, Richard AF, Riley MA (2005) Intrasexual selection in Verreaux’s sifaka (Propithecus verreauxi verreauxi). J Hum Evol 48:259–277.

    Article  PubMed  Google Scholar 

  • Le Galliard JF, Clobert J, Ferrière R (2004) Physical performance and darwinian fitness in lizards. Nature 432(7016):502–505.

    Article  PubMed  CAS  Google Scholar 

  • Leigh SR (1994) Ontogenetic correlates of diet in anthropoid primates. Am J Phys Anthropol 94(4):499–522.

    Article  PubMed  CAS  Google Scholar 

  • Leigh SR (2004) Brain growth, life history, and cognition in primate and human evolution. Am J Primatol 62(3):139.

    Article  PubMed  CAS  Google Scholar 

  • Main RP, Biewener AA (2006) In vivo bone strain and ontogenetic growth patterns in relation to life-history strategies and performance in two vertebrate taxa: goats and emu. Physiol Biochem Zool 79(1):57.

    Article  PubMed  Google Scholar 

  • Main RP, Biewener AA (2007) Skeletal strain patterns and growth in the emu hindlimb during ontogeny. J Exp Biol 210(15):2676–2690.

    Article  PubMed  Google Scholar 

  • Martin RD (1981) Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293:57–60.

    Article  PubMed  CAS  Google Scholar 

  • Martin RD and Harvey PH (1985) Brain size allometry: ontogeny and phylogeny. In: Jungers WL (ed), Size and Scaling in Primate Biology. Plenum Press, New York, pp. 147–173.

    Google Scholar 

  • Martin RD, Genoud M, Hemelrijk CK (2005) Problems of allometric scaling analysis: examples from mammalian reproductive biology. J Exp Biol 208:1731–1747.

    Article  PubMed  Google Scholar 

  • Pereira ME, Fairbanks LA (1993) Juvenile Primates. Oxford University Press, New York.

    Google Scholar 

  • Poirier FE, Smith EO (1974) Socializing functions of primate play. Am Zool 14:275–287.

    Google Scholar 

  • Raichlen DA (2005a) Effects of limb mass distribution on the ontogeny of quadrupedalism in infant baboons (Papio cynocephalus) and implications for the evolution of primate quadrupedalism. J Hum Evol 49(4):415.

    Article  PubMed  Google Scholar 

  • Raichlen DA (2005b) Ontogeny of limb mass distribution in infant baboons (Papio cynocephalus). J Hum Evol 49(4):452.

    Article  PubMed  Google Scholar 

  • Raichlen DA (2006) Effects of limb mass distribution on mechanical power outputs during quadrupedalism. J Exp Biol 209(4):633.

    Article  PubMed  Google Scholar 

  • Ravosa MJ, Meyers DM, Glander KE (1993) Relative growth of the limbs and trunk in sifakas: Heterochronic, ecological, and functional considerations. Am J Phys Anthropol 92(4): 499.

    Article  PubMed  CAS  Google Scholar 

  • Rice SH (2002) Lecture on Life History Evolution. Evolutionary Biology (E&Eb 225b), Yale University.

    Google Scholar 

  • Rice SH (2004) Evolutionary Theory: Mathematical and Conceptual Foundations. Sinauer, Sunderland, MA.

    Google Scholar 

  • Richard AF, Dewar RE, Schwartz M, Ratsirarson J (2002) Life in the slow lane? Demography and life histories of male and female sifaka (Propithecus verreauxi verreauxi). J Zool Lond 256: 421–436.

    Article  Google Scholar 

  • Ruina A, Bertram JEA, Srinivasan M (2005) A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. J Theor Biol 237(2):170.

    Article  PubMed  Google Scholar 

  • Schluter D (1988) Estimating the form of natural selection on a quantitative trait. Evolution 42:849–861.

    Article  Google Scholar 

  • Schluter D, Nychka D (1994) Exploring fitness surfaces. Am Nat 143:597–616.

    Article  Google Scholar 

  • Schmitt D, Lemelin P (2002) Origins of primate locomotion: gait mechanics of the woolly opossum. Am J Phys Anthropol 118(3):231–238.

    Article  PubMed  Google Scholar 

  • Schwartz GT, Samonds KE, Godfrey LR, Jungers WL, Simons EL (2002) Dental microstructure and life history in subfossil Malagasy lemurs. Proc Natl Acad Sci USA 99(9):6124.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro LJ, Raichlen DA (2006) Limb proportions and the ontogeny of quadrupedal walking in infant baboons (Papio cynocephalus). J Zool 269(2):191.

    Google Scholar 

  • Stearns SC (1992) The Evolution of Life Histories. Oxford University Press, Oxford.

    Google Scholar 

  • Van Valen L (1973) Festschrift. Science 180: 488.

    Google Scholar 

  • Vilensky J, Gankiewicz E (1989) Early development of locomotor behavior in vervet monkeys. Am J Primatol 17:11–25.

    Article  Google Scholar 

  • Walker R, Burger O, Wagner J, Von Rueden CR (2006) Evolution of brain size and juvenile periods in primates. J Hum Evol 51(5):480.

    Article  PubMed  Google Scholar 

  • Warren RD, Crompton RH (1998) Diet, body size and the energy costs of locomotion in saltatory primates. Folia Primatol 69(S1):86–100.

    Article  Google Scholar 

  • Wells JP, Turnquist JE (2001) Ontogeny of locomotion in rhesus macaques (Macaca mulatta): II. Postural and locomotor behavior and habitat use in a free-ranging colony. Am J Phys Anthropol 115(1):80.

    Article  PubMed  CAS  Google Scholar 

  • Willems PA, Cavagna GA, Heglund NC (1995) External, internal and total work in human locomotion. J Exp Biol 198:379–393.

    PubMed  CAS  Google Scholar 

  • Williams AE (2007) Ontogeny of locomotion in Propithecus verreauxi. Honors thesis, James Madison University.

    Google Scholar 

  • Workman C, Covert HH (2005) Learning the ropes: the ontogeny of locomotion in red-shanked douc (Pygathrix nemaeus), Delacour’s (Trachypithecus delacouri), and Hatinh langurs (Trachypithecus hatinhensis) I. Positional behavior. Am J Phys Anthropol 128(2):371.

    Article  PubMed  Google Scholar 

  • Wunderlich RE, Schaum JC (2007) Kinematics of bipedalism in Propithecus verreauxi. J Zool 272(2).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roshna E. Wunderlich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wunderlich, R.E., Lawler, R.R., Williams, A.E. (2011). Field and Experimental Approaches to the Study of Locomotor Ontogeny in Propithecus verreauxi . In: D'Août, K., Vereecke, E. (eds) Primate Locomotion. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1420-0_8

Download citation

Publish with us

Policies and ethics