In What Manner Do Quadrupedal Primates Walk on Two Legs? Preliminary Results on Olive Baboons (Papio anubis)

  • Gilles Berillon
  • Kristiaan D’Août
  • G. Daver
  • G. Dubreuil
  • F. Multon
  • G. Nicolas
  • B. de la Villetanet
Part of the Developments in Primatology: Progress and Prospects book series (DIPR)


Olive baboons (Papio anubis) are typically described as highly ­specialized for quadrupedal locomotion. Yet, they regularly and spontaneously walk bipedally as well. In what manner do they do this, when compared to other primates and humans? This question is of interest with regard to the origin of bipedalism in hominids. As a first step in understanding bipedal locomotion in baboons, we here present novel kinematic data, achieved using a custom-built setup that allows to measure individual locomotor parameters in a population of 55–60 captive olive baboons housed at the Primatology Station of the National Centre for Scientific Research (CNRS, France) using a high-speed digital recording system (100 fps) and a walkway (Podium). Within our population, we observed bipedality mainly in infant and subadult individuals: we present the sagittal motion parameters that we collected on a sample of 10 males and females of ages between 6 months and 5.5 years. As far as angular trajectories of the trunk and the lower limb joints are concerned, olive baboons walk bipedally in a rather stereotyped, compliant manner with a semiplantigrade stance phase, a trunk that is slightly tilted forward and immobile forelimbs kept forward in a parasagittal plane. Some small variations can be depicted, especially in the younger individuals of the sample. Among other “quadrupedal” primates of which the bipedal locomotion has been kinematically analyzed, the kinematics of bipedal walking of Papio anubis more closely resembles those described in Macaca fuscata. In the broader framework of our study, numerous transversal and longitudinal analyses are in progress on data as varied as noninvasive anatomical investigations, kinematics, kinetics, and paedobarography.


bipedalism captivity kinematics setup locomotion 


  1. Aerts P, Van Damme R, Van Elsacker L, Duchene V (2000) Spatio–temporal gait characteristics of the hind-limb cycles during voluntary bipedal and quadrupedal walking in Bonobos (Pan paniscus). Am J Phys Anthropol 111:503–517.PubMedCrossRefGoogle Scholar
  2. Aiello LC, Dean C (1990) An Introduction to Human Evolutionary Anatomy. Academic Press, London.Google Scholar
  3. Alexander RM (1984) Stride length and speed for adults, children, and fossil hominids. Am J Phys Anthropol 63:23–27.PubMedCrossRefGoogle Scholar
  4. Alexander RM (2002) Energetics and optimization of human walking and running: the 2000 Raymond Pearl Memorial lecture. Am J Hum Biol 14:641–648.CrossRefGoogle Scholar
  5. Alexander RM (2004) Bipedal animals, and their differences from humans. J Anat 204(5):321–330.PubMedCrossRefGoogle Scholar
  6. Berillon G, Daver G, D’Août K, Nicolas G, de la Villetanet B, Multon F, Digrandi G, Dubreuil G (2010) Bipedal vs. quadrupedal hindlimb and foot kinematics in a captive sample of olive baboons (Papio anubis): setup and preliminary results. Int J Primatol 31(2):159–180.Google Scholar
  7. Crompton RH, Li Y, Alexander RM, Wang WJ, Günther MM (1996) Segment inertial properties of primates: new techniques for laboratory and field studies of locomotion. Am J Phys Anthropol 99:547–570.PubMedCrossRefGoogle Scholar
  8. Crompton RH, Li Y, Wang W, Günther MM, Savage R (1998) The mechanical effectiveness of erect and “bent-hip, bent-knee” bipedal walking in Australopithecus afarensis. J Hum Evol 35(1):55–74.PubMedCrossRefGoogle Scholar
  9. Crompton RH, Vereecke EE, Thorpe SKS (2008) Locomotion and posture from the common hominoid ancestor to fully modern hominins, with special reference to the last common panin/hominin ancestor. J Anat 212:501–54.PubMedCrossRefGoogle Scholar
  10. Danion F, Varraine E, Bonnard M, Pailhous J (2003) Stride variability in human gait: the effect of stride frequency and stride length. Gait Posture 18(1):69–77.PubMedCrossRefGoogle Scholar
  11. D’Août K, Aerts P, De Clercq D, De Meester K, Van Elsacker L (2002) Segment and joint angles of hindlimb during bipedal and quadrupedal walking of the bonobo (Pan paniscus). Am J Phys Anthropol 119(1):37–51.PubMedCrossRefGoogle Scholar
  12. D’Août K, Aerts P, De Clercq D, Schoonaert K, Vereecke E, Van Elsacker L (2001) Studying bonobo (Pan paniscus) locomotion using an integrated setup in a zoo environment: preliminary results. Primatologie 4:191–206.Google Scholar
  13. Doran DM (1993) Comparative locomotor behavior of chimpanzees and bonobos: the influence of morphology on locomotion. Am J Phys Anthropol 91:83–98.PubMedCrossRefGoogle Scholar
  14. Doran DM (1997) Ontogeny of locomotion in mountain gorillas and chimpanzees. J Hum Evol 32(4):323–344.PubMedCrossRefGoogle Scholar
  15. Elftman H (1944) The bipedal walking of the chimpanzee. J Mammal 25:67–71.CrossRefGoogle Scholar
  16. Elftman H, Manter J (1935a) Chimpanzee and human feet in bipedal walking. Am J Phys Anthropol 20:69–79.CrossRefGoogle Scholar
  17. Elftman H, Manter J (1935b) The evolution of the human foot, with especial reference to the joints. J Anat 70:56–70.PubMedGoogle Scholar
  18. Fleagle JG (1988) Primate Adaptation and Evolution. Academic Press, New York.Google Scholar
  19. Gebo DL (1992) Plantigrady and foot adaptation in African Apes: implications for hominids origins. Am J Phys Anthropol 89:29–58.PubMedCrossRefGoogle Scholar
  20. Grimshaw PN, Marques–Bruna P, Salo A, Messenger N (1998) The 3-dimensional kinematics of the walking gait cycle of children aged between 10 and 24 months: cross sectional and repeated measures. Gait Posture 7(1):7–15.PubMedCrossRefGoogle Scholar
  21. Groves CP (2001) Primate Taxonomy. Smithsonian Institute Press, Washington.Google Scholar
  22. Hallemans A, Clercq DD, Aerts P (2006) Changes in 3D joint dynamics during the first 5 months after the onset of independent walking: a longitudinal follow-up study. Gait Posture 24(3):270–279.PubMedCrossRefGoogle Scholar
  23. Hirasaki E, Ogihara N, Hamada Y, Kumakura H, Nakatsukasa M (2004) Do highly trained monkeys walk like humans? A kinematic study of bipedal locomotion in bipedally trained Japanese macaques. J Hum Evol 46(6):739–750.PubMedCrossRefGoogle Scholar
  24. Hunt KD (1989) Positional behaviour in Pan troglodytes at the Mahale Mountains and Gombe Stream National Parks. PhD dissertation, University of Michigan.Google Scholar
  25. Inman VT, Ralston HJ, Todd F (1981) Human Walking. Williams & Wilkins, Baltimore.Google Scholar
  26. Ishida H, Kimura T, Okada M (1974) Patterns of bipedal walking in anthropoid primates. In: Kondo S, Kawai M, Ehara A, Kawamura S (eds.), Proceedings from the symposia of the 5th congress of the International Primatological Society, pp. 287–301. Japan Science Press, Tokyo.Google Scholar
  27. Isler K, Payne RC, Günther MM, Thorpe SKS, Li Y, Savage R, Crompton RH (2006) Inertial properties of hominoid limb segments. J Anat 209(2):201–218.PubMedCrossRefGoogle Scholar
  28. Jenkins FA (1972) Chimpanzee bipedalism: Cineradiographic analysis and implications for the evolution of gait. Science 178(4063):877–879.PubMedCrossRefGoogle Scholar
  29. Kimura T (1985) Bipedal and quadrupedal walking of primates: comparative dynamics. In: Kondo S (ed), Primate Morphophysiology, Locomotor Analyses and Human Bipedalism, pp. 81–104. University of Tokyo Press, Tokyo.Google Scholar
  30. Kimura T (1990) Voluntary bipedal walking in infant chimpanzees. In: Jouffroy FK, Stack MHGoogle Scholar
  31. Niemitz C (eds), Gravity, Posture and Locomotion in Primates, pp. 237–251. Il Sedicessimo, Firenze.Google Scholar
  32. Kimura T (1996) Centre of gravity of the body during the ontogeny of chimpanzee bipedal ­walking. Folia Primatol 66(1-4):126–136.PubMedCrossRefGoogle Scholar
  33. Kimura T, Okada M, Ishida H (1979) Kinesiological characteristics of primate walking: its significance in human walking. In: Morbeck ME, Preuschoft H, Gomberg N (eds), Environment, Behavior, and Morphology: Dynamic Interactions in Primates, pp. 297–311. Gustav Fischer, New York.Google Scholar
  34. Kimura T, Okada M, Yamazaki N, Ishida H (1983) Speed of the bipedal gaits of man and nonhuman primates. Ann Sci Nat Zool Paris 5:145–158.Google Scholar
  35. Kramer PA, Eck GG (2000) Locomotor energetics and leg length in hominid bipedality. J Hum Evol 38(5):651–666.PubMedCrossRefGoogle Scholar
  36. Lewis OJ (1989) Functional Morphology of the Evolving Hand and Foot. Clarendon Press, Oxford.Google Scholar
  37. Li Y, Crompton RH, Alexander RM, Gunther MM, Wang WJ (1996) Characteristics of ground reaction forces in normal and chimpanzee-like bipedal walking by humans. Folia Primatol 66(1-4):137–159.PubMedCrossRefGoogle Scholar
  38. Meldrum DJ (1991) Kinematics of the Cercopithecine foot on arboreal and terrestrial substrates with implications for the interpretation of Hominid terrestrial adaptations. Am J Phys Anthropol 84:273–289.PubMedCrossRefGoogle Scholar
  39. Nagano A, Umberger BR, Marzke MW, Gerritsen KGM (2005) Neuromusculoskeletal computer modeling and simulation of upright, straight-legged, bipedal locomotion of Australopithecus afarensis (A.L. 288-1). Am J Phys Anthropol 126(1):2–13.PubMedCrossRefGoogle Scholar
  40. Nakatsukasa M, Hayama S, Preuschoft H (1995) Postcranial skeleton of a Macaque trained for bipedal standing and walking and implications for functional adaptation. Folia Primatol 64:1–29.PubMedCrossRefGoogle Scholar
  41. Nakatsukasa M, Ogihara N, Hamada Y, Goto Y, Yamada M, Hirakawa T, Hirasaki E (2004) Energetic costs of bipedal and quadrupedal walking in Japanese macaques. Am J Phys Anthropol 124(3):248–256.PubMedCrossRefGoogle Scholar
  42. Nakatsukasa M, Hirasaki E, Ogihara N (2006) Energy expenditure of bipedal walking is higher than that of quadrupedal walking in Japanese macaques. Am J Phys Anthropol 131(1):33–37.PubMedCrossRefGoogle Scholar
  43. Ogihara N, Usui H, Hirasaki E, Hamada Y, Nakatsukasa M (2005) Kinematic analysis of bipedal locomotion of a Japanese macaque that lost its forearms due to congenital malformation. Primates 46(1):11–19.PubMedGoogle Scholar
  44. Ogihara N, Hirasaki E, Kumakura H, Nakatsukasa M (2007) Ground-reaction-force profiles of bipedal walking in bipedally trained Japanese monkeys. J Hum Evol 53(3):302–308.PubMedCrossRefGoogle Scholar
  45. Okada M (1985) Primate bipedal walking: comparative kinematics. In: Kondo S (ed), Primate Morphophysiology, Locomotor Analyses and Human Bipedalism, pp. 47–58. Tokyo University Press, Tokyo.Google Scholar
  46. Payne RC, Crompton RH, Isler K, Savage R, Vereecke EE, Günther MM, Thorpe DE, D’Août K (2006) Morphological analysis of the hindlimb in apes and humans. I. Muscle architecture. J Anat 208(6):709–724.PubMedGoogle Scholar
  47. Raichlen DA, Pontzer H, Sockol MD (2008) The Laetoli footprints and early hominin locomotor kinematics. J Hum Evol 54:112–117.PubMedCrossRefGoogle Scholar
  48. Rose MD (1973) Quadrupedalism in primates. Primates 14:337–357.CrossRefGoogle Scholar
  49. Rose MD (1976) Bipedal behavior of olive baboons (Papio anubis) and its relevance to an understanding of the evolution of human bipedalism. Am J Phys Anthropol 44:247–262.PubMedCrossRefGoogle Scholar
  50. Rose MD (1977) Positional behaviour of olive baboons (Papio anubis) and its relationship to maintenance and social activities. Primates 18:59–116.CrossRefGoogle Scholar
  51. Schmitt D, Larson SG (1995) Heel contact as a function of substrate type and speed in Primates. Am J Phys Anthropol 96:39–50.PubMedCrossRefGoogle Scholar
  52. Schmitt DO (2003) Insights into the evolution of human bipedalism from experimental studies of humans and other primates. J Exp Biol 206:1437–1448.PubMedCrossRefGoogle Scholar
  53. Schoonaert K, D’Août K, Aerts P (2007) Morphometrics and inertial properties in the body segments of chimpanzees (Pan troglodytes). J Anat 210(5):518–531.PubMedCrossRefGoogle Scholar
  54. Sellers WI, Dennis LA, Crompton RH (2003) Predicting the metabolic energy costs of bipedalism using evolutionary robotics. J Exp Biol 206:1127–1136.PubMedCrossRefGoogle Scholar
  55. Sellers WI, Dennis LA, Wang WJ, Crompton RH (2004) Evaluating alternative gait strategies using evolutionary robotics. J Anat 204(5):343–351.PubMedCrossRefGoogle Scholar
  56. Sellers WI, Cain GM, Wang W, Crompton RH (2005) Stride lengths, speed and energy costs in walking of Australopithecus afarensis: using evolutionary robotics to predict locomotion of early human ancestors. J R Soc Interface: 1–11.Google Scholar
  57. Tardieu C, Aurengo A, Tardieu B (1993) New method of the three-dimensional analysis of bipedal locomotion for the study of displacements of the body and body-parts centers of mass in man and non-human primates: evolutionary framework. Am J Phys Anthropol 90:455–476.PubMedCrossRefGoogle Scholar
  58. Vereecke EE, D’Août K, De Clercq D, Van Elsacker L, Aerts P (2003) Dynamic plantar pressure distribution during terrestrial locomotion of bonobos (Pan paniscus). Am J Phys Anthropol 120(4):373–383.PubMedCrossRefGoogle Scholar
  59. Vereecke EE, D’Août K, De Clercq D, Van Elsacker L, Aerts P (2004) The relationship between speed, contact time and peak plantar pressure in terrestrial walking of bonobos. Folia Primatol 75(4):266–278.PubMedCrossRefGoogle Scholar
  60. Vereecke EE, D’Août K, Van Elsacker L, De Clercq D, Aerts P (2005) Functional analysis of the gibbon foot during terrestrial bipedal walking: plantar pressure distributions and three-dimensional ground reaction forces. Am J Phys Anthropol 128(3):659–669.PubMedCrossRefGoogle Scholar
  61. Vereecke EE, D’Août K, Aerts P (2006a) Locomotor versatility in the white-handed gibbon (Hylobates lar): a spatiotemporal analysis of the bipedal, tripedal, and quadrupedal gaits. J Hum Evol 50(5):552–567.PubMedCrossRefGoogle Scholar
  62. Vereecke EE, D’Août K, Aerts P (2006b) Speed modulation in hylobatid bipedalism: A kinematic analysis. J Hum Evol 51(5):513–526.PubMedCrossRefGoogle Scholar
  63. Vereecke EE, Aerts P (2008) The mechanics of the gibbon foot and its potential for elastic energy storage during bipedalism. J Exp Biol 211 (23):3661-3670.PubMedCrossRefGoogle Scholar
  64. Wang WJ, Crompton R, Li Y, Gunther MM (2003) Energy transformation during erect and “bent-hip, bent-knee” walking by humans with implications for the evolution of bipedalism. J Hum Evol 44(2):563–579.PubMedCrossRefGoogle Scholar
  65. Winter DA (1991) The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological, 2nd ed. University of Waterloo Press, Waterloo Biomechanics.Google Scholar
  66. Wrangham RW (1980) Bipedal locomotion as a feeding adaptation in Gelada Baboons, and its complicartions for hominid evolution. J Hum Evol 9:329–331.CrossRefGoogle Scholar
  67. Yaguramaki N, Kimura T (2002) Acquirement of stability and mobility in infant gait. Gait Posture 16(1):69–77.PubMedCrossRefGoogle Scholar
  68. Yamazaki N, Ishida H, Kimura T, Okada M (1979) Biomechanical analysis of the primate bipedal walking by computer simulation. J Hum Evol 8:337–349.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Gilles Berillon
    • 1
  • Kristiaan D’Août
  • G. Daver
  • G. Dubreuil
  • F. Multon
  • G. Nicolas
  • B. de la Villetanet
  1. 1.UPR 2147 CNRSDynamique de l’Evolution HumaineParisFrance

Personalised recommendations