Skip to main content

Studying Captive Ape Locomotion: Past, Present, and Future

  • Chapter
  • First Online:
Primate Locomotion

Abstract

Most of our knowledge regarding primate locomotion, especially biomechanical aspects, results from studies of captive populations, typically in laboratories or zoos. Obviously, a controlled environment facilitates the acquisition of high-quality locomotion data; it has done so in the past and will continue to do so in the future. We start by outlining how primate locomotion has been studied in captive settings, and the sort of insights such studies have yielded. We draw examples from our own research on hylobatids (Hylobates lar, Symphalangus syndactylus) and bonobos (Pan paniscus), carried out using integrated setups in a zoo environment. Locomotion is highly variable in these hominoid species; even in a captive setup, it is inevitably less complex than in the natural habitat. Neither species uses a human-like stiff-legged (inverted pendulum) type of terrestrial locomotion. Bonobos use a highly crouched posture both in bipedal and quadrupedal terrestrial locomotion; lar gibbons use a bouncing gait with potential for energy saving mechanisms in the knee and in the foot. Aspects of arboreal locomotion have been, or are being studied in the three species, using stiff substrates and overhead supports. Next, we discuss some shortcomings of working outside of the natural habitat, ex situ. They pertain most clearly to the limited number of subjects (a result of availability issues and the high level of detail required) and to the relative lack of complexity in the substrates used. Especially during arboreal locomotion, new research lines should be (and are being) started in which spatial complexity and compliance are incorporated in the experimental setup. We are currently using this approach to study jumping off branches and for brachiation in hylobatids. Finally, we make some suggestions of how field work can help meet some of the limitations intrinsic to ex situ studies. Locomotor field studies are complementary to ex situ studies in their capacity to study larger sample sizes (albeit in lesser detail) in their natural environment, thereby documenting, preferably quantitatively, the natural locomotion repertoire, unbiased by human-made setups. Specifically, field studies are crucial for describing the locomotor modes that are actually used by the species studied, and for providing an ecological framework for an integrated approach of primate locomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts P, Van Damme R, Van Elsacker L, Duchêne V (2000) Spatio-temporal gait characteristics of the hind-limb cycles during voluntary bipedal and quadrupedal walking in bonobos (Pan paniscus). Am J Phys Anthropol 111:503–517.

    Article  PubMed  CAS  Google Scholar 

  • Andrew P, Groves CE (1976) Gibbon and brachiation. In: Rumbaugh DM (ed), Gibbon and Siamang: A Series of Volumes on the Lesser Apes, Vol. 4: Suspensory Behavior, Locomotion, and Other Behaviors of Captive Gibbons: Cognition. Karger, Basel, pp 167–218.

    Google Scholar 

  • Baldwin LA, Teleki G (1976) Patterns of gibbon behavior on Hall’s Island, Bermuda: A preliminary ethogram for Hylobates lar. Gibbon Siamang 4:21–105.

    Google Scholar 

  • Bertram JEA, Chang YH (1996) Gait change in gibbon brachiation. Am Zool 36:20.

    Google Scholar 

  • Bertram JEA, Ruina A, Cannon CE, Hui Chang Y, Coleman MJ (1999) A point-mass model of gibbon locomotion. J Exp Biol 202:2609–2617.

    PubMed  CAS  Google Scholar 

  • Bertram JEA, Chang YH (2001) Mechanical energy oscillations of two brachiation gaits: measurement and simulation. Am J Phys Anthropol 115:319–326.

    Article  PubMed  CAS  Google Scholar 

  • Bertram JEA (2004) New perspectives on brachiation mechanics. Yrbk Phys Anthropol 47:100–117.

    Article  Google Scholar 

  • Carlson KJ, Judex S (2007) Increased non-linear locomotion alters diaphyseal bone shape. J Exp Biol 210(17):3117–3125.

    Article  PubMed  Google Scholar 

  • Carpenter CR (1964) A field study in Siam of the behavior and social relations of the gibbon (Hylobates lar). In: Carpenter CR (ed), Naturalistic Behavior of Nonhuman Primates. Pennsylvania State University Press, University Park, pp 145–271.

    Google Scholar 

  • Chang YH, Bertram JEA, Ruina A (1997) A dynamic force and moment analysis system for brachiation. J Exp Biol 200:3013–3020.

    PubMed  CAS  Google Scholar 

  • Chang YH, Bertram JEA, Lee DV (2000) External forces and torques generated by the brachiating white-handed gibbon (Hylobates lar). Am J Phys Anthropol 113:201–216.

    Article  PubMed  CAS  Google Scholar 

  • Channon AJ, Crompton RH, Gunther MM, D’Août K, Vereecke EE (2010) The biomechanics of leaping in gibbons. Am J Phys Anthropol 143:403–416.

    Article  PubMed  CAS  Google Scholar 

  • Channon AJ, Gunther MM, Crompton RH, D’Août K, Preuschoft H, Vereecke EE (in press) The Effect of Substrate Compliance on the Biomechanics of Gibbon Leaps. J Exp Biol

    Article  PubMed  CAS  Google Scholar 

  • Crompton RH, Sellers WI, Guenther MM (1993) Energetic efficiency and ecology as selective factors in the saltatory adaptation of prosimian primates. Proc R Soc Lond B254(1339):41–45.

    Article  Google Scholar 

  • Crompton RH, Vereecke EE, Thorpe SK (2008) Locomotion and posture from the common hominoid ancestor to fully modern hominins, with special reference to the last common panin/hominin ancestor. J Anat 212(4):501–543.

    Article  PubMed  CAS  Google Scholar 

  • D’Août K, Aerts P, De Clercq D, Schoonaert K, Vereecke E, Van Elsacker L (2001) Studying bonobo (Pan paniscus) locomotion using an integrated setup in a zoo environment: preliminary results. Primatologie 4:191–206.

    Google Scholar 

  • D’Août K, Aerts P, De Clercq D, De Meester K, Van Elsacker L (2002) Segment and joint angles of the hind limb during bipedal and quadrupedal walking of the bonobo (Pan paniscus). Am J Phys Anthropol 119(1):37–51.

    Article  PubMed  Google Scholar 

  • D’Août K, Vereecke E, Schoonaert K, Aerts P (2003) Asymmetrical aspects of bipedal and ­quadrupedal walking in bonobos (Pan paniscus). Am J Phys Anthropol S36:83.

    Google Scholar 

  • D’Août K, Vereecke E, Schoonaert K, De Clercq D, Van Elsacker L, Aerts P (2004) Locomotion in bonobos (Pan paniscus): differences and similarities between bipedal and quadrupedal ­terrestrial walking, and a comparison with other locomotor modes. J Anat 204(5):353–361.

    Article  PubMed  Google Scholar 

  • Demes B, Jungers WL, Gross TS, Fleagle JG (1995) Kinetics of leaping primates: influence of substrate orientation and compliance. Am J Phys Anthropol 96(4):419–429.

    Article  PubMed  CAS  Google Scholar 

  • Demes B, Fleagle JG, Jungers WL (1999) Takeoff and landing forces of leaping strepsirhine ­primates. J Hum Evol 37(2):279–292.

    Article  PubMed  CAS  Google Scholar 

  • Demes B, Carlson KJ, Franz TM (2006) Cutting corners: the dynamics of turning behaviors in two primate species. J Exp Biol 209(5):927–937.

    Article  PubMed  Google Scholar 

  • Demes B, Carlson KJ (2009) Locomotor variation and bending regimes of capuchin limb bones. Am J Phys Anthropol DOI: 10.1002/ajpa.21020.

    Google Scholar 

  • Dickinson MH, Farley CT, Full RJ, Koehl MAR, Kram R, Lehman S (2000) How animals move: an integrative view. Science 288:100–106.

    Article  PubMed  CAS  Google Scholar 

  • Dielentheis TF, Hofstetter AM, Niemitz C (1996) Bipedality in captive bonobos (Pan paniscus). Primate Rep 44:7.

    Google Scholar 

  • Doran DM (1993) Comparative locomotor behavior of chimpanzees and bonobos: the influence of morphology on locomotion. Am J Phys Anthropol 91(1):83–98.

    Article  PubMed  CAS  Google Scholar 

  • Fleagle JG (1976) Locomotion and posture of the Malayan siamang and implications for hominid evolution. Folia Primatol 26:245–269.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs S, Collard M, Wood B (2002) Soft-tissue anatomy of the extant hominoids: a review and phylogenetic analysis. J Anat 200(1):3–49.

    Article  PubMed  CAS  Google Scholar 

  • Gittins PS (1983) Use of forest canopy by the agile gibbon. Folia Primatol 40:134–144.

    Article  PubMed  CAS  Google Scholar 

  • Ishida H, Kimura T, Okada M, Yamazaki N (1976) Kinesiological aspects of bipedal walking in gibbons. In: Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds), The Lesser Apes: Evolutionary and Behavioral Biology. Edinburgh University Press, Edinburgh, pp 135–145.

    Google Scholar 

  • Ishida H, Okada M, Tuttle RH, Kimura T (1978) Activities of hindlimb muscles in bipedal gibbons. In: Chivers DJ, Joysey KA (eds), Recent Advances in Primatology, Vol. 3: Evolution. Academic Press, London, pp 459–462.

    Google Scholar 

  • Ishida H, Kimura T, Okada M, Yamazaki N (1984) Kinesiological aspects of bipedal walking in gibbons. In: Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds), The Lesser Apes: Evolutionary and Behavioral Biology. Edinburgh University Press, Edinburgh, pp 135–145.

    Google Scholar 

  • Ishida H, Kumakura H, Kondo S (1985) Primate bipedalism and quadrupedalism: comparative electromyography. In: Kondo S, Ishida H, Kimura T, Okada M, Yamazaki N, Prost JH (eds), Primate Morphophysiology, Locomotor Analyses and Human Bipedalism. University of Tokyo Press, Tokyo, pp 59–79.

    Google Scholar 

  • Jungers WL, Stern JT Jr (1980) Telemetered electromyography of forelimb muscle chains in gibbons (Hylobates lar). Science 208:617–619.

    Article  PubMed  CAS  Google Scholar 

  • Jungers WL, Stern JT (1981) Preliminary electromyographical analysis of brachiation in gibbon and spider monkey. Int J Primatol 2(1):19–33.

    Article  Google Scholar 

  • Jungers WL, Stern JT (1984) Kinesiological aspects of brachiation in lar gibbons. In: Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds), The Lesser Apes: Evolutionary and Behavioral Biology. Edinburgh University Press, Edinburgh, pp 119–134.

    Google Scholar 

  • Kano T (1979) A pilot study on the ecology of pygmy chimpanzees, Pan paniscus. In: Hamburg DA, McCown ER (eds), Perspectives on Human Evolution, Vol. 5: The Great Apes. Benjamin/Cummings, Menlo Park, CA, pp 123–135.

    Google Scholar 

  • Kano T (1983) An ecological study of the pygmy chimpanzees (Pan paniscus) of Yalosidi, Republic of Zaire. Int J Primatol 4(1):1–31.

    Article  Google Scholar 

  • Kano T (1992) The last ape: pygmy chimpanzee behavior and ecology. Stanford University Press, Stanford, CA.

    Google Scholar 

  • Kimura T, Okada M, Ishida H (1977) Dynamics of primate bipedalism as viewed from the force of the foot. Primates 18:137–147.

    Article  Google Scholar 

  • Kuroda S (1979) Grouping of the pygmy chimpanzees. Primates 20:161–183.

    Article  Google Scholar 

  • Leonard WR, Robertson ML (1997) Comparative primate energetics and hominid evolution.Am J Phys Anthropol 102(2):265–281.

    CAS  Google Scholar 

  • McGrew WC (1998) Culture in nonhuman primates? Annu Rev Anthropol 27:301–328.

    Article  Google Scholar 

  • Moreno CA, Main RP, Biewener AA (2008) Variability in forelimb bone strains during non-steady locomotor activities in goats. J Exp Biol 211(7):1148–1162.

    Article  PubMed  Google Scholar 

  • Nagy KA (1987) Field metabolic rate and food requirement scaling in mammals and birds. Ecol Monogr 57(2):111–128.

    Article  Google Scholar 

  • Nakano Y (2002) The effects of substratum inclination on locomotor patterns in primates. Z Morphol Anthrop 83(2–3):189–199.

    Google Scholar 

  • Nishida T (1972) Preliminary information of the pygmy chimpanzees (Pan paniscus) of the Congo Basin. Primates 13:415–425.

    Article  Google Scholar 

  • Okada M, Kondo S (1982) Gait and EMGs during bipedal walk of a gibbon (Hylobates agilis) on flat surface. J Anthropol Soc Nippon 90:325–330.

    Article  Google Scholar 

  • Okada M, Yamazaki N, Ishida H, Kimura T, Kondo S (1983) Biomechanical characteristics of hylobatid walking on flat surfaces. Ann Sci Nat Zool 5:137–144.

    Google Scholar 

  • Okada M (1985a) Primate bipedal walking: comparative kinematics. In: Kondo S, Ishida H, Kimura T, Okada M, Yamazaki N, Prost JH (eds), Primate Morphophysiology, Locomotor Analysis and Human Bipedalism. University of Tokyo Press, Tokyo, p 47.

    Google Scholar 

  • Okada M (1985b) Experimental studies on primate positional behavior. Rec Prog Nat Sci Jpn 8:71–78.

    Google Scholar 

  • Paskins KE, Bowyer A, Megill WM, Scheibe JS (2007) Take-off and landing forces and the evolution of controlled gliding in northern flying squirrels Glaucomys sabrinus Exp Biol 210(8):1413–1423.

    Article  Google Scholar 

  • Payne RC, Crompton RH, Isler K, Savage R, Vereecke EE, Günther MM, Thorpe SKS, D’Août K (2006) Morphological analysis of the hindlimb in apes and humans. Part I: Muscle architecture. J Anat 208:709–724.

    PubMed  CAS  Google Scholar 

  • Pontzer H, Ocobock C, Shumaker RW, Raichlen DA (2009) Daily energy expenditure in orangutans measured using doubly labeled water. Am J Phys Anthropol 138(S48):328–329.

    Google Scholar 

  • Preuschoft H, Demes B (1984) Biomechanics of brachiation. In: Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds), The Lesser Apes: Evolutionary and Behavioral Biology. Edinburgh University Press, Edinburgh, pp 96–118.

    Google Scholar 

  • Prost JH (1967) Bipedalism of man and gibbon compared using estimates of joint motion. Am J Phys Anthropol 26:135–148.

    Article  Google Scholar 

  • Reid GMcG, Macdonald AA, Fidgett AL, Hiddinga B, Leus K (2008) Developing the research potential of zoos and aquaria. The EAZA Research Strategy. EAZA Executive Office, Amsterdam.

    Google Scholar 

  • Sati, JP, Alfred JRB (2002) Locomotion and posture in Hoolock gibbon. Ann Forest 10:298–306.

    Google Scholar 

  • Schmid P, Piaget A (1994) Three-dimensional kinematics of bipedal locomotion. Z Morphol Anthropol 80(1):79–87.

    Google Scholar 

  • Scholz M, D’Août K, Bobbert MF, Aerts P (2006) Vertical jumping performance of bonobo (Pan paniscus) suggests superior muscle properties. Proc Roy Soc Lond B 273:2177–2184.

    Article  Google Scholar 

  • Schoonaert K, D’Août K, Aerts P (2006) A dynamic force analysis system for climbing of large primates. Folia Primatol 77:246–254.

    Article  PubMed  Google Scholar 

  • Shapiro LJ, Jungers WL, Stern JT Jr (1987) Function of back and trunk muscles during bipedal walking in chimpanzee and gibbon. Am J Phys Anthropol 72:253.

    Google Scholar 

  • Shapiro LJ, Jungers WL (1988) Back muscle function during bipedal walking in chimpanzee and gibbon: implications for the evolution of human locomotion. Am J Phys Anthropol 77:201–212.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro LJ, Jungers WL (1994) Electromyography of back muscles during quadrupedal and bipedal walking in primates. Am J Phys Anthropol 93:491–504.

    Article  PubMed  CAS  Google Scholar 

  • Stern JT, Susman RL (1981) Electromyography of the gluteal muscles in Hylobates, Pongo, and Pan: implications for the evolution of hominid bipedality. Am J Phys Anthropol 55:153– 166.

    Article  Google Scholar 

  • Susman RL, Badrian NL, Badrian AJ (1980) Locomotor behavior of Pan paniscus in Zaire. Am J Phys Anthropol 53:69–80.

    Article  Google Scholar 

  • Susman RL (1984) The locomotor behavior of Pan paniscus in the Lomako Forest. In: Susman RL (ed), The Pygmy Chimpanzee. Evolutionary Biology and Behavior. Plenum Press, New York, pp 369–393.

    Chapter  Google Scholar 

  • Susman RL, Badrian N, Badrian A, Handler NT (1985) Positional behavior and feeding ecology of the pygmy chimpanzee (Pan paniscus): first year results of the Lomako Forest pygmy chimpanzee project. Natl Geogr Soc Res Rep 20:725–739.

    Google Scholar 

  • Thompson JAM (2002) A model of the biogeographical journey from Proto-pan to Pan paniscus. Primates 44(2):191–197.

    Google Scholar 

  • Thorpe SKS, Holder RL, Crompton RH (2007) Origin of human bipedalism as an adaptation for locomotion on flexible branches. Science 316(5829):1328–1331.

    Article  PubMed  CAS  Google Scholar 

  • Tuttle RH (1972) Functional and evolutionary biology of hylobatid hands and feet. In: Rumbaugh DM (ed), Gibbon and Siamang: A Series of Volumes on the Lesser Apes, Vol. 1. Karger, Basel, pp 136–206.

    Google Scholar 

  • Usherwood JR, Bertram JEA (2003) Understanding brachiation: insight from a collisional perspective. J Exp Biol 206(10):1631–1642.

    Article  PubMed  Google Scholar 

  • Usherwood JR, Larson SG, Bertram JEA (2003) Mechanisms of force and power production in unsteady ricochetal brachiation. Am J Phys Anthropol 120(4):364–372.

    Article  PubMed  Google Scholar 

  • Vereecke EE, D’Août K, De Clercq D, Van Elsacker L, Aerts P (2003) Dynamic plantar pressures during terrestrial locomotion of bonobos (Pan paniscus). Am J Phys Anthropol 120:373–383.

    Article  PubMed  Google Scholar 

  • Vereecke EE, K D’Août, P Aerts (2005) Functional analysis of the gibbon foot during terrestrial bipedal walking: plantar pressure distributions and three dimensional ground reaction forces. Am J Phys Anthropol 128:659–669.

    Article  PubMed  Google Scholar 

  • Vereecke EE, D’Août K, Aerts P (2006a) Speed modulation in hylobatid bipedalism: a kinematical analysis. J Hum Evol 51(5):513–526.

    Article  PubMed  Google Scholar 

  • Vereecke EE, D’Août K, Aerts P (2006b) The dynamics of hylobatid bipedalism: evidence for an energy-saving mechanism? J Exp Biol 209:2829–2838.

    Article  PubMed  Google Scholar 

  • Vereecke EE, D’Août K, Aerts P (2006c) Locomotor versatility in the white-handed gibbon (Hylobates lar): a spatiotemporal analysis of the bipedal, tripedal, and quadrupedal gaits. J Hum Evol 50(5):552–567.

    Article  PubMed  Google Scholar 

  • Vereecke EE, Aerts P (2008) The mechanics of the gibbon foot and its potential for elastic energy storage during bipedalism. J Exp Biol 211(23):3661–3670.

    Article  PubMed  Google Scholar 

  • Walter RM (2003) Kinematics of 90 degrees running turns in wild mice. J Exp Biol 206(10):1739–1749.

    Article  PubMed  Google Scholar 

  • Walter RM, Carrier DR (2009) Rapid acceleration in dogs: ground forces and body posture dynamics: J Exp Biol 212(12):1930–1939.

    Article  PubMed  Google Scholar 

  • Ward CV (2007) Postcranial and locomotor adaptations of hominoids. In: Henke W, Tattersall I (eds), Handbook of Paleoanthropology, Vol. 2. Springer, New York, pp 1011–1030.

    Chapter  Google Scholar 

  • WAZA (2005). Building a Future for Wildlife – The World Zoo and Aquarium Research Strategy. WAZA Executive Office, Bern.

    Google Scholar 

  • Wildman DE, Uddin M, Liu G, Grossman LI, Goodman M (2003) Implications of natural selection in shaping 99.4% nonsynonymous DNA identity between humans and chimpanzees: enlarging genus Homo. Proc Natl Acad Sci USA 100(12):7181–7188.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki N (1990) The effects of gravity on the interrelationship between body proportions and brachiation in the gibbon. In: Jouffroy FK, Stack MH, Niemitz C (eds), Gravity, Posture and Locomotion in Primates. Editrice Il Sedicesimo, Florence, pp 157–172.

    Google Scholar 

  • Yamazaki N, Ishida H (1984) A biomechanical study of vertical climbing and bipedal walking in gibbons. J Hum Evol 13:563–571.

    Article  Google Scholar 

  • Zihlman AL, Cronin JE, Cramer DL, Sarich VM (1978) Pygmy chimpanzee as a possible prototype for the common ancestor of humans, chimpanzees and gorillas. Nature 275:744–746.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristiaan D’Août .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vereecke, E.E., D’Août, K., Aerts, P. (2011). Studying Captive Ape Locomotion: Past, Present, and Future. In: D'Août, K., Vereecke, E. (eds) Primate Locomotion. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1420-0_3

Download citation

Publish with us

Policies and ethics