Skip to main content

Abiotic Processes Affecting the Remediation of Chlorinated Solvents

  • Chapter
  • First Online:

Part of the book series: SERDP/ESTCP Environmental Remediation Technology ((SERDP/ESTCP))

Abstract

Abiotic processes, such as sorption, volatilization and chemical transformation, play an important role in the natural attenuation and treatment of chlorinated solvents. In this chapter, an overview of the principles governing these processes in the context of chlorinated solvent remediation and treatment is presented. This discussion includes a brief introduction to sorption processes and volatilization, with most attention focused on abiotic transformation pathways because of the recent advances in this area and the increasing interest in applying monitored natural attenuation (MNA) to chlorinated solvent plumes. The chapter is not meant to be a comprehensive review of the literature, but rather highlights basic information on key abiotic processes that may impact remedial technology implementability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aiken GR, McKnight DM, Wershaw RL, MacCarthy P. 1985. An Introduction to Humic Substances in Soil, Sediment and Water. In Aiken GR, McKnight DM, Wershaw RL, MacCarthy P, eds, Humic Substances in Soil, Sediment and Water. John Wiley and Sons, New York, NY, USA, pp 1–9.

    Google Scholar 

  • Allen-King RM, Groenevelt H, Warren CJ, Mackay DM. 1996. Non-linear chlorinated-solvent sorption in four aquitards. J Contam Hydrol 22:203–221.

    Article  CAS  Google Scholar 

  • Allen-King RM, Grathwohl P, Ball WP. 2002. New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks. Adv Water Resour 25:985–1016.

    Article  CAS  Google Scholar 

  • Allen-King RM, Divine DP, Robin MJL, Alldredge JR, Gaylor DR. 2006. Spatial distributions of perchlorethylene reactive transport parameters in the Borden Aquifer. Water Resour Res 42:1–13.

    Article  CAS  Google Scholar 

  • Amonette JE. 2002. Iron redox chemistry of clays and oxides: Environmental applications. In Fitch A, ed, Electrochemistry of Clays, Vol 10. Clay Minerals Society, Aurora, CO, USA.

    Google Scholar 

  • Amonette JE, Workman DJ, Kennedy DW, Fruchter JS, Gorby YA. 2000. Dechlorination of carbon tetrachloride by Fe(II) associated with goethite. Environ Sci Technol 34:4606–4613.

    Article  CAS  Google Scholar 

  • Arnold WA, Roberts AL. 2000. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ Sci Technol 34:1794–1805.

    Article  CAS  Google Scholar 

  • Arnold WA, Ball WP, Roberts AL. 1999. Polychlorinated ethane reaction with zero-valent zinc: Pathways and rate control. J Contam Hydrol 40:183–200.

    Article  CAS  Google Scholar 

  • Arnold WA, Winget P, Cramer CJ. 2002. Reductive dechlorination of 1,1,2,2-tetrachloroethane. Environ Sci Technol 36:3536–3541.

    Article  CAS  Google Scholar 

  • Ball WP, Roberts PV. 1991. Long-term sorption of halogenated organic chemicals by aquifer material. 1. Equilibrium. Environ Sci Technol 25:1223–1237.

    Article  CAS  Google Scholar 

  • Banfield JF, Nealson KH, eds. 1997. Geomicrobiology: Interactions Between Microbes and Minerals. Mineralogical Society of America, Washington, DC, USA.

    Google Scholar 

  • Barbash JE, Reinhard M. 1989. Reactivity of sulfur nucleophiles toward halogenated organic compounds in natural waters. In Saltzman ES and Cooper WJ, eds, Biogenic Sulfur in the Environment, Vol 393. American Chemical Society, Washington, DC, USA, pp 101–138.

    Chapter  Google Scholar 

  • Bard AJ, Parsons R, Jordan J. 1985. Standard Potentials in Aqueous Solutions. Marcel Dekker, New York, NY, USA.

    Google Scholar 

  • Batterman S, Kulshrestha A, Cheng HY. 1995. Hydrocarbon vapor transport in low moisture soils. Environ Sci Technol 29:171–180.

    Article  CAS  Google Scholar 

  • Brusseau ML. 1994. Transport of reactive contaminants in heterogeneous porous media. Rev Geophys 32:285–313.

    Article  Google Scholar 

  • Burris DR, Delcomyn CA, Smith MH, Roberts AL. 1996. Reductive dechlorination of tetrachloroethylene and trichloroethylene catalyzed by vitamin B12 in homogeneous and heterogeneous systems. Environ Sci Technol 30:3047–3052.

    Article  CAS  Google Scholar 

  • Butler EC, Hayes KF. 1999. Kinetics of the transformation of trichloroethylene and tetrachloroethylene by iron sulfide. Environ Sci Technol 33:2021–2027.

    Article  CAS  Google Scholar 

  • Butler EC, Hayes KF. 2000. Kinetics of the transformation of halogenated aliphatic compounds by iron sulfide. Environ Sci Technol 34:422–429.

    Article  CAS  Google Scholar 

  • Butler EC, Hayes KF. 2002. Reductive transformation of halogenated aliphatic pollutants by iron sulfide. In Lipnick RL, Mason RP, Phillips ML, Pittman CU, eds, Chemicals in the Environment, Vol 806. American Chemical Society, Washington, DC, USA, pp 113–129.

    Chapter  Google Scholar 

  • Carrado KA, Kostapapas A, Suib SL. 1988. Layered double hydroxides (LDHs). Solid State Ionics 26:77–86.

    Article  CAS  Google Scholar 

  • Carroll FA. 1998. Perspectives on Structure and Mechanism in Organic Chemistry. Brooks/ Cole, New York, NY, USA.

    Google Scholar 

  • Chiou CT, Kile DE. 1998. Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations. Environ Sci Technol 32:338–343.

    Article  CAS  Google Scholar 

  • Chiou CT, Porter PE, Schmedding DW. 1983. Partition equilibria of nonionic organic compounds between soil organic matter and water. Environ Sci Technol 17:227–231.

    Article  CAS  Google Scholar 

  • Chiu PC, Reinhard M. 1995. Metallocoenzyme mediated reductive transformation of carbon tetrachloride in titanium(III) citrate aqueous solution. Environ Sci Technol 29:595–603.

    Article  CAS  Google Scholar 

  • Chiu PC, Reinhard M. 1996. Transformation of carbon tetrachloride by reduced vitamin B12 in aqueous cysteine solution. Environ Sci Technol 30:1882–1889.

    Article  CAS  Google Scholar 

  • Coates JD, Ellis DJ, Blunt-Harris EL, Gaw CV, Roden EE, Lovely DR. 1998. Recovery of humic-reducing bacteria from a diversity of environments. Appl Environ Microbiol 64:1504–1509.

    CAS  Google Scholar 

  • Conant BH, Gillham RW, Mendoza CA. 1996. Vapor transport of trichloroethylene in the unsaturated zone: Field and numerical modeling investigations. Water Resour Res 32:9–22.

    Article  CAS  Google Scholar 

  • Curtis GP, Reinhard M. 1994. Reductive dehalogenation of hexachlorethane, carbon tetrachloride, and bromoform by anthrahydroquinone disulfonate and humic acid. Environ Sci Technol 28:2393–2401.

    Article  CAS  Google Scholar 

  • Cwiertny DM, Roberts AL. 2005. On the nonlinear relationship between k obs and reductant mass loading in iron batch systems. Environ Sci Technol 39:8948–8957.

    Article  CAS  Google Scholar 

  • Danielsen KM, Hayes KF. 2004. pH dependence of carbon tetrachloride reductive dechlorination by magnetite. Environ Sci Technol 38:4745–4752.

    Article  CAS  Google Scholar 

  • Danielsen KM, Gland JL, Hayes KF. 2005. Influence of amine buffers on carbon tetrachloride reductive dechlorination by the iron oxide magnetite. Environ Sci Technol 39:756–763.

    Article  CAS  Google Scholar 

  • Dunnivant FM, Schwarzenbach RP, Macalady DL. 1992. Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter. Environ Sci Technol 26:2133–2141.

    Article  CAS  Google Scholar 

  • Elsner M, Haderlein S, Kellerhals T, Luzi S, Zwank L, Werner A, Schwarzenbach RP. 2004a. Mechanisms and products of surface-mediated reductive dehalogenation of carbon tetrachloride by Fe(II) on goethite. Environ Sci Technol 38:2058–2066.

    Article  CAS  Google Scholar 

  • Elsner M, Schwarzenbach RP, Haderlein S. 2004b. Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants. Environ Sci Technol 38:799–807.

    Article  CAS  Google Scholar 

  • Erbs M, Hansen HCB, Olsen CE. 1999. Reductive dechlorination of carbon tetrachloride using iron(II) iron(III) hydroxide sulfate (green rust). Environ Sci Technol 33:307–311.

    Article  CAS  Google Scholar 

  • Fells I, Moelwyn-Hughes EA. 1958. The kinetics of the hydrolysis of methylene dichloride. J Chem Soc 1958:1326–1333.

    Article  Google Scholar 

  • Fells I, Moelwyn-Hughes EA. 1959. The kinetics of the hydrolysis of the chlorinated methanes. J Chem Soc 1959:398–409.

    Article  Google Scholar 

  • Fennelly JP, Roberts AL. 1998. Reaction of 1,1,1-trichloroethane with zero-valent metals and bimetallic reductants. Environ Sci Technol 32:1980–1988.

    Article  CAS  Google Scholar 

  • Ferrey M, Wilkin R, Ford R, Wilson J. 2004. Nonbiological removal of cis-dichloroethylene and 1,1-dichlorethylene in aquifer sediment containing magnetite. Environ Sci Technol 38:1746–1752.

    Article  CAS  Google Scholar 

  • Fetter CW. 1999. Contaminant Hydrogeology. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

    Google Scholar 

  • Fetzner S, Lingens F. 1994. Bacterial dehalogenases- biochemistry, genetics and biotechnological applications. Microbiol Rev 58:641–685.

    CAS  Google Scholar 

  • Fredrickson JK, Zachara JM, Kennedy DW, Dong H, Onstott TC, Hinman NW, Li S. 1998. Biogenic iron mineralization accompanying dissimilatory reduction of hydrous ferric oxide by groundwater bacterium. Geochim Cosmochim Acta 62:3239–3257.

    Article  CAS  Google Scholar 

  • Gander JW, Parkin GF, Scherer MM. 2002. Kinetics of 1,1,1-trichloroethane transformation by iron sulfide and a methanogenic consortium. Environ Sci Technol 36:4540–4546.

    Article  CAS  Google Scholar 

  • Gantzer CJ, Wackett LP. 1991. Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environ Sci Technol 25:715–722.

    Article  CAS  Google Scholar 

  • Gaspar DJ, Lea AS, Engelhard MH, Baer DR, Miehr R, Tratnyek PG. 2002. Evidence for localization of reaction upon reduction of carbon tetrachloride by granular iron. Langmuir 18:7688–7693.

    Article  CAS  Google Scholar 

  • Gillham RW, O’Hannesin SF. 1994. Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 32:958–967.

    Article  CAS  Google Scholar 

  • Glod G, Angst W, Holliger C, Schwarzenbach RP. 1997a. Corrinoid-mediated reduction of tetrachloroethene, trichloroethene, and trichlorofluoroethene in homogeneous aqueous solution: Reaction kinetics and reaction mechanisms. Environ Sci Technol 31:253–260.

    Article  CAS  Google Scholar 

  • Glod G, Brodmann U, Schwarzenbach RP. 1997b. Cobalamin-mediated reduction of cis- and trans-dichloroethene, 1,1-dichloroethene, and vinyl chloride in homogeneous aqueous solution: Reaction kinetics and mechanistic considerations. Environ Sci Technol 31:3154–3160.

    Article  CAS  Google Scholar 

  • Grathwohl P. 1990. Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: Implications on K oc correlations. Environ Sci Technol 24:1687–1693.

    Article  CAS  Google Scholar 

  • Haag W, Mill T. 1988. Effects of a subsurface sediment on hydrolysis of haloalkanes and epoxides. Environ Sci Technol 22:658–663.

    Article  CAS  Google Scholar 

  • Haderlein SB, Pecher K. 1998. Pollutant reduction in heterogeneous Fe(II)/Fe(III) systems. In Grundl T and Sparks D, eds, Mineral-Water Interfacial Reactions: Kinetics and Mechanisms, ACS (American Chemical Society) Symposium Series 715. ACS, Washington, DC, USA, pp 342–357.

    Google Scholar 

  • Hanoch RJ, Shao H, Butler EC. 2006. Transformation of carbon tetrachloride by bisulfide treated goethite, hematite, magnetite, and kaolinite. Chemosphere 63:323–334.

    Article  CAS  Google Scholar 

  • Hansel CM, Benner SG, Fendorf S. 2005. Competing Fe(II)-induced mineralization pathways of ferrihydrite. Environ Sci Technol 39:7147–7153.

    Article  CAS  Google Scholar 

  • Heppolette RL, Robertson RE. 1959. Neutral hydrolysis of methyl halides. In Proceedings, Royal Society of London Series A, Mathematical and Physical Sciences 252:273–285.

    Article  CAS  Google Scholar 

  • Heyse E, Augustinj D, Rao P, Defino J. 2002. Nonaqueous phase liquid dissolution and soil organic matter sorption in porous media: Review of system similarities. Crit Rev Environ Sci Technol 32:337–397.

    Article  CAS  Google Scholar 

  • Hwang I, Batchelor B. 2000. Reductive dechlorination of tetrachloroethylene by Fe(II) in cement slurries. Environ Sci Technol 34:5017–5022.

    Article  CAS  Google Scholar 

  • Jeffers PM, Wolfe NL. 1996. Homogeneous hydrolysis rate contstants. Part II: Additions, corrections and halogen effects. Environ Toxicol Chem 15:1066–1070.

    CAS  Google Scholar 

  • Jeffers PM, Ward LM, Woytowitch LM, Wolfe NL. 1989. Homogeneous hydrolysis rate constants for selected chlorinated methanes, ethanes, ethenes and propanes. Environ Sci Technol 23:965–969.

    Article  CAS  Google Scholar 

  • Jeffers PM, Brenner C, Wolfe NL. 1996. Hydrolysis of carbon tetrachloride. Environ Toxicol Chem 15:1064–1065.

    CAS  Google Scholar 

  • Jellali S, Benremita H, Muntzer P, Razakarisoa O, Schafer G. 2003. A large-scale experiment on mass transfer of trichloroethylene from the unsaturated zone of a sandy aquifer to its interfaces. J Contam Hydrol 60:31–53.

    Article  CAS  Google Scholar 

  • Jeon B-H, Dempsey BA, Burgos W. 2003. Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides. Environ Sci Technol 37:3309–3315.

    Article  CAS  Google Scholar 

  • Jeong S, Werth CJ. 2005. Evaluation of methods to obtain geosorbent fractions enriched in carbonaceous materials that affect hydrophobic organic chemical sorption. Environ Sci Technol 39:3279–3288.

    Article  CAS  Google Scholar 

  • Johnson TL, Scherer MM, Tratnyek PG. 1996. Kinetics of halogenated organic compound degradation by iron metal. Environ Sci Technol 30:2634–2640.

    Article  CAS  Google Scholar 

  • Kappler A, Haderlein SB. 2003. Natural organic matter as reductant for chlorinated aliphatic pollutants. Environ Sci Technol 37:2714–2719.

    Article  CAS  Google Scholar 

  • Karickhoff SW. 1984. Organic pollutant sorption in aquatic systems. J Hydraul Eng 10:707–735.

    Article  Google Scholar 

  • Kenneke JF, Weber EJ. 2000. Reductive dehalogenation of halomethanes in natural and model systems: QSAR analysis. In Proceedings, 220th ACS National Meeting, Division of Environmental Chemistry, Washington, DC, USA, August 20-25, pp 313–315.

    Google Scholar 

  • Kenneke JF, Weber EJ. 2003. Reductive dehalogenation of halomethanes in iron- and sulfate-reducing sediments. 1. Reactivity pattern analysis. Environ Sci Technol 37:713–720.

    Article  CAS  Google Scholar 

  • Kohn T, Livi KJT, Roberts AL, Vikesland PJ. 2005. Longevity of granular iron in groundwater treatment processes: Corrosion product development. Environ Sci Technol 39:2867–2879.

    Article  CAS  Google Scholar 

  • Kriegman-King MR, Reinhard M. 1991. Reduction of hexachloroethane and carbon tetrachloride at surfaces of biotite, vermiculite, pyrite, and marcasite. In Baker R, ed, Organic Substances and Sediments in Water, Vol 2. Lewis, MI, USA, pp 349–364.

    Google Scholar 

  • Kriegman-King MR, Reinhard M. 1992. Transformation of carbon tetrachloride in the presence of sulfide, biotite, and vermiculite. Environ Sci Technol 26:2198–2206.

    Article  CAS  Google Scholar 

  • Kriegman-King MR, Reinhard M. 1994. Transformation of carbon tetrachloride by pyrite in aqueous solution. Environ Sci Technol 28:692–700.

    Article  CAS  Google Scholar 

  • Krone UE, Thauer RK, Hogenkamp HPC. 1989. Reductive dehalogenation of chlorinated C1-hydrocarbons mediated by corrinoids. Biochemistry 28:4908–4914.

    Article  CAS  Google Scholar 

  • Krone UE, Thauer RK, Hogenkamp HPC, Steinbach K. 1991. Reductive formation of carbon monooxide from CCl4 and FREON’s 11, 12, 13 catalyzed by corrinoids. Biochemistry 30:2713–2719.

    Article  CAS  Google Scholar 

  • Lee W, Batchelor B. 2002a. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and Magnetite. Environ Sci Technol 36:5147–5154.

    Article  CAS  Google Scholar 

  • Lee W, Batchelor B. 2002b. Abiotic reductive dechlorination of chlorinated ethylenes by iron bearing soil minerals. 2. Green rust. Environ Sci Technol 36:5348–5354.

    Article  CAS  Google Scholar 

  • Li T, Farrell J. 2001. Electrochemical investigation of the rate-limiting mechanisms for trichloroethylene and carbon tetrachloride reduction at iron surfaces. Environ Sci Technol 35:3560–3565.

    Article  CAS  Google Scholar 

  • Li T, Farrell J. 2002. Mechanisms controlling chlorocarbon reduction at iron surfaces. In Lipnick RL, Mason RP, Phillips ML, Pittman CU, eds, Chemicals in the Environment: Fate Impacts, and Remediation. ACS, Washington, DC, USA, pp 397–410.

    Chapter  Google Scholar 

  • Lien H-L, Zhang W. 2005. Hydrodechlorination of chlorinated ethanes by nanoscale Pd/Fe bimetallic particles. J Environ Eng 131:4–10.

    Article  CAS  Google Scholar 

  • Liu Z, Betterton EA, Arnold RG. 2000. Electrolytic reduction of low molecular weight chlorinated aliphatic compounds: Structural and thermodynamic effects on process kinetics. Environ Sci Technol 34:804–811.

    Article  CAS  Google Scholar 

  • Lovley DR. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287.

    CAS  Google Scholar 

  • Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC. 1996. Humic substances as electron acceptors for microbial respiration. Nat 382:445–448.

    Article  CAS  Google Scholar 

  • Ma H, O’Loughlin EJ, Burris DR. 2001. Factors affecting humic-nickel complex mediated reduction of trichloroethene in homogeneous aqueous solution. Environ Sci Technol 35:717–724.

    Article  CAS  Google Scholar 

  • Macalady DL, Ranville JF. 1998. The chemistry and geochemistry of natural organic matter. In Macalady DL, ed, Perspectives in Environmental Chemistry. Oxford University Press, New York, NY, USA, pp 94–137.

    Google Scholar 

  • Mackay DM, Ball WP, Durant MG. 1986a. Variability of aquifer sorption properties in a field experiment on groundwater transport of organic solutes: Methods and preliminary results. J Contam Hydrol 1:119–132.

    Article  CAS  Google Scholar 

  • Mackay DM, Freyberg DL, Roberts PV. 1986b. A natural gradient experiment on solute transport in a sand aquifer. 1. Approach and overview of plume movement. Water Resour Res 22:2017–2029.

    Article  CAS  Google Scholar 

  • Mackay D, Shiu WY, Ma KC. 1993. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals. Lewis Publishers, Chelsea, MI, USA.

    Google Scholar 

  • Mader BT, Goss KU, Eisenreich SJ. 1997. Sorption of nonionic, hydrophobic organic chemicals to mineral surfaces. Environ Sci Technol 31:1079–1086.

    Article  CAS  Google Scholar 

  • Maithreepala RA, Doong R-A. 2004. Reductive dechlorination of carbon tetrachloride in aqueous solutions containing ferrous and copper ions. Environ Sci Technol 38:6676–6684.

    Article  CAS  Google Scholar 

  • Matheson LJ, Tratnyek PG. 1994. Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol 28:2045–2053.

    Article  CAS  Google Scholar 

  • McCormick ML, Adriaens P. 2004. Carbon tetrachloride transformation on the surface of nanoscale biogenic magnetite particles. Environ Sci Technol 38:104–1053.

    Article  CAS  Google Scholar 

  • McCormick ML, Bouwer EJ, Adriaens P. 2002. Carbon tetrachloride transformation in a model iron-reducing culture: Relative kinetics of biotic and abiotic reactions. Environ Sci Technol 36:403–410.

    Article  CAS  Google Scholar 

  • Mendoza CA, Frind EO. 1990a. Advective-dispersive transport of dense organic vapors in the unsaturated zone. 2. Sensitivity analysis. Water Resour Res 26:388–398.

    Article  CAS  Google Scholar 

  • Mendoza CA, Frind EO. 1990b. Advective-dispersive transport of dense organic vapors in the unsaturated zone. 1. Model development. Water Resour Res 26:379–387.

    CAS  Google Scholar 

  • Miehr R, Tratnyek PG, Bandstra JZ, Scherer MM, Alowitz M, Bylaska EJ. 2004. The diversity of contaminant reduction reactions by zero-valent iron: Role of the reductate. Environ Sci Technol 38:139–147.

    Article  CAS  Google Scholar 

  • Miller PL, Vasudevan D, Gschwend PM, Roberts AL. 1998. Transformation of hexachloroethane in a sulfidic natural water. Environ Sci Technol 32:1269–1275.

    Article  CAS  Google Scholar 

  • Moelwyn-Hughes EA. 1949. The kinetics of certain reactions between methyl halides and anions in water. In Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences 196:540–553.

    Article  CAS  Google Scholar 

  • Nealson KH, Myers CR. 1992. Microbial reduction of manganese and iron: New approaches to carbon cycling. App Environ Microbiol 58:439–443.

    CAS  Google Scholar 

  • Nguyen TH, Goss K, Ball WP. 2005. Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments. Environ Sci Technol 39:913–924.

    Article  CAS  Google Scholar 

  • Novak PJ, Daniels L, Parkin GF. 1998. Rapid dechlorination of carbon tetrachloride and chloroform by extracellular agents in cultures of methanosarcina thermophila. Environ Sci Technol 32:3132–3136.

    Article  CAS  Google Scholar 

  • Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen M. 2005. Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry and kinetics. Environ Sci Technol 39:1221–1230.

    Article  CAS  Google Scholar 

  • O’Loughlin EJ, Burris DR. 2004. Reduction of halogenated ethanes by green rust. Environ Toxicol Chem 23:41–48.

    Article  Google Scholar 

  • O’Loughlin EJ, Burris DR, Delcomyn CA. 1999. Reductive dechlorination of trichloroethene mediated by humic-metal complexes. Environ Sci Technol 33:1145–1147.

    Article  Google Scholar 

  • O’Loughlin EJ, Kemner KM, Burris DR. 2003. Effects of Ag(I), Au(III), and Cu(II) on the reductive dechlorination of carbon tetrachloride by green rust. Environ Sci Technol 37:2905–2912.

    Article  CAS  Google Scholar 

  • Oh S-Y, Cha DK, Chiu PC. 2002. Graphite-mediated reduction of 2,4-dinitrotoluene with elemental iron. Environ Sci Technol 36:2178–2184.

    Article  CAS  Google Scholar 

  • Pankow JF, Cherry JA. 1996. Dense Chlorinated Solvents and Other DNAPLs in Groundwater: History, Behavior, and Remediation. Waterloo Press, Portland, OR, USA.

    Google Scholar 

  • Pankow JF, Feenstra S, Cherry JA, Ryan MC. 1994. Dense Chlorinated Solvents in Groundwater: A History of the Problem. In Pankow JF, ed, Dense Chlorinated Solvents in Groundwater Systems: Principles Affecting Fate, Transport, and Remediation. Waterloo Press, Portland, OR, USA. 525 p.

    Google Scholar 

  • Pecher K, Haderlein SB, Schwarzenbach RP. 2002. Reduction of polyhalogenated methanes by surface-bound Fe(II) in aqueous suspensions of iron oxides. Environ Sci Technol 36:1734–1741.

    Article  CAS  Google Scholar 

  • Pedersen HD, Postma D, Jakobsen R, Larsen O. 2005. Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II). Geochim Cosmochim Acta 69:3967–3977.

    Article  CAS  Google Scholar 

  • Perlinger JA, Eisenreich SJ, Capel PD. 1993. Application of headspace analysis to the study of sorption of hydrophobic organic chemicals to alpha-Al2O3. Environ Sci Technol 27:928–937.

    Article  CAS  Google Scholar 

  • Perlinger JA, Angst W, Schwarzenbach RP. 1996. Kinetics of the reduction of hexachloroethane by juglone in solutions containing hydrogen sulfide. Environ Sci Technol 30:3408–3417.

    Article  CAS  Google Scholar 

  • Perlinger JA, Buschmann J, Angst W, Schwarzenbach RP. 1998. Iron porphyrin and mercaptojuglone mediated reduction of polyhalogenated methanes and ethanes in homogeneous aqueous solution. Environ Sci Technol 32:2431–2437.

    Article  CAS  Google Scholar 

  • Perlinger JA, Venkatapathy R, Harrison JF. 2000. Linear free energy relationships for polyhalogenated alkane transformation by electron transfer mediators in model aqueous systems. J Phys Chem A 104:2752–2763.

    Article  CAS  Google Scholar 

  • Perlinger JA, Kalluri VM, Venkatapathy R, Angst W. 2002. Addition of hydrogen sulfide to juglone. Environ Sci Technol 36:2663–2669.

    Article  CAS  Google Scholar 

  • Pignatello JJ, Xing B. 1996. Mechanisms of slow sorption to organic chemicals to natural particles. Environ Sci Technol 30:1–11.

    Article  CAS  Google Scholar 

  • Rickard DT. 1969. The chemistry of iron sulphide formation at low temperatures. Stockholm Contributions Geol 26:67–95.

    Google Scholar 

  • Roberts AL, Gschwend PM. 1991. Mechanism of pentachloroethane dechlorination to tetrachloroethylene. Environ Sci Technol 25:76–86.

    Article  CAS  Google Scholar 

  • Roberts AL, Totten LA, Arnold WA, Burris DR, Campbell TJ. 1996. Reductive elimination of chlorinated ethylenes by zero-valent metals. Environ Sci Technol 30:2654–2659.

    Article  CAS  Google Scholar 

  • Roberts PV, Goltz NM, Mackay DM. 1986. A natural gradient experiment on solute transport in a sand aquifer. 3. Retardation estimates and mass balances for organic solutes. Water Resour Res 22:2046–2058.

    Article  Google Scholar 

  • Rügge K, Hofstetter TB, Haderlein SB, Bjerg PL, Knudsen S, Zraunig C, Mosbæk H, Christensen TH. 1998. Characterization of predominant reductants in an anaerobic leachate-contaminated aquifer by nitroaromatic probe compounds. Environ Sci Technol 32:23–31.

    Article  Google Scholar 

  • Sawyer CN, McCarty PL, Parkin GF. 1994. Chemistry for Environmental Engineering. McGraw-Hill, Inc., New York, NY, USA.

    Google Scholar 

  • Schanke CA, Wackett LP. 1992. Environmental reductive elimination reactions of polychlorinated ethanes mimicked by transition-metal coenzymes. Environ Sci Technol 26:830–833.

    Article  CAS  Google Scholar 

  • Scherer MM, Balko BA, Gallagher DA, Tratnyek PG. 1998a. Correlation analysis of rate constants for dechlorination by zero-valent iron. Environ Sci Technol 32:3026–3033.

    Article  CAS  Google Scholar 

  • Scherer MM, Balko BA, Tratnyek PG. 1998b. The role of oxides in reduction reactions at the metal-water interface. In Sparks D, Grundl T, eds, Mineral-Water Interfacial Reactions: Kinetics and Mechanisms, ACS Symposium Series No. 715. ACS, Washington, DC, USA, pp 301–322.

    Chapter  Google Scholar 

  • Schwarzenbach RP, Westall J. 1981. Transport of nonpolar organic compounds from surface water to groundwater: Laboratory sorption studies. Environ Sci Technol 15:1360–1367.

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Stierli R, Lanz K, Zeyer J. 1990. Quinone and iron porphyrin mediated reduction of nitroaromatic compounds in homogeneous aqueous solution. Environ Sci Technol 24:1566–1574.

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM. 2003. Environmental Organic Chemistry. John Wiley & Sons, Inc., Hoboken, NJ, USA.

    Google Scholar 

  • Schwille F. 1984. Migration of organic fluids immiscible with water. In Yaron B, Dagan G, Goldshmid J, eds, Pollutants in Porous Media. Springer-Verlag, New York, NY, USA, pp 27–48.

    Chapter  Google Scholar 

  • Schwille F. 1988. Dense Chlorinated Solvents in Porous and Fractured Media-Model Experiments. Boca Raton, FL, USA.

    Google Scholar 

  • Smolen JM, McLaughlin MA, McNevin MJ, Haberle A, Swantek S. 2003. Reductive dissolution of goethite and the subsequent transformation of 4-cyanonitrobenzene: Role of ascorbic acid and pH. Aquatic Sci 65:1–8.

    Article  CAS  Google Scholar 

  • Song H, Carraway ER. 2005. Reduction of chlorinated ethanes by nanosized zero-valent iron: Kinetics, pathways and effects of reaction conditions. Environ Sci Technol 39:6237–6245.

    Article  CAS  Google Scholar 

  • Stone AT, Godtfredsen KL, Deng B. 1994. Sources and reactivity of reductants encountered in aquatic environments. In Bidoglio G, Stumm W, eds, Chemistry of Aquatic Systems: Local and Global Perspectives. Kluwer Academic, Boston, MA, USA, pp 337–374.

    Google Scholar 

  • Stumm W. 1992. Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface of Natural Systems. Wiley, New York, NY, USA.

    Google Scholar 

  • Stumm W, Morgan J. 1996. Aquatic Chemistry. John Wiley & Sons, New York, NY, USA.

    Google Scholar 

  • Támara ML, Butler EB. 2004. Effects of iron purity and groundwater characteristics on rates and products in the degradation of carbon tetrachloride by iron metal. Environ Sci Technol 38:1866–1876.

    Article  CAS  Google Scholar 

  • Thomas RG. 1982a. Volatilization from Water. In Lyman WJ, Reehl WF, Rosenblatt DH, eds, Handbook of Chemical Property Estimation Methods: Environmental Behavior of Organic Compounds. McGraw-Hill, New York, NY, USA, pp 15.1–15.34.

    Google Scholar 

  • Thomas RG. 1982b. Volatilization from Soil. In Lyman WJ, Reehl WF, Rosenblatt DH, eds, Handbook of Chemical Property Estimation Methods: Environmental Behavior of Organic Compounds. McGraw-Hill, New York, NY, USA, pp 16.1–16.50.

    Google Scholar 

  • Totten LA, Roberts AL. 2001. Calculated one- and two-electron reduction potentials and related molecular descriptors for reduction of alkyl and vinyl halides in water. Crit Rev Environ Eng Sci Technol 31:175–221.

    Article  CAS  Google Scholar 

  • Tratnyek PG, Macalady DL. 1989. Abiotic reduction of nitro aromatic pesticides in anaerobic laboratory systems. J Agric Food Chem 37:248–254.

    Article  CAS  Google Scholar 

  • Tratnyek PG, Weber EJ, Schwarzenbach RP. 2003. Quantitative structure-activity relationships for chemical reduction of organic contaminants. Environ Toxicol Chem 22:1733–1742.

    Article  CAS  Google Scholar 

  • Vollhardt KPC, Schore NE. 1994. Organic Chemistry. WH Freeman and Company, New York, NY, USA.

    Google Scholar 

  • Walraevens R, Trouillet P, Devos A. 1974. Basic elimination of HCl from chlorinated ethanes. Int J Chem Kinet 6:777–786.

    Article  CAS  Google Scholar 

  • Weber Jr WJ, DiGiano FA. 1996. Process Dynamics in Environmental Systems. Wiley-Interscience, New York, NY, USA.

    Google Scholar 

  • Weber Jr WJ, McGinley PM, Katz LE. 1992. A distributed reactivity model for sorption by soils and sediments. 1. Conceptual basis and equilibrium assessments. Environ Sci Technol 26:1955–1962.

    Article  CAS  Google Scholar 

  • Williams AGB, Scherer MM. 2004. Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at the Fe oxide-water interface. Environ Sci Technol 38:4782–4790.

    Article  CAS  Google Scholar 

  • Xing B, Pignatello JJ. 1997. Dual-mode sorption of low-polarity compounds in glassy poly(vinylchloride) and soil organic matter. Environ Sci Technol 31:792–799.

    Article  CAS  Google Scholar 

  • Zachara JM, Kukkadapu RK, Fredrickson JK, Gorby YA, Smith SC. 2002. Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB). Geomicrobiol J 19:179–207.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cwiertny, D.M., Scherer, M.M. (2010). Abiotic Processes Affecting the Remediation of Chlorinated Solvents. In: Stroo, H., Ward, C. (eds) In Situ Remediation of Chlorinated Solvent Plumes. SERDP/ESTCP Environmental Remediation Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1401-9_4

Download citation

Publish with us

Policies and ethics