Skip to main content

Bioaugmentation for Anaerobic Bioremediation of Chlorinated Solvents

  • Chapter
  • First Online:
In Situ Remediation of Chlorinated Solvent Plumes

Abstract

Bioaugmentation involves the introduction of microorganisms into soil or groundwater to improve biological activity. Though used for other purposes, such as improving agricultural yields or efficiency, the use of bioaugmentation to promote the degradation of contaminants in the subsurface has increased significantly in recent years (Gentry et al., 2004). Bioaugmentation has been viewed with skepticism in the past, but there has been increasing evidence in recent years that it can accelerate the bioremediation of some contaminants under some site conditions. Bioaugmentation has become particularly useful for treating groundwater contaminated with chlorinated solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson DT, Parkin GF. 2000. Impact of mixtures of chlorinated aliphatic hydrocarbons on a high-rate, tetrachloroethene-dechlorinating enrichment culture. Environ Sci Technol 34:1959–1965.

    Article  CAS  Google Scholar 

  • Adamson DT, McDade JM, Hughes JB. 2003. Inoculation of a DNAPL source zone to initiate reductive dechlorination of PCE. Environ Sci Technol 37:2525–2533.

    Article  CAS  Google Scholar 

  • AFCEE (Air Force Center for Environmental Excellence). 2004. Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents. Prepared by Parsons Infrastructure and Technology Group, Inc. for AFCEE, Brooks City-Base, TX, USA; Naval Facilities Engineering Service Center (NFESC), Port Hueneme, CA, USA; and the Environmental Security Technology Certification Program (ESTCP), Arlington, VA, USA. http://www.estcp.org/Technology/upload/ER-0125-PP-01-N-2.pdf. Accessed June 2, 2010.

  • Barton JW, Ford RM. 1997. Determination of effective transport coefficients for bacterial migration in sand columns. Appl Environ Microbiol 61:3329–3335.

    Google Scholar 

  • Bourquin AW, Mosteller DC, Olsen RL, Smith MJ, Reardon KF. 1997. Aerobic bioremediation of TCE-contaminated groundwater: Bioaugmentation with Burkholderia cepacia PR1301. In Alleman BC, Leeson A, eds, In Situ and On-Site Bioremediation: Vol 4. Battelle Press, Columbus, OH, USA, pp 513–518.

    Google Scholar 

  • Bunge M, Adrain L, Kraus A, Opel M, Lorenz WG, Andreesen JR, Görisch H, Lechner U. 2003. Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nat 421:357–360.

    Article  CAS  Google Scholar 

  • Camesano TA, Logan BE. 1998. Influence of fluid velocity and cell concentration on the transport of motile and non-motile bacteria in porous media. Environ Sci Technol 32:1699–1708.

    Article  CAS  Google Scholar 

  • Camesano TA, Logan BE. 2000. Probing bacterial electrosteric interactions using atomic force microscopy. Environ Sci Technol 34:3354–3362.

    Article  CAS  Google Scholar 

  • Carr CS, Garg S, Hughes JB. 2000. Effect of dechlorinating bacteria on the longevity and composition of PCE-containing nonaqueous phase liquids under equilibrium dissolution conditions. Environ Sci Technol 34:1088–1094.

    Article  CAS  Google Scholar 

  • Chen C, Puhaaka JA, Ferguson JF. 1996. Transformations of 1,1,2,2-tetrachloroethene under methanogenic conditions. Environ Sci Technol 30:542–547.

    Article  CAS  Google Scholar 

  • Criddle CS, DeWitt JT, Grbic-Galic D, McCarty PL. 1990. Transformation of carbon tetrachloride by Pseudomonas sp. strain KC under denitrification conditions. Appl Environ Microbiol 56:3240–3246.

    CAS  Google Scholar 

  • Cupples AM, Spormann AM, McCarty PL. 2003. Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by completive PCR. Appl Environ Microbiol 69:953–959.

    Article  CAS  Google Scholar 

  • DeFlaun MF, Tanzer A, McAteer A, Marshall B, Levy SB. 1990. Development of an adhesion assay and characterization of an adhesion deficient mutant of Pseudomonas fluorescens. Appl Environ Microbiol 56:112–119.

    CAS  Google Scholar 

  • DeFlaun MF, Murray CJ, Holben W, Scheibe T, Mills A, Ginn T, Griffin T, Majer E, Wilson JL. 1997. Preliminary observations on bacterial transport in a coastal plain aquifer. FEMS Microbiol Rev 20:473–487.

    Article  CAS  Google Scholar 

  • Duba AG, Jackson KJ, Jovanovich MC, Knapp RB, Taylor RT. 1996. TCE remediation using in situ resting-state bioaugmentation. Environ Sci Technol 30:1982–1989.

    Article  CAS  Google Scholar 

  • Duhamel M, Wehr SD, Yu L, Rizvi H, Seepersad S, Dworatzek S, Cox EE, Edwards EA. 2002. Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene, and vinyl chloride. Water Res 36:4193–4202.

    Article  CAS  Google Scholar 

  • Duhamel M, Mo K, Edwards EA. 2004. Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Appl Environ Microbiol 70:5538–5545.

    Article  CAS  Google Scholar 

  • Dybas MJ, Barcelona M, Bezborodnikov S, Davies S, Forney L, Heuer H, Kawka O, Mayotte T, Sepulveda-Torres L, Smalla K, Sneathen M, Tiedje J, Voice T, Wiggert DC, Witt ME, Criddle CS. 1998. Pilot-scale evaluation of bioaugmentation for in situ remediation of a carbon tetrachloride-contaminated aquifer. Environ Sci Technol 32:3598–3611.

    Article  CAS  Google Scholar 

  • Dybas MJ, Hyndman DW, Heine R, Tiedje J, Linning JK, Wiggert D, Voice T, Zhao X, Dybas L, Criddle CS. 2002. Development, operation, and long-term performance of a full-scale biocurtain utilizing bioaugmentation. Environ Sci Technol 36:3635–3644.

    Article  CAS  Google Scholar 

  • Ellis DE, Lutz EJ, Odom JM, Buchanan Jr RL, Bartlett CL, Lee MD, Harkness MR, Deweerd KA. 2000. Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ Sci Technol 34:2254–2260.

    Article  CAS  Google Scholar 

  • ESTCP (Environmental Security Technology Certification Program). 2005. Bioaugmentation for Remediation of Chlorinated Solvents: Technology Development, Status, and Research Needs. ESTCP, Arlington, VA, USA.http://docs.serdp-estcp.org/viewfile.cfm?Doc=BioaugmentationWhitePaper.pdf. Accessed July 17, 2009.

  • Fagervold SK, Watts JEM, May HD, Sowers KR. 2005. Sequential reductive dechlorination of meta-chlorinated polychlorinated biphenyl congeners in sediment microcosms by two different Chloroflexi phylotypes. Appl Environ Microbiol 71:8085–8090.

    Article  CAS  Google Scholar 

  • Fam SA, Fogel S, Findlay M, Gaudette M. 2002. Full-scale bioaugmentation for anaerobic dechlorination of PCE and cis-DCE. Proceedings, Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 20–23, Paper No. 2B-60.

    Google Scholar 

  • Fennell DE, Gossett JM, Zinder SH. 1997. Comparison of butyric acid, ethanol, lactic acid and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene. Environ Sci Technol 31:918–926.

    Article  CAS  Google Scholar 

  • Fennell DE, Carroll AB, Gossett JM, Zinder SH. 2001. Assessment of indigenous reductive dechlorinating potential at a TCE-contaminated site using microcosms, polymerase chain reaction analysis, and site data. Environ Sci Technol 35:1830–1839.

    Article  CAS  Google Scholar 

  • Fennell DE, Nijenhuis I, Wilson SF, Zinder SH, Häggblom MM. 2004. Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environ Sci Technol 38:2075–2081.

    Article  CAS  Google Scholar 

  • Finn PS, Kane A, Vidumsky J, Major DW, Bauer N. 2003. In situ bioremediation of chlorinated solvents in overburden and bedrock using bioaugmentation. Abstracts, Seventh International In Situ and On-Site Bioremediation Symposium, Orlando, FL, USA, June 2–5.

    Google Scholar 

  • Fontes DE, Mills AL, Hornberger GM, Herman JS. 1991. Physical and chemical factors influencing transport of microorganisms through porous medium. Appl Environ Microbiol 57:2473–2481.

    CAS  Google Scholar 

  • French J, Kirk T, Blackwelder D, Sorenson K, Rahm B, Alvarez-Cohen L, Le S, Pound M, Tamashiro P. 2004. Phased in situ biostimulation/bioaugmentation pilot test results from a coastal aquifer. Proceedings, Fourth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 24–27, Paper No. 2D-10.

    Google Scholar 

  • Gentry TJ, Rensing C, Pepper IL. 2004. New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol 34:447–494.

    Article  CAS  Google Scholar 

  • Ginn TR, Wood BD, Nelson KE, Scheibe TD, Murphy EM, Clement TP. 2002. Processes in microbial transport in the natural subsurface. Adv Water Resour 25:1017–1042.

    Article  CAS  Google Scholar 

  • Goldstein RM, Mallory LM, Alexander M. 1985. Reasons for possible failure of inoculation to enhance biodegradation. Appl Environ Microbiol 50:977–983.

    CAS  Google Scholar 

  • Govan JRW, Balendreau J, Vandamme P. 2000. Burkholderia cepacia – Friend and foe. ASM News 66:124–125.

    Google Scholar 

  • Harkness MR, Bracco AA, Brennan Jr MJ, Deweerd KA, Spivack JL. 1999. Use of bioaugmentation to stimulate complete reductive dechlorination of trichloroethene in Dover soil columns. Environ Sci Technol 33:1100–1109.

    Article  CAS  Google Scholar 

  • Harvey RW. 1997. Microorganisms as tracers in groundwater injection and recovery experiments: A review. FEMS Microbiol Rev 20:461–472.

    Article  CAS  Google Scholar 

  • Harvey RW, George LH, Smith RL, LeBland DR. 1989. Transport of microspheres and indigenous bacteria through a sandy aquifer: Results of natural- and forced-gradient tracer experiments. Environ Sci Technol 23:51–56.

    Article  CAS  Google Scholar 

  • Harvey RW, Kinner NE, MacDonald D, Metge DW, Bunn A. 1993. Role of physical heterogeneity in the interpretation of small-scale laboratory and field observation of bacteria, microbial-sized microspheres, and bromide transport through aquifer sediments. Water Resour Res 29:2713–2721.

    Article  CAS  Google Scholar 

  • He J, Ritalahti KM, Aiello MR, Löffler FE. 2003a. Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. Appl Environ Microbiol 69:996–1003.

    Article  CAS  Google Scholar 

  • He J, Ritalahti KM, Yang KL, Koenigsberg SS, Löffler FE. 2003b. Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nat 424:62–65.

    Article  CAS  Google Scholar 

  • Heimann AC, Friis AK, Jakobsen R. 2005. Effects of sulfate on anaerobic chloroethene degradation by an enriched culture under transient and steady-state hydrogen supply. Water Res 39:3579–3586.

    Article  CAS  Google Scholar 

  • Hendrickson ER, Payne JA, Young RM, Starr MG, Perry MP, Payne JA, Buonamici LW. 2002. Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl Environ Microbiol 68:485–495.

    Article  CAS  Google Scholar 

  • Hoelen TP, Reinhard M. 2004. Complete biological dehalogenation of chlorinated ethylenes in sulfate containing groundwater. Biodegradation 15:395–403.

    Article  CAS  Google Scholar 

  • Holmes VF, He J, Lee PKH, Alvarez-Cohen L. 2006. Discrimination of multiple Dehalococcoides strains in a TCE enrichment by quantification of their reductive dehalogenase genes. Appl Environ Microbiol 72:5877–5883.

    Article  CAS  Google Scholar 

  • Hopkins GD, Semprini L, McCarty PL. 1993. Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms. Appl Environ Microbiol 59:2277–2285.

    CAS  Google Scholar 

  • Hopkins GD, McCarty PL. 1995. Field observations of in situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as the primary substrates. Environ Sci Technol 29:1628–1637.

    Article  CAS  Google Scholar 

  • Isalou M, Sleep BE, Liss SN. 1998. Biodegradation of high-concentrations of tetrachloroethene in a continuous-flow column system. Environ Sci Technol 32:3579–3585.

    Article  CAS  Google Scholar 

  • Jenneman GE, McInerney MJ, Knapp RM. 1985. Microbial penetration through nutrient-saturated Berea sandstone. Appl Environ Microbiol 50:383–391.

    CAS  Google Scholar 

  • Jeong HY, Hayes KF. 2003. Impact of transition metals on reductive dechlorination rate of hexachloroethane by mackinawite. Environ Sci Technol 37:4650–4655.

    Article  CAS  Google Scholar 

  • Johnson DR, Lee PKH, Holmes VF, Alvarez-Cohen L. 2005. Transcriptional expression of the tceA gene in a Dehalococcoides-containing microbial enrichment. Appl Environ Microbiol 71:7145–7151.

    Article  CAS  Google Scholar 

  • Koenigsberg SS, Sandefur A, Lapus KA, Pasrich G. 2002. Facilitated desorption and incomplete dechlorination: Observations from 350 applications of HRC. Proceedings, Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, June 2–5, Paper No. 2B-56.

    Google Scholar 

  • Koenigsberg SS, Willett A, Rohdenburg P. 2004. Biological treatment of residual DNAPL with a slow-release electron donor HRC-XTM. Proceedings, Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 24–27, Paper No. 2E-07.

    Google Scholar 

  • Lee MD, Odom JM, Buchanan Jr RJ. 1998. New perspectives on microbial dehalogenation of chlorinated solvents: Insights from the field. Annu Rev Microbiol 52:423–452.

    Article  CAS  Google Scholar 

  • Lee PKH, Johnson DR, Holmes VF, He J, Alvarez-Cohen L. 2006. Reductive dehalogenase gene expression as a biomarker for physiological activity of Dehalococcoides spp. Appl Environ Microbiol 72:6161–6168.

    Article  CAS  Google Scholar 

  • Lendvay JM, Löffler FE, Dollhopf M, Aiello MR, Daniels G, Fathepure BZ, Gebhard M, Heine R, Helton R, Shi J, Krajmalnik-Brown R, Major CL, Barcelona MJ, Petrovskis E, Tiedje JM, Adriaens P. 2003. Bioreactive barriers: A comparison of bioaugmentation and biostimulation for chlorinated solvent remediation. Environ Sci Technol 37:1422–1431.

    Article  CAS  Google Scholar 

  • Löffler F, Sun Q, Li J, Tiedje J. 2000. 16S rRNA gene-based detection of tetrachloroethene dechlorinating Desulfuromonas and Dehalococcoides species. Appl Environ Microbiol 66:1369–1374.

    Google Scholar 

  • Löffler FE, Cole JR, Ritalahti KM, Tiedje JM. 2003. Diversity of dechlorinating bacteria. In Haggblom MM, Dossert ID, eds, Dehalogenation: Microbial Processes and Environmental Applications. Kluwer Academic Publishers, New York, NY, USA, pp 53–87.

    Google Scholar 

  • Lorah MM, Voytek MA. 2004. Degradation of 1,1,2,2-tetrachloroethane and accumulation of vinyl chloride in wetland sediment microcosms and in situ porewater: Biogeochemical controls and associations with microbial communities. J Contam Hydrol 70:117–145.

    Article  CAS  Google Scholar 

  • Lu X, Wilson JT, Kampbell DH. 2006. Relationship between Dehalococcoides DNA in ground water and rates of reductive dechlorination at field scale. Water Res 40:3131–3140.

    Article  CAS  Google Scholar 

  • Mailloux BJ, Fuller ME, Onstott TC, Hall J, Dong H, DeFlaun MF, Streger SH, Rothmel RK, Green M, Swift DJP, Radke J. 2003. The role of physical, chemical and microbial heterogeneity on the field-scale transport and attachment of bacteria. Water Resour Res 39:1143–1160.

    Article  Google Scholar 

  • Major DW, Cox EE. 1992. Survey of Microbial Inoculants for Bioremediation and Identification of Information Requirements Suitable for the Feasibility Evaluation and Validation of Bioremediation. PIBS 2152. Hazardous Contaminants Branch, Ontario Ministry of the Environment, Ontario, Canada, November.

    Google Scholar 

  • Major DW, McMaster MM, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW. 2002. Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36:5106–5116.

    Article  CAS  Google Scholar 

  • Major DW, Edwards EA, McCarty PL, Gossett J, Hendrickson E, Loffler FE, Zinder SH, Ellis D, Vidumsky J, Harkness MR, Klecka G, Cox EE. 2003. Discussion of environment vs. bacteria or let’s play “name that bacteria”. Ground Water Monit Remediat 23:32–48.

    Google Scholar 

  • Major DW, Cox EE, McMaster M, Durant N. 2005. Dispelling the myth that bioaugmentation is expensive. Proceedings, Eighth International In Situ and On-Site Bioremediation Symposium, Baltimore, MD, USA, June 6–9.

    Google Scholar 

  • Marlow HJ, Duston KL, Wiesner MR, Tomson MB, Wilson JT, Ward CH. 1991. Microbial transport through porous media: The effects of hydraulic conductivity and injection velocity. J Hazard Mater 28:65–74.

    Article  Google Scholar 

  • Massol-Deya AR, Weller AR, Rios Hernandez L, Zhou JZ, Hickey RF, Tiedje JM. 1997. Succession and convergence of biofilm communities in fixed-film reactors treating aromatic hydrocarbons in groundwater. Appl Environ Microbiol 63:270–276.

    CAS  Google Scholar 

  • Maymó-Gatell X, Chien YT, Gossett JM, Zinder SH. 1997. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Sci 276:1568–1571.

    Article  Google Scholar 

  • Maymó-Gatell X, Anguish T, Zinder SH. 1999. Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by Dehalococcoides ethenogenes 195. Appl Environ Microbiol 65:3108–3113.

    Google Scholar 

  • Maymó-Gatell X, Nijenhuis I, Zinder SH. 2001. Reductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by Dehalococcoides ethenogenes. Environ Sci Technol 35:516–521.

    Article  Google Scholar 

  • Mayotte TJ, Dybas MJ, Criddle CS. 1996. Bench-scale evaluation of bioaugmentation to remediate carbon tetrachloride contaminated aquifer materials. Ground Water 34:358–367.

    Article  CAS  Google Scholar 

  • McCaulou DR, Bales RC, Arnold RG. 1995. Effect of temperature-controlled motility on transport of bacteria and microspheres through saturated sediment. Water Resour Res 31:271–280.

    Article  Google Scholar 

  • McMaster MM, Hood E, Major D, Lebron C, McHale T. 2002. Evaluation of bioaugmentation to enhance PCE DNAPL dissolution at Dover National Test Site. Abstract, Strategic Environmental Research and Development Program (SERDP)/Environmental Strategic Technology Certification Program (ESTCP) Partners in Environmental Technology Symposium, Washington, DC, USA, December 3–5.

    Google Scholar 

  • Müller JA, Rosner BM, Von Abendroth G, Meshulam-Simon G, McCarty PL, Spormann AM. 2004. Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Appl Environ Microbiol 70:4880–4888.

    Article  Google Scholar 

  • Murphy EM, Ginn TR, Chilakapati A, Resch CT, Philips JL, Wietsma TW, Spadoni CM. 1997. The influence of physical heterogeneity on microbial degradation and distribution in porous media. Water Resour Res 33:1087–1103.

    Article  CAS  Google Scholar 

  • Pankow JF, Cherry JA. 1996. Dense Chlorinated Solvents and Other DNAPLs in Groundwater. Waterloo Press, Portland, OR, USA. 525 p.

    Google Scholar 

  • Rahm BG, Chauhan S, Holmes VF, Macbeth TW, Sorenson KS, Alvarez-Cohen L. 2006. Molecular characterization of microbial populations at two sites with differing reductive dechlorination abilities. Biodegradation 17:523–534.

    Article  CAS  Google Scholar 

  • Reynolds PJ, Sharma P, Jenneman GE, McInerney MJ. 1989. Mechanisms of microbial movement in subsurface materials. Appl Environ Microbiol 55:2280–2286.

    CAS  Google Scholar 

  • Richardson RE, Bhupathiraju VK, Song DL, Goulet TA, Alvarez-Cohen L. 2002. Phylogenetic characterization of microbial communities that reductively dechlorinate TCE based upon a combination of molecular techniques. Environ Sci Technol 36:2652–2662.

    Article  CAS  Google Scholar 

  • Ritalahti KM, Löffler FE, Rasch ER, Koenigsberg SS. 2005. Bioaugmentation for chlorinated solvent detoxification: Bioaugmentation and molecular diagnostics in the bioremediation of chlorinated ethene-contaminated sites. Ind Biotechnol 1:114–118.

    Article  CAS  Google Scholar 

  • Ritalahti KM, Amos BK, Sung Y, Wu Q, Koenigsberg SS, Löffler FE. 2006. Quantitative PCR targeting 16SrRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococccoides strains. Appl Environ Microbiol 72:2765–2774.

    Article  CAS  Google Scholar 

  • Rogers JR. 2002. Why do bacteria colonize aquifer surfaces? Geochemical and nutrient controls of bacterial colonization of silicate surfaces. In Aiken GR, Kuniansky EL, eds, Proceedings U.S. Geological Survey (USGS) Artificial Recharge Workshop (USGS Open-File Report 02–89), Sacramento, CA, USA, April 2–4, pp 54–57. http://water.usgs.gov/ogw/pubs/ofr0289/. Accessed July 17, 2009.

  • Scheibe TD, Chien Y, Radke JS. 2001. Use of quantitative models to design microbial transport experiments in a sandy aquifer. Ground Water 39:210–222.

    Article  CAS  Google Scholar 

  • Scholl MA, Harvey RW. 1992. Laboratory investigations on the role of sediment surface and groundwater chemistry in transport of bacteria through a contaminated sandy aquifer. Environ Sci Technol 26:1410–1417.

    Article  CAS  Google Scholar 

  • Scholl MA, Mills AL, Herman JS, Hornberger GM. 1990. The influence of mineralogy and solution chemistry on the attachment of bacteria to representative aquifer materials. J Contam Hydrol 6:321–336.

    Article  CAS  Google Scholar 

  • Seepersad D. 2001. Investigation of parameters that affect bioaugmentation at TCE and perchlorate contaminated sites. BASc Thesis, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, Canada.

    Google Scholar 

  • Seshadri R, Adrian L, Fouts DE, Eisen JA, Phillippy AM, Methe BA, Ward NL, Nelson WC, Deboy RT, Khouri HM, Kolonay JF, Dodson RJ, Daugherty SC, Brinkac LM, Sullivan SA, Madupu R, Nelson KE, Kang KH, Impraim M, Tran K, Robinson JM, Forberger HA, Fraser CM, Zinder SH, Heidelberg JF. 2005. Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Sci 307:105–108.

    Article  CAS  Google Scholar 

  • Sharma PK, Bourquin A. 2005. Bioaugmentation after a stalled biostimulation application. Proceedings, Eighth International In Situ and On-Site Bioremediation Symposium, Baltimore, MD, USA, June 6–9.

    Google Scholar 

  • Sharma MM, Chang YI, Yen TF. 1995. Reversible and irreversible surface charge modification of bacteria for facilitating transport through porous media. Colloids and Surfaces 16:193–206.

    Article  Google Scholar 

  • Sharma PK, Bourquin A, Accashian JV, Evans P, Willett A, Sakata K, Lapus K, Koenigsberg S, Löffler F. 2004. Bioaugmentation pilot test to treat cis-1,2-dichloroethene in groundwater. Proceedings, Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 24–27, Paper No. 2D–11.

    Google Scholar 

  • Sherwood-Lollar B, Slater GF Sleep B, Witt M, Klecka G, Harkness M, Spivack J. 2001. Stable carbon isotope evidence for intrinsic bioremediation of tetrachloroethene (PCE) and trichloroethene (TCE) at Area 6, Dover Air Force Base. Environ Sci Technol 35:261–269.

    Article  CAS  Google Scholar 

  • Smatlak CR, Gossett JM, Zinder SH. 1996. Comparative kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture. Environ Sci Technol 30:2850–2858.

    Article  CAS  Google Scholar 

  • Smidt H, de Vos WM. 2004. Anaerobic microbial dehalogenation. Annu Rev Microbiol 58:43–73.

    Article  CAS  Google Scholar 

  • Smits TH, Devenoges C, Szynalski K, Maillard J, Holliger C. 2004. Development of a real-time PCR method for quantification of the three genera Dehalobacter, Dehalococcoides, and Desulfitobacterium in microbial communities. J Microbiol Methods 57:369–78.

    Article  CAS  Google Scholar 

  • Song DL, Conrad ME, Sorenson KS, Alvarez-Cohen L. 2002. Stable carbon isotope fractionation during enhanced in situ bioremediation of trichloroethene. Environ Sci Technol 36:2262–2268.

    Article  CAS  Google Scholar 

  • Steffan RJ, Sperry KL, Walsh MT, Vainberg S, Condee CW. 1999. Field-scale evaluation of in situ bioaugmentation for remediation of chlorinated solvents in groundwater. Environ Sci Technol 33:2771–2781.

    Article  CAS  Google Scholar 

  • Stroo HF, Leeson A, Shepard AJ, Koenigsberg SS, Casey C. 2006. Environmental remediation applications of molecular biological tools. Remediat 16:125–136.

    Article  Google Scholar 

  • Sun B, Griffin BM, Ayala-del-Rio HL, Hashshman SA, Tiedje JM. 2002. Microbial dehalorespiration with 1,1,1-trichloroethane. Sci 298:1023–1025.

    Article  CAS  Google Scholar 

  • Sung Y, Ritalahti KM, Apkarian R, Löffler FE. 2006. Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene respiring Dehalococcoides isolate. Appl Environ Microbiol 72:1980–1987.

    Article  CAS  Google Scholar 

  • Suthersan S, Lutes CC, Palmer PL, Lenzo F, Payne FC, Liles DS, Burdick J. 2002. Technical Protocol for Using Soluble Carbohydrates to Enhance Reductive Dechlorination of Chlorinated Aliphatic Hydrocarbons. Prepared for AFCEE, Brooks-City Base, TX, USA, and ESTCP, Arlington, VA, USA. http://www.estcp.org/viewfile.cfm?Doc=CU%2D9920%2DPR%2D01%2Epdf. Accessed July 17, 2009.

  • Vogel TM, McCarty PL. 1985. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride and carbon dioxide under methanogenic conditions. Appl Environ Microbiol 49:1980–1983.

    Google Scholar 

  • Warren T, Williams V, Fletcher M. 1992. Influence of solid surface, adhesive ability, and inoculum size on bacterial colonization in microcosm studies. Appl Environ Microbiol 58:2954–2959.

    CAS  Google Scholar 

  • Weiss TH, Mills AL, Hornberger GM, Herman JS. 1995. Effect of bacterial cell shape on transport of bacteria in porous media. Environ Sci Technol 29:1737–1740.

    Article  CAS  Google Scholar 

  • Yang Y, McCarty PL. 2000. Biologically enhanced dissolution of tetrachloroethene DNAPL. Environ Sci Technol 34:2979–2984.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stroo, H.F., Major, D.W., Gossett, J.M. (2010). Bioaugmentation for Anaerobic Bioremediation of Chlorinated Solvents. In: Stroo, H., Ward, C. (eds) In Situ Remediation of Chlorinated Solvent Plumes. SERDP/ESTCP Environmental Remediation Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1401-9_13

Download citation

Publish with us

Policies and ethics