Skip to main content

Biostimulation for Anaerobic Bioremediation of Chlorinated Solvents

  • Chapter
  • First Online:
Book cover In Situ Remediation of Chlorinated Solvent Plumes

Part of the book series: SERDP/ESTCP Environmental Remediation Technology ((SERDP/ESTCP))

Abstract

Chlorinated solvents often were released to the subsurface environment in wastewater or in the form of dense nonaqueous phase liquids (DNAPLs). As a result of their physical and chemical properties, chlorinated solvents are difficult to remediate once they have migrated into groundwater. However, enhanced in situ anaerobic bioremediation can be an effective method of degrading chlorinated solvents dissolved in groundwater, including chloroethenes, chloroethanes, and chloromethanes (collectively referred to as chlorinated aliphatic hydrocarbons, or CAHs). Advantages of enhanced in situ anaerobic bioremediation include the potential for complete detoxification of chlorinated solvents with little impact on infrastructure and relatively low cost compared to more active and aggressive engineered remedial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson DT, McDade JM, Hughes JB. 2003. Inoculation of a DNAPL source zone to initiate reductive dechlorination of PCE. Environ Sci Technol 37:2525–2533.

    Article  CAS  Google Scholar 

  • Adrian L, Szewzyk U, Wecke J, Gorisch H. 2000. Bacterial dehalorespiration with chlorinated benzenes. Nat 408:580–583.

    Article  CAS  Google Scholar 

  • AFCEE (Air Force Center for Engineering and the Environment). 2000. Designing Monitoring Programs to Effectively Evaluate the Performance of Natural Attenuation: Air Force Center for Environmental Excellence, Brooks City-Base, TX, USA. http://www.afcee.af.mil/shared/media/document/AFD-071211-021.pdf. Accessed July 31, 2009.

    Google Scholar 

  • AFCEE. 2007. Protocol for In situ Bioremediation of Chlorinated Solvents Using Edible Oil. Prepared by Solutions IES, Inc., Terra Systems, Inc., and Parsons Infrastructure & Technology Group, Inc. October. http://www.afcee.af.mil/resources/technologytransfer/programsandinitiatives/enhancedinsituanaerobicbioremediation/resources/index.asp. Accessed July 31, 2009.

  • AFCEE. 2008. Technical Protocol for Enhanced Anaerobic Bioremediation Using Permeable Mulch Biowalls and Bioreactors. Prepared by Parsons Infrastructure & Technology Group, Inc., Denver, CO, USA. May. http://www.afcee.af.mil/resources/technologytransfer/programsandinitiatives/enhancedinsituanaerobicbioremediation/resources/index.asp. Accessed July 31, 2009.

  • AFCEE, Naval Facilities Engineering Service Center (NFESC), and Environmental Security Technology Certification Program (ESTCP). 2004. Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents. Prepared by Parsons Infrastructure & Technology Group, Inc., Denver, CO, USA. August. http://www.afcee.af.mil/resources/technologytransfer/programsandinitiatives/enhancedinsituanaerobicbioremediation/resources/index.asp. Accessed July 31, 2009.

  • AFCEE, NFESC, ESTCP. 2008. Workshop on In Situ Biogeochemical Transformation of Chlorinated Solvents. Prepared by CDM, Bellevue, WA, USA. http://www.estcp.org/Technology/upload/In%20Situ%20Biogeochemical%20Transformation%20Workshop%20Report%204-22-08.pdf. Accessed January 8, 2010.

  • Ahmad F, Schnitker SP, Newell CJ. 2007a. Remediation of RDX- and HMX-contaminated groundwater using organic mulch biowalls. J Contam Hydrol 90:1–20.

    Article  CAS  Google Scholar 

  • Ahmad F, McGuire TM, Lee RS, Becvar E. 2007b. Considerations for the design of organic mulch permeable reactive barriers. Remediat J 18:59–72.

    Article  Google Scholar 

  • Alvarez PJ, Illman WA. 2005. Bioremediation and Natural Attenuation: Process Fundamentals and Mathematical Models. John Wiley & Sons, New York, NY, USA. 608 p.

    Book  Google Scholar 

  • Arnold WA, Roberts AL. 2000. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ Sci Technol 34:1794–1805.

    Article  CAS  Google Scholar 

  • Aziz CE, Farhat SK, Higgins EA, Newell CJ, Hansen J. 2003a. A Hydrogen Recirculation System for the Treatment of TCE-Impacted Groundwater. Proceedings, Seventh International Symposium of In Situ and On-Site Bioremediation. Battelle Press, Columbus, OH, USA, Paper B-04.

    Google Scholar 

  • Aziz CE, Farhat SK, McDade JM, Newell CJ, Adamson DT, Hughes JB. 2003b. Low-volume Hydrogen Biosparging in an Experimental Controlled Release System. Proceedings, Seventh International Symposium of In Situ and On-Site Bioremediation. Battelle Press, Columbus, OH, USA, Paper B-03.

    Google Scholar 

  • Basu N, Rao PSC, Poyer IC, Annable MD, Hatfield K. 2006. Flux-based assessment at a manufacturing site contaminated with trichloroethylene. J Contam Hydrol 86:105–127.

    Article  CAS  Google Scholar 

  • Bedard DL, Bailey JJ, Reiss BL, Van Slyke Jerzak G. 2006. Development and characterization of stable sediment-free anaerobic bacterial enrichment cultures that dechlorinate Aroclor 1260. Appl Environ Microbiol 72:2460–2470.

    Article  CAS  Google Scholar 

  • Bouwer EJ, McCarty PL. 1984. Modeling of trace organics biotransformation in the subsurface. Ground Water 22:433–440.

    Article  CAS  Google Scholar 

  • Bouwer EJ. 1994. Bioremediation of Chlorinated Solvents Using Alternate Electron Acceptors. In Norris RD, Hinchee RE, Brown R, McCarty PL, Semprini L, Wilson JT, Kampbell DH, Reinhard M, Bouwer EJ, Borden RC, Vogel TM, Thomas JM, Ward CH, eds, Handbook of Bioremediation. CRC Press, Boca Raton, FL, USA, pp 149–175.

    Google Scholar 

  • Bradley PM, Chapelle FH. 1996. Anaerobic mineralization of vinyl chloride in Fe (III) reducing aquifer sediments. Environ Sci Technol 30:2084–2086.

    Article  CAS  Google Scholar 

  • Bradley PM, Chapelle FH. 1998. Microbial mineralization of VC and DCE under different terminal electron accepting conditions. Anaerobe 4:81–87.

    Article  CAS  Google Scholar 

  • Bradley PM, Landmeyer JE, Dinicola RS. 1998a. Anaerobic oxidation of [1,2-14C] dichloroethene under Mn(IV)-reducing conditions. Appl Environ Microbiol 64:1560–1562.

    CAS  Google Scholar 

  • Bradley PM, Chapelle FH, Wilson JT. 1998b. Field and laboratory evidence for intrinsic biodegradation of vinyl chloride contamination in a Fe(III)-reducing aquifer. J Contam Hydrol 31:111–127.

    Article  CAS  Google Scholar 

  • Brown Jr JF, Wagner RE, Feng H, Bedard DL, Brennan MJ, Carnahan JC. 1987. Environmental dechlorination of PCBs. Environ Toxicol Chem 6:579–593.

    Article  CAS  Google Scholar 

  • Brown NJ, Fred N, Mullin S, Lapus K. 2003. The Use of Hydrogen Release Compound (HRC®) for Pentachlorophenol (PCP) Degradation. Proceedings, Seventh International Symposium of In Situ and On-Site Bioremediation. Battelle Press, Columbus, OH, USA, Paper D-08.

    Google Scholar 

  • Bunge M, Adrian L, Kraus A, Opel M, Lorenz WG, Andreesen JR, Gorisch H, Lechner U. 2003. Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nat 421:357–360.

    Article  CAS  Google Scholar 

  • Buscheck TE, Nijhawan N, O’Reilly KT. 2003. Mass flux estimates to assist remediation decision-making. In Magar VS, Kelley ME, eds, Proceedings of the Seventh International In Situ and On-Site Bioremediation Symposium (Orlando, FL; June 2). Battelle Press, Columbus, OH, USA.

    Google Scholar 

  • Butler EC, Hayes KF. 1999. Kinetics of the transformation of trichloroethylene and tetrachloroethylene by iron sulfide. Environ Sci Technol 33:2021–2027.

    Article  CAS  Google Scholar 

  • Butler EC, Hayes KF. 2000. Kinetics of the transformation of halogenated aliphatic compounds by iron sulfide. Environ Sci Technol 34:422–429.

    Article  CAS  Google Scholar 

  • Butler EC, Hayes KF. 2001. Factors influencing rates and products in the transformation of trichloroethylene by iron sulfide and iron metal. Environ Sci Technol 35:3884–3891.

    Article  CAS  Google Scholar 

  • Case NL, Boyle SL, Dick VB. 2001. Enhanced bioremediation under difficult geologic conditions: Case studies. In Proceedings of the Sixth In-Situ and On-Site Bioremediation Symposium (San Diego, CA, USA), 6(7):281–288.

    Google Scholar 

  • CH2M Hill. 2006. Draft Remedial Action Effectiveness Report. Prepared for Naval Weapons Industrial Reserve Plant (NWIRP) McGregor, TX, USA.

    Google Scholar 

  • Chamberlain WB. 2003. Bionutrient modeling for design of in situ bioremediation. Pollut Eng April:28–33.

    Google Scholar 

  • Coulibaly KM, Borden RC. 2004. Impact of edible oil injection on the permeability of aquifer sands. J Contam Hydrol 71:219–237.

    Article  CAS  Google Scholar 

  • Da Silva MLB, Daprato RC, Gomez DE, Hughes JB, Ward CH, Alvarez PJJ. 2006. Comparison of bioaugmentation and biostimulation for the enhancement of dense nonaqueous phase liquid source zone bioremediation. Water Environ Res 78:2456–2465.

    Article  CAS  Google Scholar 

  • Downey DC, Henry BM, Griffiths DR, Hicks JR, Becvar ESK, Moore S, Butchee C. 2006. Toxicity Reduction: A Key Metric for Enhanced Bioremediation of Chlorinated Solvents. Proceedings, Fifth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 22–25.

    Google Scholar 

  • Duhamel M, Wehr SD, Yu L, Rizvi H, Seepersad S, Dworatzek S, Cox EE, Edwards EA. 2002. Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene, and vinyl chloride. Water Res 36:4193–4202.

    Article  CAS  Google Scholar 

  • Einarson MD, Mackay DM. 2001. Predicting impacts of groundwater contamination. Environ Sci Technol 36:66A–73A.

    Article  Google Scholar 

  • Evans PJ, Trute MM. 2006. In situ bioremediation of nitrate and perchlorate in vadose zone soil for groundwater protection using gaseous electron donor injection technology. Water Environ Res 78:2436–2446.

    Article  CAS  Google Scholar 

  • Fagervold SK, Watts JEM, May HD, Sowers KR. 2005. Sequential reductive dechlorination of meta-chlorinated polychlorinated biphenyl congeners in sediment microcosms by two different chloroflexi phylotypes. Appl Environ Microbiol 71:8085–8090.

    Article  CAS  Google Scholar 

  • Feenstra S, Cherry JA, Parker BL. 1996. Conceptual models for the behavior of DNAPLs in the subsurface. In Pankow JF, Cherry JA, eds, Dense Chlorinated Solvents and Other DNAPLs in Groundwater. Waterloo Press, Portland, OR, USA. 525 p.

    Google Scholar 

  • Fennell DE, Gossett JM. 1998. Modeling the production of and competition for hydrogen in a dechlorinating culture. Environ Sci Technol 32:2450–2460.

    Article  CAS  Google Scholar 

  • Fennell DE, Carroll AB, Gossett JM, Zinder SH. 2001. Assessment of indigenous reductive dechlorinating potential at a TCE-contaminated site using microcosms, polymerase chain reaction analysis, and site data. Environ Sci Technol 35:1830–1839.

    Article  CAS  Google Scholar 

  • Fennell DE, Nijenhuis I, Wilson SF, Zinder SH, Häggblom MM. 2004. Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environ Sci Technol 38:2075–2081.

    Article  CAS  Google Scholar 

  • Fennell S, Lapus K, Willett A, Koenigsberg S. 2003. Field Pilot Test of Anaerobic Biodegradation of Chlordane Using HRC®. Proceedings, Seventh International Symposium of In Situ and On-Site Bioremediation (Orlando, FL, USA, June). Battelle Press, Columbus, OH, USA, Paper D-04.

    Google Scholar 

  • Ferrey ML, Wilken RT, Ford RG, Wilson JT. 2004. Nonbiological removal of cis-dichloroethylene and 1,1-dichloroethylene in aquifer sediment containing magnetite. Environ Sci Technol 38:1746–1752.

    Article  CAS  Google Scholar 

  • Ferris S, Henry B, Coker C, Lantzy R. 2006. Pilot Test Evaluation for Enhanced Anaerobic Bioremediation of Chlorinated Ethanes. Proceedings, Fifth International Conference on Remediation of Chlorinated and Recalcitrant Compounds (Monterey, CA, USA, May). Battelle Press, Columbus, OH, USA, Paper B-25.

    Google Scholar 

  • Flanagan J, Kortegaard K, Pinder DN, Rades T, Singh H. 2005. Solubilisation of soybean oil in microemulsions using various surfactants. Food Hydrocolloids 20:253–260.

    Article  CAS  Google Scholar 

  • Frizzell A, Lutes C, Voscott H, Hansen M. 2004. Enhanced Reductive Dechlorination of a PCE Plume using Corn Syrup and Cheese Whey. In AFCEE, NFESC, ESTCP, Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents, Appendix E.3.

    Google Scholar 

  • GeoSyntec (GeoSyntec Consultants). 2005. A Review of Biofouling Controls for Enhanced In Situ Bioremediation of Groundwater. Prepared for ESTCP. October. http://www.estcp.org/viewfile.cfm?Doc=ER%2D0429%2DWhtPaper%2Epdf. Accessed July 31, 2009.

  • Gerritse J, Renard V, Pedro-Gomes TM, Lawson PA, Collins MD, Gottschal JC. 1996. Desulfito bacterium sp. strain PCE1, an anaerobic bacaterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch Microbiol 165:132–140.

    Article  CAS  Google Scholar 

  • GSI (Groundwater Services, Inc.). 2008. Treatment of RDX & HMX Plumes Using Mulch Biowalls. Prepared for the ESTCP, Arlington, VA, USA. August.

    Google Scholar 

  • Haas PE, Cork P, Aziz CE, Hampton M. 2000. In situ Biowall Containing Organic Mulch Promotes Chlorinated Solvent Bioremediation. Proceedings, Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds (Monterey, CA, May). Battelle Press, Columbus, OH, USA, 4:71–76.

    Google Scholar 

  • Haas PE, Gonzales J, Cork P, Henry B. 2003. Remedial Performance of Organic Mulch Biowalls at Two Geochemically Distinct Sites. Proceedings, 2003 AFCEE Technology Transfer Workshop, San Antonio, TX. Air Force Center for Environmental Excellence. February.

    Google Scholar 

  • He J, Sung Y, Dollhopf ME, Fathepure BZ, Tiedje JM, Löffler FE. 2002. Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites. Environ Sci Technol 36:3945–3952.

    Article  CAS  Google Scholar 

  • He J, Ritalahti KM, Aiello MR, Löffler FE. 2003. Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as Dehalococcoides species. Appl Environ Microbiol 69:996–1003.

    Article  CAS  Google Scholar 

  • Heino T, Travers J, Wasserman B, Henry B, Absolom S, Perez J. 2007. Mulch Biowalls for Enhanced Bioremediation of Chlorinated Ethenes at SEDA, New York. Proceedings, Ninth International In Situ and On-Site Bioremediation Symposium (Baltimore, MD, USA, May 7–10). Battelle Press, Columbus, OH, USA, Paper J-08.

    Google Scholar 

  • Hendrickson ER, Payne JA, Young RM, Starr MG, Perry MP, Fahnestock S, Ellis DE, Ebersole RC. 2002. Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl Environ Microbiol 68:485–495.

    Article  CAS  Google Scholar 

  • Henry BM, Hartfelder T, Goodspeed M, Gonzales JR, Haas PE, Oakley D. 2003. Permeable Mulch Biowall for Bioremediation of Chlorinated Solvents. Proceedings, Seventh International Symposium of In situ and On-Site Bioremediation (Orlando, FL, USA, June 2003). Battelle Press, Columbus, OH, USA, Paper K-03.

    Google Scholar 

  • Henry BM, Turner AL, Becvar ESK, Haas PE. 2007. Long-Term Source Reduction Using Neat Vegetable Oil at CCAFS, Florida. Proceedings, Ninth International In Situ and On-Site Bioremediation Symposium(Baltimore, MD, May 7–10). Battelle Press, Columbus, OH, USA, Paper K-12.

    Google Scholar 

  • Holliger C, Schraa G, Stams AJM, Zehnder AJB. 1992. Enrichment and properties of an anaerobic mixed culture reductively dechlorinating 1,2,3-trichlorobenzene to 1,3-dichlorobenzene. Appl Environ Microbiol 58:1636–1644.

    CAS  Google Scholar 

  • Holliger C, Schraa G, Stams AJM, Zehnder AJB. 1993. A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl Environ Microbiol 59:2991–2997.

    CAS  Google Scholar 

  • Holscher T, Gorisch H, Adrian L. 2003. Reductive dehalogenation of chlorobenzene congeners in cell extracts of Dehalococcoides sp. strain CBDB1. Environ Sci Technol 69:2999–3001.

    CAS  Google Scholar 

  • Hunkeler D, Aravena R, Cox E. 2002. Carbon isotopes as a tool to evaluate the origin and fate of vinyl chloride: Laboratory experiments and modeling of isotope evolution. Environ Sci Technol 36:3378–3384.

    Article  CAS  Google Scholar 

  • Hunkeler D, Aravena R, Berry-Spark K, Cox E. 2005. Assessment of degradation pathways in an aquifer with mixed chlorinated hydrocarbon contamination using stable isotope analysis. Environ Sci Technol 39:5975–5981

    Article  CAS  Google Scholar 

  • ITRC (Interstate Technology & Regulatory Council). 1998. Technical and Regulatory Requirements for Enhanced In Situ Bioremediation of Chlorinated Solvents in Groundwater. ITRC, Washington, DC, USA, December. http://www.itrcweb.org/Documents/ISB-6.pdf. Accessed July 31, 2009.

  • ITRC. 2002. A Systematic Approach to In situ Bioremediation in Groundwater, Including Decision Trees on In situ Bioremediation for Nitrates, Carbon Tetrachloride, and Perchlorate. Technical Regulatory Guidelines. ITRC, Washington, DC, USA. August.

    Google Scholar 

  • ITRC. 2004. Strategies for Monitoring the Performance of DNAPL Source Zone Remedies. DNAPLs-5. ITRC, Washington, DC, USA. http://www.itrcweb.org/Documents/DNAPLs-5.pdf. Accessed July 31, 2009.

  • ITRC. 2008a. Enhanced Attenuation: Chlorinated Organics. EACO-1. ITRC, Washington, DC, USA. April. http://www.itrcweb.org/Documents/EACO-1.pdf. Accessed July 31, 2009.

  • ITRC. 2008b. In situ Bioremediation of Chlorinated Ethene: DNAPL Source Zones. Prepared by the ITRC Bioremediation of DNAPLs Team. ITRC, Washington, DC, USA. June.

    Google Scholar 

  • Kennedy LG, Everett JW, Gonzales J. 2003. Biogeochemical Treatment for the Engineered and Natural Attenuation of Chlorinated Solvents. Proceedings, Seventh International Symposium of In Situ and On-Site Bioremediation (Orlando, FL, USA, June). Battelle Press, Columbus, OH, USA, Paper H-16.

    Google Scholar 

  • Kennedy LG, Everett JW, Becvar E, DeFeo D. 2006. Field-scale demonstration of induced biogeochemical reductive dechlorination at Dover Air Force Base, Dover, DE, USA. J Contam Hydrol 88:119–136.

    Article  CAS  Google Scholar 

  • Kitanidis PK, McCarty PL. 2010. Delivery and Mixing in the Subsurface: Processes and Design Principles for In Situ Remediation. SERDP and ESTCP Remediation Technology Monograph Series. Springer Science+Business Media, LLC, New York, NY, USA. In Preparation.

    Google Scholar 

  • Kriegman-King MR, Reinhard M. 1994. Transformation of carbon tetrachloride by pyrite in aqueous solution. Environ Sci Technol 28:692–700

    Article  CAS  Google Scholar 

  • Krone UE, Thauer RK. 1992. Dehalogenation of trichlorofluoromethane (CFC-11) by Methanosarcina Barkeri. FEMS Microbiol Lett 90:201–204.

    Article  CAS  Google Scholar 

  • Krumholz LR. 1997. Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors. Int J Syst Bacteriol 47:1262–1263.

    Article  CAS  Google Scholar 

  • Lee W, Batchelor B. 2002. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite. Environ Sci Technol 36:5147–5154.

    Article  CAS  Google Scholar 

  • Lendvay JM, Löffler FE, Dollhopf M, Aiello MR, Daniels G, Fathepure BZ, Gebhard M, Heine R, Helton R, Shi J, Krajmalnik-Brown R, Major CL, Barcelona MJ, Petrovskis E, Tiedje JM, Adriaens P. 2003. Bioreactive barriers: A comparison of bioaugmentation and biostimulation for chlorinated solvent remediation. Environ Sci Technol 37:1422–1431.

    Article  CAS  Google Scholar 

  • Löffler F, Sun Q, Li J, Tiedje J. 2000. 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl Environ Microbiol 66:1369–1374.

    Article  Google Scholar 

  • Lu X, Wilson J, Kampbell DH. 2006. Relationship between Dehalococcoides DNA in ground water and rates of reductive dechlorination at field scale. Water Res 40:3131–3140.

    Article  CAS  Google Scholar 

  • MacEwen SJ, Fadullon F, Hayes D. 2001. Evaluation of Aerobic and Anaerobic Degradation of Pentachlorophenol in Groundwater. Proceedings, Sixth International In-Situ and On-Site Bioremediation Symposium (San Diego, CA, Jun 4–7). Battelle Press, Columbus, OH, USA. ISNB 1–57477–110–8.

    Google Scholar 

  • Maillacheruvu KY, Parkin GF. 1996. Kinetics of growth, substrate utilization, and sulfide toxicity for propionate, acetate, and hydrogen utilizers in anaerobic systems. Water Environ Res 68:1099–1106.

    Article  CAS  Google Scholar 

  • Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW. 2002. Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36:5106–5116.

    Article  CAS  Google Scholar 

  • Martin JP, Sorenson KS. 2004. Case Study of Enhanced Bioremediation of a DNAPL Source Area: Four Years of Data from Test Area North, INEEL. In AFCEE, NFESC, ESTCP. 2004. Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents, Appendix E.1.

    Google Scholar 

  • Martin JP, Sorenson KS, Peterson LN. 2001. Favoring Efficient In Situ Dechlorination through Amendment Injection Strategy. Proceedings, Sixth International In-Situ and On Site Bioremediation Symposium (San Diego, CA, USA) 6(7):265–272.

    Google Scholar 

  • Martin JP, Sorenson KS, Peterson LN, Brennan RA, Werth CJ, Sanford RA, Bures GH, Taylor CJ. 2002. Enhanced CAH Dechlorination in a Low Permeability, Variably Saturated Medium. In Gavaskar AR, Chen ASC, eds, Remediation of Chlorinated and Recalcitrant Compounds: Proceedings, Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds (Monterey, CA, USA, May). Battelle Press, Columbus, OH, USA, Paper 2B-54.

    Google Scholar 

  • Maymo-Gatell X, Chien Y, Gossett JM, Zinder SH. 1997. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Sci 276:1568–1571.

    Article  CAS  Google Scholar 

  • Maymo-Gatell X, Chien Y, Gossett JM, Zinder SH. 1999. Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by Dehalococcoides ethenogenes 195. Appl Environ Microbiol 65:3108–3113.

    CAS  Google Scholar 

  • Mohn WW, Tiedje JM. 1992. Microbial reductive dehalogenation. Microbiol Rev 56:482–507.

    CAS  Google Scholar 

  • Newell CJ, Aziz CE, Haas PE, Hughes J, Khan TA. 2001. Two Novel Methods for Enhancing Source Zone Remediation: Direct Hydrogen Addition and Electron Acceptor Diversion. Proceedings, Sixth International Symposium on In-Situ and On-Site Bioremediation (San Diego, CA, USA) 7:19–26.

    CAS  Google Scholar 

  • Newell CJ, Aziz CE, Hughes J, Hansen J. 2003. Bioremediation of Solvent Sites using Direct Hydrogen Delivery. Proceedings, 2003 AFCEE Technology Transfer Workshop, San Antonio, TX. AFCEE, Brooks City-Base, TX, USA. February.

    Google Scholar 

  • Nichols E, Roth T. 2004. Flux redux: Using mass flux to improve cleanup decisions. LUSTLine Bulletin 46:6–9. USEPA, Washington, DC, USA.

    Google Scholar 

  • Norris RD. 2004. HRC® and HRC-X™ Pilot Test at Portland, Oregon Dry Cleaner Site. In AFCEE, NFESC, ESTCP. 2004. Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents, Appendix E.5.

    Google Scholar 

  • Novak PJ, Edstrom JA, Clapp LW, Hozalski RM, Semmens MJ. 2002. Stimulation of Dechlorination by Membrane-Delivered Hydrogen: Small Field Demonstration (abstract). Presented at the Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 20–23.

    Google Scholar 

  • Parsons (Parsons Infrastructure & Technology Group, Inc.). 2002a. Final Interim Report: Performance and Cost of Anaerobic Dechlorination, Phase I Site Survey. Prepared for the NFESC, Port Hueneme, CA, and the ESTCE, VA, USA. December 11.

    Google Scholar 

  • Parsons. 2002b. Final Phase II Field Feasibility Test for In situ Bioremediation of Chlorinated Solvents Via Vegetable Oil Injection at Hanger K Area, Cape Canaveral Air Force Station, Florida. Prepared for AFCEE, Brooks City-Base, TX, USA. March. http://www.afcee.af.mil/resources/technologytransfer/programsandinitiatives/enhancedinsituanaerobicbioremediation/resources/index.asp. Accessed July 31, 2009.

  • Parsons. 2002c. Cost and Performance Report, In-Situ Bioremediation of Chlorinated Solvents Via Vegetable Oil Addition at Site SS015, Travis Air Force Base, California. Prepared for AFCEE, Brooks City-Base, TX, USA. March. http://www.afcee.af.mil/resources/technologytransfer/programsandinitiatives/enhancedinsituanaerobicbioremediation/resources/index.asp. Accessed July 31, 2009.

  • Parsons. 2003. Final Work Plan for a Bioreactor Demonstration at Landfill 3 and Site SS-17, Altus AFB, Oklahoma. Prepared for ESTCP and Altus AFB, OK, USA. Revision 1. September.

    Google Scholar 

  • Parsons. 2006a. Final Project Completion Report, Demonstration Study for Enhanced In Situ Bioremediation of Chlorinated Solvents at Site LF05 (Former Tri-Services Landfill), Hickam Air Force Base, Oahu, HI. Prepared for AFCEE, Brooks City-Base, TX, USA. July.

    Google Scholar 

  • Parsons. 2006b. Draft Interim Results for a Permeable Mulch Biowall at the BG05 Site, Ellsworth AFB, SD. Prepared for AFCEE and Ellsworth AFB, SD, USA. March 3.

    Google Scholar 

  • Parsons. 2007a. Draft Project Completion Report for a Permeable Mulch Biowall Technology Demonstration, Site WP14, Dover Air Force Base, DE. Prepared for AFCEE, Brooks City-Base, TX, USA. June.

    Google Scholar 

  • Parsons. 2007b. Draft Field Feasibility Study for Enhanced Bioremediation of Chlorinated Solvents at Hangar K, Cape Canaveral Air Force Station, FL. Prepared for AFCEE, Brooks City-Base, TX, USA. Draft. June.

    Google Scholar 

  • Parsons. 2007c. Draft Project Completion Report, Technology Demonstration for In-Situ Anaerobic Bioremediation of Chlorinated Solvents in Groundwater Using a Permeable Mulch Biowall, Operable Unit 1, Altus Air Force Base, OK. Prepared for AFCEE, Brooks City-Base, TX, USA. Draft. June.

    Google Scholar 

  • Payne FC, Horst JF, Nelson DK, Suthersan SS. 2006. Electron Donor Efficiency in Enhanced Reductive Dechlorination: A Broadened View. Proceedings, Fifth International Conference on Remediation of Chlorinated and Recalcitrant Compounds (Monterey, CA, May). Battelle Press, Columbus, OH, USA, Abstract A-45.

    Google Scholar 

  • Richardson RE, Bhupathiraju VK, Song DL, Goulet TA, Alvarez-Cohen L. 2002. Phylogenetic characterization of microbial communities that reductively dechlorinate TCE based upon a combination of molecular techniques. Environ Sci Technol 36:2652–2662.

    Article  CAS  Google Scholar 

  • Ritalahti KM, Löffler FE. 2004. Populations implicated in anaerobic reductive dechlorination of 1,2-dichloropropane in highly enriched bacterial communities. Appl Environ Microbiol 70:4088–4095.

    Article  CAS  Google Scholar 

  • Schankweiler SS, Lorenz AM. 2002. Enhanced Reductive Dechlorination in High-Flow Aquifers Using HRC. In Gavaskar AR and Chen ASC, eds, Remediation of Chlorinated and Recalcitrant Compounds, Proceedings of the Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds (Monterey, CA, May). Battelle Press, Columbus, OH, USA, Paper 2B-58.

    Google Scholar 

  • Scholz-Muramatsu H, Neumann A, Messmer M, Moore E, Diekert G. 1995. Isolation and characterization of dehalospirillium multivorans ge. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol 63:48–56.

    Article  Google Scholar 

  • Semprini L, Hopkins GD, Roberts PV, McCarty PL. 1991. In Situ Biotransformation of Carbon Tetrachloride, Freon-113, Freon-11, and 1,1,1-TCA under Anoxic Conditions. In Hinchee RE, Offenbuttel RF, eds, On-Site Bioreclamation Processes for Xenobiotic and Hydrocarbon Treatment. Butterworth-Heinemann, Boston, MA, USA, pp 41–58.

    Google Scholar 

  • SERDP (Strategic Environmental Research and Development Program). 2005. SERDP and ESTCP Expert Panel Workshop on Research and Development Needs for the Environmental Remediation Application of Molecular Biological Tools. October. http://www.serdp.org/Research/er-chlorinated-solvents.cfm. Accessed July 31, 2009.

  • SERDP. 2006. Final Report: Expert Panel Workshop on Reducing the Uncertainty of DNAPL Source Zone Remediation. SERDP, Arlington, VA, USA. http://www.serdp.org/Research/upload/DNAPLWorkshopReport.pdf. Accessed May 31, 2010.

  • Shen H, Wilson JT. 2007. Trichloroethylene removal from ground water in flow-through columns simulating a reactive permeable barrier constructed with mulch. Environ Sci Technol 41:4077–4083.

    Article  CAS  Google Scholar 

  • Sivavec TM, Horney DP. 1997. Reduction of Chlorinated Solvents by Fe(II) Minerals. Proceedings, 213th American Chemical Society National Meeting, pp 115–117.

    Google Scholar 

  • Solutions IES. 2006. Edible Oil Barriers for Treatment of Perchlorate Contaminated Groundwater, Final Report. Prepared by Solutions IES for ESTCP, Arlington, VA, USA. February. http://www.estcp.org/viewfile.cfm?Doc=ER%2D0221%2DFR%2D01%2Epdf. Accessed July 31, 2009.

  • Sorenson KS. 2003. Enhanced Bioremediation for Treatment of Chlorinated Solvent Residual Source Areas. In Henry SM, Warner SD, eds, Chlorinated Solvent and DNAPL Remediation: Innovative Strategies for Cleanup. ACS Symposium Series 837:119–131.

    Article  CAS  Google Scholar 

  • Sorenson KS, Martin JP, Brennan RA, Werth CJ, Sanford RA, Bures GH. 2002. Development of a Chitin-Fracing Technology for Remediation of Chlorinated Solvent Source Areas in Low Permeability Media, Phase I SBIR Final Report. North Wind Environmental, NWE-ID-2002–024 Revision 0.

    Google Scholar 

  • Stroo HF, Ward CH (eds). 2009. In Situ Bioremediation of Perchlorate in Groundwater. SERDP and ESTCP Remediation Monograph Series. Springer Science+Business Media, LLC, New York, NY, USA. 243 p.

    Google Scholar 

  • Stroo HF, Leeson A, Shepard AJ, Koenigsberg SS, Casey CC. 2006. Environmental remediation applications of molecular biological tools. Remediat J 16:125–136.

    Article  Google Scholar 

  • Stroo HF, Leeson A, Ward CH. 2010. Bioaugmentation for Groundwater Remediation. SERDP and ESTCP Remediation Technology Monograph Series. Springer Science + Business Media, LLC, New York, NY, USA. In Preparation.

    Google Scholar 

  • Sung Y, Ritalahti KM, Apkarian RP, Löffler FE. 2006. Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. Appl Environ Microbiol 73:1980–1987.

    Article  CAS  Google Scholar 

  • Suthersan SS. 2001. Natural and Enhanced Remediation Systems. Lewis Publishers, Boca Raton, FL, USA. 440 p.

    Book  Google Scholar 

  • Suthersan SS, Payne F. 2004. In Situ Remediation Engineering. CRC Press, Boca Raton, FL, USA. 520 p.

    Google Scholar 

  • Suthersan SS, Lutes CC, Palmer PL, Lenzo F, Payne FC, Liles DS, Burdick J. 2002. Final Technical Protocol for Using Soluble Carbohydrates to Enhance Reductive Dechlorination of Chlorinated Aliphatic Hydrocarbons. Submitted to ESTCP, Arlington, VA, USA and AFCEE, Brooks-City Base, TX, USA under Contract #41624-99-C-8032. December 19.

    Google Scholar 

  • USEPA (U.S. Environmental Protection Agency). 1988. Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA (Interim Final). OSWER Directive 9355.3-01, EPA/540/G-89/004. October.

    Google Scholar 

  • USEPA. 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater. EPA/600/R-98/128. USEPA National Risk Management Research Laboratory, Office of Research and Development, Cincinnati, OH, USA.

    Google Scholar 

  • USEPA. 2000. Engineered Approaches to In Situ Bioremediation of Chlorinated Solvents: Fundamentals and Field Applications. EPA 542-R-00-008. USEPA Office of Solid Waste and Emergency Response, Washington DC, USA. July.

    Google Scholar 

  • USEPA. 2002. Applicability of RCRA Section 3020 to In-Situ Treatment of Groundwater. Memorandum from Elizabeth Cotsworth, Director, USEPA Office of Solid Waste and Emergency Response. December 27.

    Google Scholar 

  • USEPA. 2003. The DNAPL Remediation Challenge: Is There a Case for Source Depletion? Prepared by the Expert Panel on DNAPL Remediation. EPA/600/R-03/143. December. 129 p.

    Google Scholar 

  • USEPA. 2008. A Guide for Assessing Biodegradation and Source Identification of Organic Ground Water Contaminants using Compound Specific Isotope Analysis (CSIA). EPA 600/R-08/148. December. http://www.epa.gov/ada/gw/mna.html. Accessed June 2, 2010.

  • Weerasooriya R, Dharmasena B. 2001. Pyrite-assisted degradation of trichloroethene (TCE). Chemosphere 42:389–396.

    Article  CAS  Google Scholar 

  • Whiting K, Evans P, Henry B, Wilson J, Olsen R, Becvar E, Lebron C. 2008. In Situ Biogeochemical Transformation of Chlorinated Ethenes Using Engineered Treatment Systems. Prepared for AFCEE, ESTCP and NFESC.

    Google Scholar 

  • Wiedemeier TH, Swanson MA, Moutoux DE, Wilson JT, Kampbell DH, Hansen JE, Haas P. 1996. Overview of the Technical Protocol for Natural Attenuation of Chlorinated Aliphatic Hydrocarbons in Groundwater under Development for the U.S. Air Force Center for Environmental Excellence. Symposium on Natural Attenuation of Chlorinated Solvents, Washington, DC, USA. EPA/540/R-96/509.

    Google Scholar 

  • Wiedemeier TH, Rifai HS, Newell CJ, Wilson JT. 1999. Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface. John Wiley & Sons, New York, NY, USA. 617 p.

    Book  Google Scholar 

  • Yan T, LaPara TM, Novak PJ. 2006. The reductive dechlorination of 2,3,4,5-tetrachlorobiphenyl in three different sediment cultures: Evidence for the involvement of phylogenetically similar Dehalococcoides-like bacterial populations. FEMS Microbio Ecol 55:248–261.

    Article  CAS  Google Scholar 

  • Zahiraleslamzadeh ZM, Bensch JC. 2001. Enhanced Bioremediation in Clay Soils. Proceedings, Sixth International In-Situ and On-Site Bioremediation Symposium. Battelle Press, Columbus, OH, USA, 6:221–228.

    Google Scholar 

  • Zwiernik MJ, Quensen III JF, Boyd SA. 1998. FeSO4 Amendments stimulate extensive anaerobic PCB dechlorination. Environ Sci Technol 32:3360–3365.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Henry, B.M. (2010). Biostimulation for Anaerobic Bioremediation of Chlorinated Solvents. In: Stroo, H., Ward, C. (eds) In Situ Remediation of Chlorinated Solvent Plumes. SERDP/ESTCP Environmental Remediation Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1401-9_12

Download citation

Publish with us

Policies and ethics