Skip to main content

Neuroprotectin D1 Modulates the Induction of Pro-Inflammatory Signaling and Promotes Retinal Pigment Epithelial Cell Survival DuringOxidative Stress

  • Chapter
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 664))

Abstract

Retinal pigment epithelial (RPE) cells are the most restrictive layer of the three components of the outer Blood-Retina Barrier, preventing the passage of biomolecules in relation to size and charge and thus preserving a controlled environment for the photoreceptors. The retinal pigment epithelium is a tight structure that, when disrupted as a cause or consequence of pathological conditions, deeply affects the neural retina. Since adult human RPE cells are not replicative cells, their preservation is of major interest for the biomedical field due to their loss in many retino-degenerative pathologies. There are several triggers that elicit reactive oxygen species (ROS) formation in normal and pathological circumstances. When the production of these species overwhelms the scavenging and detoxifying systems, their activity results in programmed cell death. Docosahexaenoic acid (DHA) is an essential lipid that is conspicuously accumulated in photoreceptors and RPE cells in the retina. DHA and its oxygenation product, neuroprotectin D1 (NPD1), are major players in the protection of these cells and the retina. NPD1 promotes the synthesis of anti-apoptotic proteins of certain members of the Bcl-2 family and blocks the expression of pro-inflammatory proteins like cyclooxygenase-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ariel A, Li PL, Wang W et al (2005) The docosatriene protectin D1 is produced by TH2 skewing and promotes human T cell apoptosis via lipid raft clustering. J Biol Chem 280:43079–43086

    Article  CAS  PubMed  Google Scholar 

  • Bazan NG (2007) Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid. Invest Ophthalmol Vis Sci 48:4866–4881

    Article  PubMed  Google Scholar 

  • Bazan NG, Rodriguez de Turco EB, Gordon WC (1993) Pathways for the uptake and conservation of docosahexaenoic acid in photoreceptors and synapses: biochemical and autoradiographic studies. Can J Physiol Pharmacol 71:690–698

    CAS  PubMed  Google Scholar 

  • Bierhaus A, Schiekofer S, Schwaninger M et al (2001) Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 50:2792–2808

    Article  CAS  PubMed  Google Scholar 

  • Boulton M, Rozanowska M, Rozanowski B (2001) Retinal Photodamage. J Photochem Photobiol B 64:144–161

    Article  CAS  PubMed  Google Scholar 

  • Brash AR, Boeglin WE, Chang MS (1997) Discovery of a second 15S-lipoxygenase in humans. Proc Natl Acad Sci U S A 94:6148–6152

    Article  CAS  PubMed  Google Scholar 

  • Brinckmann R, Schnurr K, Heydeck D et al (1998) Membrane translocation of 15-lipoxygenase in hematopoietic cells is calcium-dependent and activates the oxygenase activity of the enzyme. Blood 91:64–74

    CAS  PubMed  Google Scholar 

  • Clandinin MT, Jumpsen J, Suh M (1994) Relationship between fatty acid accretion, membrane composition, and biologic functions. J Pediatr 125:S25–S32

    Article  CAS  PubMed  Google Scholar 

  • D’Autreaux B, Toledano MB (2007) ROS as signaling molecules: mechanisms that generate specificity in ROS homeostasis in a physiologically controlled environment. Nature Review Mol Cell Biol 8:813–824

    Article  Google Scholar 

  • de Carvalho DD, Sadock A, Bourgarel-Rey V et al (2008) Nox1 downstream of 12-Lipoxygenase controls cell proliferation but not cell spreading of colon cancer cells. Int J Cancer 122:1757–1764

    Article  PubMed  Google Scholar 

  • Gibbs D, Kitamoto J, Williams DS (2003) Abnormal phagocytosis by retinal pigmented epithelium that lacks myosin VIIa, the Usher syndrome 1B protein. Proc Natl Acad Sci U S A 100:6481–6486

    Article  CAS  PubMed  Google Scholar 

  • Jumpsen JA, Lien EL, Goh YK et al (1997) During neuronal and glial cell development diet n – 6 to n – 3 fatty acid ratio alters the fatty acid composition of phosphatidylinositol and phosphatidylserine. Biochim Biophys Acta 1347:40–50

    CAS  PubMed  Google Scholar 

  • Kühn H, Thiele BJ, Ostareck-Lederer A et al (1993) Bacterial expression, purification and partial characterization of recombinant rabbit reticulocyte 15-lipoxygenase. Biochim Biophys Acta 1168:73–78

    PubMed  Google Scholar 

  • Lee SJ, Kim JH, Kim JH et al (2007) Human apolipoprotein E2 transgenic mice show lipid accumulation in retinal pigment epithelium and altered expression of VEGF and bFGF in the eyes. J Microbiol Biotechnol 17:1024–1030

    CAS  PubMed  Google Scholar 

  • Lenaz G, Bovina C, D’Aurelio M et al (2002) Role of mithocondria in oxidative stress and aging. Ann NY Acad Sci 959:199–213

    Article  CAS  PubMed  Google Scholar 

  • Lukiw WJ, Cui JG, Marcheselli VL et al (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 115:2774–2783

    Article  CAS  PubMed  Google Scholar 

  • Margrain TH, Boulton M, Marshall J et al (2004) Do blue light filters confer protection against age-related macular degeneration? Prog Retin Eye Res 23:523–531

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Marcheselli VL, Barreiro S et al (2007a) Neurotrophins enhance retinal pigment epithelial cell survival through neuroprotectin D1 signaling. Proc Natl Acad Sci U S A 104:13152–13157

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Marcheselli VL, de Rivero Vaccari JC et al (2007b) Photoreceptor outer segment phagocytosis attenuates oxidative stress-induced apoptosis with concomitant neuroprotectin D1 synthesis. Proc Natl Acad Sci U S A 104:13158–13163

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Marcheselli VL, Serhan CN et al (2004) Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci U S A 101:8491–8496

    Article  CAS  PubMed  Google Scholar 

  • Niemoller TD, Stark DT, Bazan NG (2009) Omega-3 fatty acid docosahexaenoic acid is the precursor of neuroprotectin D1 in the nervous system. World Rev Nutr Diet 99:46–54

    Article  CAS  PubMed  Google Scholar 

  • Pournaras CJ, Rungger-Brändle E, Riva CE et al (2008) Regulation of retinal blood flow in health and disease. Prog Retin Eye Res 27:284–330

    Article  CAS  PubMed  Google Scholar 

  • Punzo C, Kornacker K, Cepko CL (2009) Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 12:44–52

    Article  CAS  PubMed  Google Scholar 

  • Sheridan CM, Mason S, Pattwell DM et al (2009) Replacement of the RPE monolayer. Eye 23:1910–1915

    Article  CAS  PubMed  Google Scholar 

  • Sparrow JR, Boulton M (2005) RPE lipofuscins and its role in retina pathobiology. Exp Eye Res 80:595–606

    Article  CAS  PubMed  Google Scholar 

  • Strauss O (2005) The retinal pigment epithelium in visual function. Phisiol Rev 85:845–881

    Article  CAS  Google Scholar 

  • Tanihara H, Inatani M, Honda Y (1997) Growth factors and their receptors in the retina and pigment epithelium. Prog Retin Eye Res 16:271–301

    Article  CAS  Google Scholar 

  • Uauy R, Hoffman DR, Peirano P et al (2001) Essential fatty acids in visual and brain development. Lipids 36:885–895

    Article  CAS  PubMed  Google Scholar 

  • Walther M, Wiesner R, Kuhn H (2004) Investigations into calcium-dependent membrane association of 15-lipoxygenase-1. Mechanistic roles of surface-exposed hydrophobic amino acids and calcium. J Biol Chem 279:3717–3725

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Overbeek PA (2001) Regulation of choroid development by the retinal pigment epithelium. Mol Vis 2:277–282

    Google Scholar 

  • Zlokovic BV (2005) Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci 28:202–208

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by NIH/NEI grant R01 EY005121, NIH/NCRR grant P20 RR016816, the Edward G. Schlieder Educational Foundation, the Eye, Ear, Nose and Throat Foundation, and the Ernest C. and Yvette C. Villere Chair for Research in Retinal Degeneration (NGB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas G. Bazan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Calandria, J.M., Bazan, N.G. (2010). Neuroprotectin D1 Modulates the Induction of Pro-Inflammatory Signaling and Promotes Retinal Pigment Epithelial Cell Survival DuringOxidative Stress. In: Anderson, R., Hollyfield, J., LaVail, M. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 664. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1399-9_76

Download citation

Publish with us

Policies and ethics